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Nowadays, different kinds of experimental realizations of chaotic oscillators have been already presented in the literature. However,
those realizations do not consider the value of the maximum Lyapunov exponent, which gives a quantitative measure of the grade
of unpredictability of chaotic systems. That way, this paper shows the experimental realization of an optimized multiscroll chaotic
oscillator based on saturated function series. First, from the mathematical description having four coefficients (a, b, c, d

1
), an

optimization evolutionary algorithm varies them tomaximize the value of the positive Lyapunov exponent. Second, a realization of
those optimized coefficients using operational amplifiers is given. Herein a, b, c, d

1
are implemented with precision potentiometers

to tune up to four decimals of the coefficients having the range between 0.0001 and 1.0000. Finally, experimental results of the
phase-space portraits for generating from 2 to 10 scrolls are listed to show that their associated value for the optimal maximum
Lyapunov exponent increases by increasing the number of scrolls, thus guaranteeing a more complex chaotic behavior.

1. Introduction

Chaos is a multidisciplinary research area that is being
ubiquitous in all engineering areas, such as electronics,
control, communication, and security. Basically, engineers
are interested in the analysis, realization, and application of
chaos [1–3]. For instance, in electronics we are interested in
the realization of chaotic oscillators, in which mathemati-
cal descriptions have three main characteristics: a chaotic
oscillator is sensitive to initial conditions, it is nonperiodic,
and it is deterministic, because the coefficients of its math-
ematical description are known [4]. Further, a measure for
quantifying chaos in dynamical systems is by computing
the value of the Lyapunov exponents, from which one gets
information on their grade of unpredictability [5]. That way,
in continuous-time chaotic oscillators the number of state
variables determines the number of Lyapunov exponents, so
that for a third order dynamical system, the three Lyapunov

exponents for generating chaos should be negative, zero, and
positive. Similarly, higher order dynamical systems should
possess at least one positive Lyapunov exponent to guarantee
chaotic regime. The positive Lyapunov exponent is known as
maximum Lyapunov exponent as well.

In current literature, one can find realizations of chaotic
oscillators using different kinds of amplifiers and in some
cases using integrated circuit technology, as listed in [6]. For
instance, the authors in [7] have already implemented Chua’s
circuit to generate multiscroll chaotic attractors by using
commercially available current-feedback operational ampli-
fiers (CFOAs). For that multiscroll chaotic oscillator, its posi-
tive Lyapunov exponent was evaluated to verify that it was in
chaotic regime.The novelty of that work was the introduction
of a new circuit for realizing its piecewise-linear (PWL)
function using CFOAs, where the parameters were computed
systematically to implement symmetrical or nonsymmetrical
PWL functions. However, in that work and in the very
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Figure 1: Basic SNLF cell with two saturated levels.
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Figure 2: Phase space portraits for generating from 3 to 6 scrolls using MATLAB.

majority of the already introduced circuit realizations [6],
the value of the maximum Lyapunov exponent (MLE) is
just evaluated but not optimized. Henceforth, this paper
shows, by experiments, that multiscroll chaotic oscillators
with optimalMLE can have amore complex chaotic behavior.
In this manner, the optimization task to compute the MLE
of a chaotic oscillator based on saturated nonlinear function
(SNLF) series is performed herein by applying the differential
evolution algorithm already introduced in [8], and which
basically searches for the optimal values of the coefficients
of the mathematical description of the multiscroll chaotic
oscillator. Further, the feasible solutions for the coefficients
providing high values of the MLE are implemented using

commercially available operational amplifiers to demonstrate
that the optimized values have a more complex chaotic
behavior than by using traditional values, as the ones given
in [4].

Section 2 describes the generalities of the differential
evolution algorithm applied in [8] and the procedure to
compute the Lyapunov exponents [5]. Section 3 describes
the mathematical model of the multiscroll chaotic oscillator
that is based on SNLF series [4], and the simulation of
attractors generating from 2 to 18 scrolls is given using MAT-
LAB and the circuit simulator SPICE. Section 3 also intro-
duces the circuit realization using operational amplifiers.
Section 4 demonstrates the realizability of the multiscroll
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Table 1: Description of the SNLF for generating from 3 to 6 scrolls.
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Table 1: Continued.
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Table 2: Values for generating from 3 to 18 scrolls.

