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We establish some estimates of the right-hand side of Hermite-Hadamard type inequalities for functions whose derivatives absolute
values are harmonically s-convex. Several Hermite-Hadamard type inequalities for products of two harmonically s-convex functions

are also considered.

1. Introduction

Let f: I € R — R be aconvex function and a,b € I with
a < b; then

a+b 1t f(a)+f®)
1(557) s g roas IR0

Inequality (1) is known as the Hermite-Hadamard inequality.
In [1], Hudzik and Maligranda considered the class of
functions which are s-convex in the second sense. This class
of functions is defined as follows.
A function f: [0,00) — [0, 00) is said to be s-convex in
the second sense if the inequality

flax+(1-a)y)<a’ f(x)+(1-a) f(y) )

holds for all x, y € [0,00), a € [0, 1] and for some fixed s €
(0, 1].

It can be easily seen that, for s = 1, s-convexity reduces to
ordinary convexity of functions defined on [0, c0).

In [2], Dragomir and Fitzpatrick established a variant of
Hermite-Hadamard inequality which holds for the s-convex
functions in the second sense.

Theorem 1 (see [2]). Suppose that f : [0,00) — [0, 00) is an
s-convex function in the second sense, where s € (0, 1] and let

a,b € [0,00), a < b. If f € L[a,b], then the following inequ-
alities hold:

sc1,.(a+b 1 (* f(a)+f(b)
2 f( > )Smjaf(t)dtS?. (3)

Some generalizations, improvements, and extensions of
inequalities (1) and (3) can be found in the recent papers [2-
18].

In [16], Iscan investigated the Hermite-Hadamard type
inequalities for harmonically convex functions.

Definition 2 (see [16]). Let I < R\ {0} be a real interval. A
function f: I — R issaid to be harmonically convex, if

(2

m)ﬁtf(y)ﬂl—t)f(x), (4)

forall x, y € I and t € [0, 1]. If the inequality in (4) is reve-
rsed, then f is said to be harmonically concave.

Theorem 3 (see [16]). Let f: I < R\ {0} — R be a harmo-
nically convex function and a,b € I witha < b. If f € L(a,b),
then one has

2ab ab (b f(x) f(a)+ f(b)
f( )Sb J dx < . (5

a+b —-als x? 2




Theorem 4 (see [16]). Let f: I € R\{0} — R be a differenti-
able function on I° (I° is the interior of ), a,b € I witha < b,
and f’ € L[a,b]; then

f@+f® ab (°f(x)
2 _b—aL x2 dx

_ab(b-a) ! 1-2t ,< ab >
- 2 jo (tb+(1—t)a)2f tb+(1-t)a dt.

(6)

In [19], Iscan investigated the Hermite-Hadamard type
inequalities for harmonically s-convex functions.

Definition 5 (see [19]). Let I € R\ {0} be a real interval. A
function f : I € (0,00) — R is said to be harmonically
s-convex, if

(=2

m) SEFW -0 @, O

forall x,y € I,t € [0,1] and for some fixed s € (0, 1]. If the
inequality in (7) is reversed, then f is said to be harmonically
s-concave.

Theorem 6 (see [19]). Let f : I € (0,00) — R be a harmo-
nically s-convex functionand a,b € I witha < b. If f € L(a, b),
then one has

25_1f<2ab>< ab J'bf(x)dng(a)+f(b)' ®)

a+b) b-al, x* s+1

In [20], Pachpatte established two new Hermite-Hada-
mard type inequalities for products of convex functions asse-
rted by Theorem 7.

Theorem 7 (see [20]). Let f and g be real-valued, nonnega-
tive, and convex functions on [a, b). Then

b
bia L f(x)gx)dx < %M(u,b)+ éN(u,b),

2f<a;rb>g<a;rb>

b
< ;J f(x)gx)dx+ éM(a,b)+ %N(a,b),

b-a
9)

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) =

fa)g®) + f(b)g(a).

For more results concerning the Hermite-Hadamard
inequality, we refer the reader to [21-25] and the references
cited therein.