Scrolls Values for (5) and (6) Simulation time (s)
3 𝐾 = 1, ∝ = 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 1, 𝑞 = 1 6000
4 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 1, 𝑞 = 1 8000
5 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 2, 𝑞 = 2 10000
6 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 2, 𝑞 = 2 12000
7 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 3, 𝑞 = 3 14000
8 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 3, 𝑞 = 3 16000
9 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 4, 𝑞 = 4 18000
10 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 4, 𝑞 = 4 20000
11 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 5, 𝑞 = 5 22000
12 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 5, 𝑞 = 5 24000
13 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 6, 𝑞 = 6 26000
14 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 6, 𝑞 = 6 28000
15 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 7, 𝑞 = 7 30000
16 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 7, 𝑞 = 7 32000
17 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 8, 𝑞 = 8 34000
18 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606, ℎ = 1, 𝑝 = 8, 𝑞 = 8 36000

chaotic oscillator having high values of the (positive) max-
imum Lyapunov exponent (MLE). The experiments show
that the chaotic behavior is more complex when the MLE is
optimized. As a result, the optimized chaotic oscillators can
be synchronized [9, 10] to enhance applications like designing
secure communication systems [4]. Finally, Section 5 sum-
marizes the conclusions.

2. Optimization Method and
Lyapunov Exponent

2.1. Differential Evolution Algorithm. Heuristic optimization
methods such as evolutionary algorithms are used to opti-
mize problems having very big search spaces. For instance,
in this paper the case of study is a multiscroll chaotic
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Table 3: Values for generating from 2 to 18 scrolls using SPICE.

Scrolls Values Time

2 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA Rc1 = 165KΩ, Ri1 = 1 kΩ, Rf1 = 1MegΩ Ei1 = 0V 300 s

3 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = Rc2 = 165KΩ,
Ri1 = Ri2 = 1 kΩ, Rf1 = Rf2 = 1MegΩ Ei1 = +1V, Ei2 = −1V 500 s

4 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc3 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri3 = 1 kΩ Rf1 = ⋅ ⋅ ⋅ =Rf3 = 1MegΩ Ei1 = +2V, Ei2 = −2V,Ei3 = 0V 700 s

5 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc4 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri4 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf4 = 1MegΩ

Ei1 = +1V, Ei2 = −1V,Ei3 =
+3V,Ei4 = −3V 900 s

6 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc5 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri5 = 1 KΩ, Rf1 = ⋅ ⋅ ⋅ = Rf5 = 1MegΩ

Ei1 = +2V,Ei2 = −2V,Ei3 =
+4V,Ei4 = −4V,Ei5 = 0V 1000 s

7 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc6 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri6 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf6 = 1MegΩ

Ei1 = +5V,Ei2 = −5V,Ei3 =
+1V,Ei4 = −1V,Ei5 = +3V,Ei6 =

−3V
3000 s

8 𝐾 = 1 ,∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc7 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri7 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf7 = 1MegΩ

Ei1 = +4V,Ei2 = −4V,Ei3 =
+2V,Ei4 = −2V,Ei5 = +6V,Ei6 =

−6V,Ei7 = 0V
5000 s

9 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc8 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri8 = 1 kΩRf1 = ⋅ ⋅ ⋅ = Rf8 = 1MegΩ

Ei1 = +3V,Ei2 = −3V,Ei3 =
+1V,Ei4 = −1V,Ei5 = +5V,Ei6 =

−5V,Ei7 = +7V,Ei8 = −7V
6000 s

10 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc9 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri9 = 1 kΩ Rf1 = ⋅ ⋅ ⋅ = Rf9 = 1MegΩ

Ei1 = +8V,Ei2 = −8V,Ei3 =
+4V,Ei4 = −4V,Ei5 = +2V,Ei6 =
−2V,Ei7 = +6V,Ei8 = −6V,Ei9 =

0V

7000 s

11 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc10 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri10 = 1 kΩ Rf1 = ⋅ ⋅ ⋅ = Rf10 = 1MegΩ

Ei1 = +9V,Ei2 = −9V,Ei3 =
+7V,Ei4 = −7V, Ei5 = +5V,Ei6 =
−5V,Ei7 = +3V,Ei8 = −3V,Ei9 =

+1V,Ei10 = −1V

9000 s

12 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc11 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri11 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf12 = 1MegΩ

Ei1 = +10V,Ei2 = −10V,Ei3 =
+8V,Ei4 = −8V,Ei5 = +6V,Ei6 =
−6V,Ei7 = +4V,Ei8 = −4V,Ei9 =

2V,Ei10 = −2V,Ei11 = 0V

12000 s

13 𝐾 = 1, ∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc12 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri12 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf12 = 1MegΩ

Ei1 = +9V,Ei2 = −9V,Ei3 =
+7V,Ei4 = −7V,Ei5 = +5V,Ei6 =
−5V,Ei7 = +3V,Ei8 = −3V,Ei9 =
1V,Ei10 = −1V,Ei11 = 11V,Ei12 =

−11V

13000 s

14 𝐾 = 1,∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc13 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri13 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf13 = 1MegΩ

Ei1 = 8V,Ei2 = −8V,Ei3 = 4V,Ei4 =
−4V,Ei5 = +2V,Ei6 = −2V,Ei7 =
+6V,Ei8 = −6V,Ei9 = 0V,Ei10 =

10V,Ei11 = −10V,Ei12 = 12V,Ei13 =
−12V

14000 s

15 𝐾 = 1,∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc14 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri14 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf14 = 1MegΩ

Ei1 = +9V,Ei2 = −9V,Ei3 =
+7V,Ei4 = −7V,Ei5 = +5V,Ei6 =
−5V,Ei7 = +3V,Ei8 = −3V,Ei9 =

1V,Ei10 = −1V,Ei11 = 11V,Ei12 =
−11V,Ei13 = 13V,Ei14 = −13V

15000 s

16 𝐾 = 1,∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc15 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri15 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf15 = 1MegΩ

Ei1 = +8V,Ei2 = −8V,Ei3 =
+4V,Ei4 = −4V,Ei5 = +2V,Ei6 =
−2V,Ei7 = +6V,Ei8 = −6V,Ei9 =
0V,Ei10 = 10V,Ei11 = 10V,Ei12 =

12V,Ei13 = −12V,Ei14 =
14V,Ei15 = −14V

17000 s
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Table 3: Continued.

Scrolls Values Time

17 𝐾 = 1,∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc16 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri16 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf16 = 1MegΩ

Ei1 = +9V,Ei2 = −9V,Ei3 =
+7V,Ei4 = −7V,Ei5 = +5V,Ei6 =
−5V,Ei7 = +3V,Ei8 = −3V,Ei9 =

1V,Ei10 = −1V,Ei11 = 11V,Ei12 =
−11V,Ei13 = 13V,Ei14 =

−13V,Ei15 = 15V,Ei16 = −15V

18000 s

18 𝐾 = 1,∝= 16.5m, 𝑠 = 60.606,
ℎ = 1, Isat = 100 uA

Rc1 = ⋅ ⋅ ⋅ = Rc17 = 165KΩ, Ri1 = ⋅ ⋅ ⋅ =
Ri17 = 1 kΩ, Rf1 = ⋅ ⋅ ⋅ = Rf17 = 1MegΩ

Ei1 = +8V,Ei2 = −8V,Ei3 =
+4V,Ei4 = −4,Ei5 = +2V,Ei6 =

−2V,Ei7 = +6V,Ei8 = −6V,Ei9 =
0V,Ei10 = 10V,Ei11 = −10V,Ei12 =

12V,Ei13 = −12V,Ei14 =
14V,Ei15 = −14V,Ei16 =

16V,Ei17 = −16V

20000 s
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Figure 3: Attractor with 18 scrolls.

oscillator (described in the following section), which has four
coefficients 𝑎, 𝑏, 𝑐, 𝑑

1
. If the range of each coefficient is

between 0 and 1, and by considering 4 decimals, then the
search space, as mentioned in [8], is very big; that is, it is
16 × 1016, thus justifying the use of heuristics.