In this paper, we establish some estimates of the right-
hand side of Hermite-Hadamard type inequalities for func-
tions whose derivatives absolute values are harmonically s-
convex. Moreover, we provide several Hermite-Hadamard
type inequalities for products of two harmonically s-convex
functions.
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2. Inequalities for Harmonically
s-Convex Functions

We recall the following special functions.
The gamma function is as follows:

+00
[(x)= J e x>0 (10)
0

the beta function is as follows:

1

fa’(x,y)zj (-t '7dt, x>0, y>0,
0 (11)
Blxy) = oOTL),
) T'(x+y)’

the hypergeometric function is as follows:

oFy (%, y36:2)

= m Jl PlA -7 A -z, (12)
> — 0

lz| <1, ¢>y>0.

Our main results are given in the following theorems.

Theorem 8. Let f : I € (0,00) — R be a differentiable
function on 1° such that f’ € Lla,bl, where a,b € I° with
a < b. If | f'|9 is harmonically s-convex on [a, b] for some fixed
s€(0,1], g > 1, then

f@+f®)  ab r f(x)dx‘

2 b-al, x>

< Wd‘“q @) [C, (sa.b) |1 B

+C (sab) | @[]
(13)

where

C, (a,b) = b (2F1 (2,2; 31— g) —,F, (2, 1,21 - g)

1 1 a
t32h (2’ L33 (1 B z)))’
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C, (s;a,b)
_ 2 a
=b2<— F (2,s+2;s+3;1——>
s+2%! b
1 a
-—F <2,s+1;s+2;1——)
s+12! b

1
t .5
25(s+1)(s+2)

1 a
x<2,s+1;s+3;—<1——>>),
2 b

JF, <2,2;s+3;1—£)

1 a
- ——,F (2,1;s+2;1——>
s+1%1 b

1 1 a
+3:R (2135 (1-3)))

. j— _2 2
C(sab)=b ((s+ )(s+2)

(14)

Proof. Let A, = ta + (1 — t)b. Using Theorem 4, the power

i li d the h ically s- ity of | f'|7
mean inequality, and the harmonically s-convexity of | f'|9,
we have

f@+f®)  ab J fG
2

b-a x2

1
Sab(b—a)J [1- ,(a_b) dt
2 )y A A,
1 1,1/‘1
Sab(b—a)(J |1—2t|dt>
2 o A2
11 _ q 1/q
([ ()
o Aj Ay
_abb-a) vy
2 1
1 1/q
([ 5o o
0o A2
ab(b-a
< LEZD (|1 o + k) @)
(15)
where
K - Jl |1—2t|d
1 0 A% >
1
[1—2t]
K, = ———t'dt, 16
2 .[o A? as)

Calculating K, K;, and K3, we find

i1 -2t
K1=I| |

1/2 1
1—2t 2t -1
=j J ——dt
1/2 At

1 1/2
Zt 1-2t
- j J dt
A

2
0 t

1
=2| tAdt - J Adt
0 0

+ 01 (1 —u)b_2(1 —u% (1 - g))_zdu

=b‘2( F <2,2;3;1—f>
251 b
a
-,F(2,1;2;1 - —
2 1( b)
1 1 a
+3aF (2133 (1-7)))

=C, (a,b).

17)

Similarly, we get
1 s
1-2t|t
K2 = J %dt
0 At

26 — V21 _o¢
_ J Lysar + J #dt
o A2 A?

0 t

1 1
= 2J At - J A dt
0 0

+ 1 Jl (1-u) usb_2<1 -
25 Jo

2b- a
= F<2,S+2;s+3;1——>
s+2 41 b

b2 a
-— F<2,s+1;5+2;1——>
s+1 2! b

b2 1 a
% R(2s+nsexs(1-2
T r G (s+2)2 1( sThsT 2< b))

=C,(s;a,b),
(18)