One pretty good heuristic method was introduced by
Storn and Price in 1995; it was called differential evolution,
which is quite useful for global optimization over continuous
spaces [11]. The main characteristics of differential evolution
algorithm for optimizing the MLE in chaotic oscillators
are as follows. It converges faster than other evolutionary
algorithms because the crossover operation is performed by
selecting 3 fathers, and it depends on few parameters than,
for example, genetic algorithms, thus augmenting its perfor-
mance. Differential evolution algorithm keeps a population
of candidate solutions that are recombined and mutated
to create children that are evaluated by a fitness function,
and then the best ones are selected, surviving for the next
generation until generating feasible solutions selected from
the Pareto front.Thepseudo code and implementation details
can be found in [8].

2.2. Lyapunov Exponent. Lyapunov exponents are asymptotic
measures characterizing the contraction or growing rate of
small perturbations on the solutions of a dynamical system,

and they provide quantitative measures on the sensitivity
response of a chaotic system to small changes in the initial
conditions [5, 12]. Lyapunov exponents can be evaluated from
the following expression:

𝜆 (𝑥
0
; 𝑟) = lim

𝑁→∞

1

𝑁

𝑁−1

∑
𝑛=0

ln


𝜕𝑓 (𝑥; 𝑟)

𝜕𝑥


, (1)

where 𝑓(𝑥; 𝑟) function is discretized in time, 𝑥
0
, and 𝑟

parameters. If 𝜆(𝑥
0
; 𝑟) > 0, then one can say that the

dynamical system is in chaotic regime.
Considering an 𝑛-dimensional dynamical system of the

form:

�̇� = 𝑓 (𝑥) 𝑡 > 0, (2)

where 𝑥 and 𝑓 are 𝑛-dimentional vectors, then a system
evolving from (2) in an 𝑛-dimensional space will present a
Lyapunov exponent that depends on the initial condition 𝑥

0
.

On the other hand, by using the Jacobian matrix one can
determine the 𝑛-Lyapunov exponents [12], by evolving the
small perturbations to a space trajectory described by [8]

̇𝑦 =
𝜕𝑓

𝜕𝑥
(𝑥 (𝑡)) 𝑦 = 𝐽 (𝑥 (𝑡)) 𝑦,

𝑦 (𝑡) = 𝑌 (𝑡) 𝑦 (0) .

(3)
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Table 4: Optimized maximum Lyapunov exponent for generating 2 scrolls.

Coefficients 𝑎, 𝑏, 𝑐, 𝑑
1

Maximum Lyapunov exponent
𝑎 = 1.0000, 𝑏 = 1.0000, 𝑐 = 0.4997, 𝑑

1
= 1.0000 0.3761

𝑎 = 1.0000, 𝑏 = 0.7884, 𝑐 = 0.6435, 𝑑
1
= 0.6665 0.3713

𝑎 = 0.8661, 𝑏 = 1.0000, 𝑐 = 0.3934, 𝑑
1
= 0.9903 0.3607

𝑎 = 0.7746, 𝑏 = 0.6588, 𝑐 = 0.5846, 𝑑
1
= 0.4931 0.3460

𝑎 = 1.0000, 𝑏 = 0.7000, 𝑐 = 0.6780, 𝑑
1
= 0.1069 0.3437

𝑎 = 1.0000, 𝑏 = 0.7000, 𝑐 = 0.7000, 𝑑
1
= 0.2542 0.3425

𝑎 = 0.7743, 𝑏 = 0.6716, 𝑐 = 0.5892, 𝑑
1
= 0.8469 0.3391

𝑎 = 0.9248, 𝑏 = 0.7491, 𝑐 = 0.6686, 𝑑
1
= 0.6814 0.3385

𝑎 = 0.7178, 𝑏 = 0.6593, 𝑐 = 0.5546, 𝑑
1
= 0.2247 0.3376

𝑎 = 0.7060, 𝑏 = 0.6451, 𝑐 = 0.5523, 𝑑
1
= 0.2181 0.3320

𝑎 = 0.7000, 𝑏 = 0.7000, 𝑐 = 0.7000, 𝑑
1
= 0.7000 0.2658

Table 5: Optimized MLE for 5 to 10 scrolls and their (𝑎, 𝑏, 𝑐, 𝑑
1
) coefficient values.

5 scrolls 6 scrolls 7 scrolls
0.6919 0.72 0.7313
(1.0000, 0.7250, 0.2250, 1.000) (1.0000, 0.6750, 0.2100, 1.000) (1.0000, 0.6430, 0.1580, 1.0000)
0.6914 0.7107 0.7182
(0.9880, 0.7140, 0.2050, 1.000) (1.0000, 0.6870, 0.2160, 1.000) (1.0000, 0.6110, 0.1390, 0.9750)
0.6908 0.706 0.7174
(0.9890, 0.7300, 0.2070, 1.0000) (1.0000, 0.6920, 0.1700, 1.000) (1.0000, 0.6410, 0.1390, 1.0000)
0.6814 0.6904 0.6952
(0.9910, 0.6810, 0.2300, 0.9810) (1.0000, 0.6870, 0.1830, 1.000) (1.0000, 0.5320, 0.1920, 0.9960)
0.6663 0.6764 0.6857
(0.9880, 0.7480, 0.1890, 1.0000) (0.9940, 0.6510, 0.2320, 0.9860) (1.0000, 0.7280, 0.2100, 1.0000)
0.6651 0.6758 0.6391
(0.9840, 0.6810, 0.2270, 0.9830) (1.0000, 0.7530, 0.1740, 1.000) (1.0000, 0.7890, 0.1490, 1.0000)
0.6645 0.6741 0.6244
(0.9890, 0.6810, 0.2040, 0.9790) (1.0000, 0.7060, 0.1850, 1.000) (1.0000, 0.8190, 0.2310, 1.0000)
0.6533 0.6245 0.6218
(1.0000, 0.7840, 0.2000, 1.0000) (0.9780, 0.7690, 0.2270, 1.000) (1.0000, 0.4030, 0.4000, 1.0000)
0.6523 0.5871 0.505
(0.9800, 0.7960, 0.1570, 1.0000) (1.0000, 0.6140, 0.3190, 1.000) (0.9470, 1.0000, 0.2220, 0.9110)
0.6471 0.563 0.4263
(1.0000, 0.7330, 0.2050, 1.0000) (0.9670, 0.8230, 0.3380, 0.955) (0.9050, 0.6100, 0.6180, 0.8590)
8 scrolls 9 scrolls 10 scrolls
0.8412 0.8654 0.8853
(1.0000, 0.5690, 0.1360, 0.9970) (0.9960, 0.5370, 0.1450, 0.998) (1.0000, 0.5160, 0.1190, 1.0000)
0.8382 0.8595 0.8792
(1.0000, 0.5750, 0.1290, 0.9980) (1.0000, 0.5800, 0.0960, 1.000) (1.0000, 0.5130, 0.1180, 1.0000)
0.8208 0.8563 0.8438
(1.0000, 0.6120, 0.1210, 0.9980) (0.9990, 0.530, 0.1320, 0.9980) (1.0000, 0.5160, 0.1580, 1.0000)
0.8471 0.8503 0.8712
(1.0000, 0.5880, 0.1280, 1.0000) (1.0000, 0.5440, 0.1150, 1.000) (1.0000, 0.5410, 0.1060, 1.0000)
0.8458 0.877 0.8545
(1.0000, 0.5880, 0.1190, 1.0000) (1.000, 0.5020, 0.1430, 0.9970) (1.0000, 0.5930, 0.0840, 1.0000)
0.8407 0.8595 0.7825
(0.9800, 0.5720, 0.1270, 1.0000) (1.0000, 0.5560, 0.103, 1.0000) (1.0000, 0.7000, 0.1160, 1.0000)
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3. Modeling the Multiscroll Chaotic Oscillator

In this paper, the case of study is the multiscroll chaotic
oscillator based on saturated nonlinear function (SNLF)
series [4], which is described by