Dir—2t1 (1 =2
JI tlg t)dt
0 At

129 2t

(1-t)dt

1
=J 2t l(l—t)dt+zj
o Af

t



1
<2 j (1 — 1) A2
0

1 1/2 1-2t
—J (1—t)5A;2dt+2j —dt
0 o Aj

_ g2 2 ( ea s _E)
-b <(s+1)(s+2)2F1 2255+ 31~

1 a
- ——,F <2,1;s+2;1——>
s+1%! b

1 1 a
t 3 (2’1’3’5(17)))

=C5(s;a,b).
(19)

This completes the proof of Theorem 8. O

Theorem 9. Let f : I € (0,00) — R be a differentiable
function on I° such that f' € Lla,b], where a,b € I° with
a < b. If| f'|1 is harmonically s-convex on [a, b] for some fixed
s€(0,1], g > 1, then

’f(a);;f(b)__ ab Jb'f(x)dx‘

b-al, x>

<a(b—a)< 1 )UP
T2 p+1

><<<2F1 <2q>s+1;s+2;1_g>'ff (b)lq (20)

+,F, <2q, Ls+21- g) |F' (a)|q>

_1\Ya
X(s+1) ) ,

where (1/p) + (1/q) = 1.

Proof. Let A, = ta+(1—1t)b. Utilizing Theorem 4, the Holder
inequality, and the harmonically s-convexity of | f'|7, we have

|f(a)+f(b)_ ab be(x)

2 b-al, x*

! b
()
M(l ot )”P( b
<22 Lu 2Pt L e

ab (b - a)Ki/p
2

dx’

_ L1 -
<ab(b a)J |1 -2t dt

T2 ) A2

q \!4
dt>

(3
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fl (a)'q + ts

! s ! q a
x (L yd L o) ]dt)

ab (b -a) q q11/q
= = KK O+ Ko 7 @[]
(21)
where
! 1
K, = J 1 -2t)fdt = ——,
0 p+1
)
Ks = J A dt
0
1 a -2q
:b‘z’fj t5<1—t(1——>) dt
0 b
1 a
Zszl <2q,S+1;S+2;1—E>, (22)
1
K, = j A1 - 1)t
0
1 —2q
:b‘z‘?J (1—t)3<1 —t(l - E)) dt
0 b
S S <2 1-s+2-1—ﬂ>
= (S+ 1)b2q 2 1 q) bl bl b .
The proof of Theorem 9 is completed. 0

3. Inequalities for Products of
Harmonically s-Convex Functions

Theorem 10. Let f, g : [a,b] — [0,00), a,b € (0,00), a < b,
be functions such that f, g, fg € Lla,b]. If f is harmonically
s,-convex and g is harmonically s,-convex on [a, b] for some
fixed s;,s, € (0,1], then

ab (¥ f(x)g(x)
b—aL x? dx

1 M(a,b)+r(1+sl)r(52+l)

[(s;+s,+2)

<— N{(a,b),
1+s,+s,

(23)

where M(a,b) =
fla)g(b) + f(b)g(a).

Proof. Since f is harmonically s,-convex and g is harmoni-
cally s,-convex on [a, b], then for t € [0, 1] we get

f( ab

ta+(1-1)b

f(a)gla) + f(b)g(b) and N(a,b) =

) <E B+ (-0 f (@),
(4)

ab N .
o) < ra®+ a-0%9 G,
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From (24), we get

f(ta+(alb—t)b>g(ta+(6;b—t)b>

<t (D) g k) + (1= f (a) g (a)

02 f ) g@+1-"t"f(a)g®).
(25)

+17(1 -

Integrating both sides of the above inequality with respect to
t over [0, 1], we obtain

1 ab ab
Jo f(ta+(l—t)b>g<ta+(l—t)b>dt

a J f(x)g(x
b a

x2

TS s+l [f@g (@ +f®)g®)]
(26)

1
(@) g®) L (119 t2dt

1
+f(b)ga) JO £1(1 - t)2dt

1
T l+s, +s2]\/[(a’b)+/3(1 +51,5, + 1) N (a,b).

The proof of Theorem 10 is completed. O

Remark 11. Taking s; = s, = 1 in Theorem 10, we obtain

Jf(x)g( ) dx < M(ab)+ N(ab) 27)
b—a a x?