�̇� = 𝑦,

̇𝑦 = 𝑧,

�̇� = −𝑎𝑥 − 𝑏𝑦 − 𝑐𝑧 + 𝑑
1
𝑓 (𝑥; 𝑘, ℎ, 𝑝, 𝑞) ,

(4)

where 𝑘 > 2; 𝑓(𝑥; 𝑘, ℎ, 𝑝, 𝑞) = SNLF series; 𝑥, 𝑦, 𝑧 = state
variables; 𝑎, 𝑏, 𝑐, 𝑑

1
= coefficients with values between 0.0001

and 1.0000. This mathematical model is solved by numerical
integration methods, where its matrix description form is
given by

[

[

�̇�
̇𝑦

�̇�

]

]

= [

[

0 1 0
0 0 1
−𝑎 −𝑏 −𝑐

]

]

[

[

𝑥
𝑦
𝑧

]

]

+ [

[

0
0

𝑑
1
𝑓 (𝑥;∝, 𝑘, ℎ, 𝑝, 𝑞)

]

]

. (5)

In (5) the SNLF series is scaled by ∝ to accommodate the
magnitudes to the ones provided by commercially available
electronic circuits. The SNLF is described by

𝑓 (𝑥;∝, 𝑘, ℎ, 𝑝, 𝑞) =

𝑞

∑
𝑖=−𝑝

𝑓
𝑖
(𝑥; ℎ, 𝑘) . (6)

This format to describe the SNLF is called piecewise-
linear (PWL) approach, where the equivalent description for
(6) is given by

𝑓 (𝑥;∝, 𝑘, ℎ, 𝑝, 𝑞)

=

{{{{{{{{
{{{{{{{{
{

(2𝑞 + 1) 𝑘 𝑥 > 𝑞ℎ+ ∝
𝑘

∝ (𝑥 − 𝑖ℎ) + 2𝑖𝑘
|𝑥 − 𝑖ℎ| ≤∝, −𝑝 ≤ 𝑖 ≤ 𝑞

(2𝑖 + 1) 𝑘 𝑖ℎ+ ∝< 𝑥 < (𝑖 + 1) ℎ− ∝,

−𝑝 ≤ 𝑖 ≤ 𝑞 − 1

− (2𝑝 + 1) 𝑘 𝑥 < −𝑝ℎ− ∝ .

(7)

Figure 1 shows the SNLF for generating two scrolls. Its
PWL description is given by

𝑓 (𝑥) =
{{
{{
{

∝ 𝑥 > 𝑘

𝑠 (𝑥) − ∝≤ 𝑥 ≤∝

− ∝ 𝑥 < −𝑘.

(8)

Table 1 shows SNLFs and their corresponding PWL
descriptions to generate from 3 to 6 scrolls. As one sees, the
number of scrolls is the number of saturated plateaus. For
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generating more scrolls one should follow the same process
from Table 1, basically by increasing the number of saturated
levels.

In (5) one can set the values: 𝑎 = 𝑏 = 𝑐 = 𝑑
1

= 0.7,
𝑘 = 1,∝= 16.5𝑒 − 3, 𝑠 = 60.606 and ℎ

1
≅ 1; then, the other

values for the PWL functions are shown in Table 2.
According to Tables 1 and 2, one can obtain the phase

space portraits for generating from 3 to 6 scrolls, as shown
in Figure 2.

To generate 18 scrolls, the PWL function is decomposed
as shown in the following expression and the phase space
portrait is shown in Figure 3:

𝑓 (𝑥;∝, 𝑘, ℎ, 𝑝, 𝑞)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

(2𝑞 + 1𝑘) 𝑥 > (𝑞ℎ+ ∝)

𝑠 (𝑥 − 8ℎ) + 16𝑘 (𝑞ℎ− ∝) ≤ 𝑥 ≤ (𝑞ℎ+ ∝)

𝑠 (𝑥 − 7ℎ) + 14𝑘 (𝑞 − 1) ℎ− ∝≤ 𝑥 ≤ (𝑞 − 1) ℎ+ ∝

𝑠 (𝑥 − 6ℎ) + 12𝑘 (𝑞 − 2) ℎ− ∝≤ 𝑥 ≤ (𝑞 − 2) ℎ+ ∝

𝑠 (𝑥 − 5ℎ) + 10𝑘 (𝑞 − 3) ℎ− ∝≤ 𝑥 ≤ (𝑞 − 3) ℎ+ ∝

𝑠 (𝑥 − 4ℎ) + 8𝑘 (𝑞 − 4) ℎ− ∝≤ 𝑥 ≤ (𝑞 − 4) ℎ+ ∝

𝑠 (𝑥 − 3ℎ) + 6𝑘 (𝑞 − 5) ℎ− ∝≤ 𝑥 ≤ (𝑞 − 5) ℎ+ ∝

𝑠 (𝑥 − 2ℎ) + 4𝑘 (𝑞 − 6) ℎ− ∝≤ 𝑥 ≤ (𝑞 − 6) ℎ+ ∝

𝑠 (𝑥 − ℎ) + 2𝑘 ℎ− ∝≤ 𝑥 ≤ ℎ+ ∝

15𝑘 (𝑞 − 1) ℎ+ ∝≤ 𝑥 ≤ (𝑞ℎ− ∝)

13𝑘 (𝑞 − 2) ℎ+ ∝≤ 𝑥 ≤ (𝑞 − 1) ℎ− ∝

11𝑘 (𝑞 − 3) ℎ+ ∝≤ 𝑥 ≤ (𝑞 − 2) ℎ− ∝

9𝑘 (𝑞 − 4) ℎ+ ∝≤ 𝑥 ≤ (𝑞 − 3) ℎ− ∝

7𝑘 (𝑞 − 5) ℎ+ ∝≤ 𝑥 ≤ (𝑞 − 4) ℎ− ∝

5𝑘 (𝑞 − 6) ℎ+ ∝≤ 𝑥 ≤ (𝑞 − 5) ℎ− ∝

3𝑘 ℎ+ ∝≤ 𝑥 ≤ (𝑞 − 6) ℎ− ∝

𝑘 ∝< 𝑥 < ℎ− ∝

𝑠𝑥 − ∝≤ 𝑥 ≤∝

𝑠 (𝑥 + 8ℎ) − 16𝑘 (−𝑞ℎ− ∝) ≤ 𝑥 ≤ (−𝑞ℎ+ ∝)

𝑠 (𝑥 + 7ℎ) − 14𝑘 (−𝑞 + 1) ℎ− ∝≤ 𝑥 ≤ (−𝑞 + 1) ℎ+ ∝

𝑠 (𝑥 + 6ℎ) − 12𝑘 (−𝑞 + 2) ℎ− ∝≤ 𝑥 ≤ (−𝑞 + 2) ℎ+ ∝

𝑠 (𝑥 + 5ℎ) − 10𝑘 (−𝑞 + 3) ℎ− ∝≤ 𝑥 ≤ (−𝑞 + 3) ℎ+ ∝

𝑠 (𝑥 + 4ℎ) − 8𝑘 (−𝑞 + 4) ℎ− ∝≤ 𝑥 ≤ (−𝑞 + 4) ℎ+ ∝

𝑠 (𝑥 + 3ℎ) − 6𝑘 (−𝑞 + 5) ℎ− ∝≤ 𝑥 ≤ (−𝑞 + 5) ℎ+ ∝

𝑠 (𝑥 + 2ℎ) − 4𝑘 (−𝑞 + 6) ℎ− ∝≤ 𝑥 ≤ (−𝑞 + 6) ℎ+ ∝

𝑠 (𝑥 + ℎ) − 2𝑘 −ℎ− ∝≤ 𝑥 ≤ −ℎ+ ∝

−15𝑘 (−𝑞ℎ+ ∝) ≤ 𝑥 ≤ (−𝑞 + 1) ℎ− ∝

−13𝑘 (−𝑞 + 1) ℎ+ ∝≤ 𝑥 ≤ (−𝑞 + 2) ℎ− ∝

−11𝑘 (−𝑞 + 2) ℎ+ ∝≤ 𝑥 ≤ (−𝑞 + 3) ℎ− ∝

−9𝑘 (−𝑞 + 3) ℎ+ ∝≤ 𝑥 ≤ (−𝑞 + 4) ℎ− ∝

−7𝑘 (−𝑞 + 4) ℎ+ ∝≤ 𝑥 ≤ (−𝑞 + 5) ℎ− ∝

−5𝑘 (−𝑞 + 5) ℎ+ ∝≤ 𝑥 ≤ (−𝑞 + 6) ℎ− ∝

−3𝑘 (−𝑞 + 6) ℎ+ ∝≤ 𝑥 ≤ ℎ− ∝

−𝑘 −ℎ+ ∝< 𝑥 < − ∝

− (2𝑝 + 1) 𝑘 𝑥 < (−𝑞ℎ− ∝) .