Remark 12. Choosing s; = s, = 1 and g = 1 in Theorem 10
gives

J' f(x) f(a) +f(b)) (28)
b a x2 2

which is the right-hand side inequality of (5).

Theorem 13. Let f,g : [a,b] — [0,00),a,b € (0,00),a < b,
be functions such that f, g, fg € Lla,b]. If f is harmonically
s,-convex and g is harmonically s,-convex on [a, b] for some
fixed s;,s, € (0,1], then

_ 2ab 2ab
251+521
f<a+b)g<a+b>

T(1+s)T(s,+1)

f(x)g
Sb—aL x? d +M@ab) [(s;+s,+2)
N(a,b),

+
S5 +s+1
(29)

where M(a,b) =
fla)g(b) + f(a)g(b)

Proof. Using the harmonically s-convexity of f and g, we
have for all x, y € [a,b]

f(a)gla) + f(b)g(b) and N(a,b) =

f< foyy> S (y);lf )

( jyy) g (y);z 9x)

Choosing x = ab/(tb + (1 —t)a) and y = ab/(tb + (1 - t)a),
we have

2ab 2ab
f(a+b>g(a+b>
- f(ab/ (tb+ (1 —t)a))+ f (ab/ (ta+ (1 -1)b))
< >
g(ab/ (tb+ (1 -t)a)) + g (ab/ (ta+ (1 —t)b))
2%

1 ab ab
T st [f<tb+(l—t)a>g<tb+(1—t) >

<tb+(l—t)a>g<ta+(l—t)b>
+f<ta+(1—t)b>g<tb+(1—t)a>
+f<ta+(l—t)b>g<ta+(l—t)b>]

: zw [f<tb+(l—t)a>g<tb+(l—t)a>

(ta+(l—t)b> (ta+(1—t)b>]

b A f @+ (-7 )]

x[(1-1)%g(a)+1tg ()]
+ [(1 - t)slf(a) + tslf(b)]
x[t2g(a)+ (1 -1t)7g(b)]}

] [ ( ab ) < ab )
= N\ wva0a/9\ w004

vt =)o (vt
1

+ 2851+$; {[tSI(l

+[(1 =)™ + 2" N (a,b)}.

-1+ (1-1)"t?] M (a,b)

(31)



Integrating the resulting inequality with respect to t over

[0, 1], we get

2ab 2ab
f<a+b>g<a+b>
1 1 ab ab
= 251+, [J.o f<tb+(1—t)a>g<tb+(1—t)a>dt

+Jolf<ta+(alb—t)b>g<ta+(alb—t)b>dt]

1 1
+— {M(a,b)J [("(1-1)% + (1 - )" t™]dt

251+$; 0

1

+N(a,b)J

[(1—5)%" 4 27] dt} .
0

(32)
That is,

f<azibb)g<;ibb>

1 ab r’f(x)g(x)dx

- 231+sz—1 b-a o x2

1 1
+— { (a,b)J [t"(1 =)™ + (1 —t)"t>] dt

251+, 0

1
+N (a, b)J [(1 =)™ 427 dt}.
0
(33)
From
1
L ("= + (1 -t)" 2] dt =2B(s; + L,s, + 1),
! + + 2
1-8)2" 42" dt = ————,
L [( ) " ] S +s+1
(34)

we get

_ 2ab 2ab
251+521
f<a+b>g(a+b>

ab J’bf(x)g(x)

dx + M (a,b) B(s; + 1,5, + 1)

“b-ala x2
1
+N(a,b) ——.
S +s+1
(35)
This completes the proof of Theorem 13. O
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Remark 14. Putting s, = s, = 1 in Theorem 13 gives

2f ( azibb ) g ( azibb )

ab be(x)g(X)

b-a x?

dx + éM(a, b) + %N(a, b).
(36)

a

Remark 15. 1f we take s; = s, = 1 and g = 1 in Theorem 13,
then we obtain

b
2f< 2b >< ab J f(x)dx+f(a);f(b). (37)

a+b) b-al, x*
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