(9)
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Figure 6: Realization of the SNLF using operational amplifiers.

The chaotic oscillator described by (5) can be designed
as shown in Figure 4, while its realization using operational
amplifiers (opamps) is given in Figure 5.

The SNLF can be implemented as shown in Figure 6,
where the number of opamps equals the number of scrolls to
be generatedminus 1.The term𝐸

𝑖
represents a shifted voltage,

and the other parameters of the PWL functions are evaluated
by

𝑘 = 𝑅
𝑖𝑥

∗ 𝐼sat ∝=
𝑅
𝑖

𝑉sat


𝑅
𝑓

𝑠 =
𝑘

∝

𝐼sat =
𝑉sat
𝑅
𝑐

ℎ ≅ 𝐸
𝑖
.

(10)

Simulating (5) in the circuit simulator SPICE, using the
model for the commercially available opamp TL081, and the
diagrams shown in Figures 5 and 6, one can generate the
attractors from 2 to 18 scrolls using the circuit element values
shown in Table 3 and Figure 7. Using (5), (6), and (10), the
parameter values are 𝑎 = 𝑏 = 𝑐 = 𝑑

1
= 0.7, 𝑘 = 1,

∝= 16.5𝑒 − 3, 𝑠 = 60.606, ℎ
1
≅ 1, 𝐼sat = 100 𝜇A, 𝑅

𝑖𝑥
= 10 kΩ,

𝐶 = 1 𝜇F, 𝑅 = 1MegΩ, 𝑅
𝑖𝑎

= 𝑅
𝑖𝑏

= 𝑅
𝑖𝑐

= 𝑅
𝑖𝑑

= 10 kΩ,
𝑅
𝑓𝑎

= 𝑅
𝑓𝑏

= 𝑅
𝑓𝑐

= 𝑅
𝑓𝑑

= 7 kΩ, 𝑅
𝑖
= 𝑅
𝑓
, 𝐹 ≈ 162mHz, and

𝑉sat = ±16.

4. Experimental Results

The realization of the SNLF shown in Figure 6 is performed
by using commercially available operational amplifiers like
the TL081. Experimental results using the values of Table 3
lead us to Figure 8, for generating from 2 to 10 scrolls.

The SNLFs shown in Figure 8 are used to generate
multiscroll chaotic attractors. In this case, the coefficients
in (5) are optimized by applying the differential evolution
algorithmdescribed in [8]. For generating from2 to 10 scrolls,
Tables 4 and 5 list the optimized coefficient values for 𝑎, 𝑏, 𝑐,
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Figure 7: SNLF for generating 15 to 18 scrolls using SPICE.

𝑑
1
having a high value for the (positive) maximum Lyapunov

exponent (MLE). In all cases, 𝑘 = 10 and ℎ = 2.
As one sees in Table 4, using the traditional values of

𝑎 = 𝑏 = 𝑐 = 𝑑
1

= 0.7, the value of MLE is small compared

to the other optimized values. Table 5 summarizes several
optimized combinations for generating from 5 to 10 scrolls.

For generating two scrolls experimentally, the values of
the circuit elements in Figures 5 and 6 are 𝐶 = 1 nF,
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(a) SNLF for 2 scrolls (b) SNLF for 3 scrolls (c) SNLF for 4 scrolls

(d) SNLF for 5 scrolls (e) SNLF for 6 scrolls (f) SNLF for 7 scrolls

(g) SNLF for 8 scrolls (h) SNLF for 9 scrolls (i) SNLF for 10 scrolls

Figure 8: Experimental results of the SNLF for generating from 2 to 10 scrolls.

𝑅 = 1MegΩ, 𝑅
𝑖𝑎

= 𝑅
𝑖𝑏

= 𝑅
𝑖𝑐

= 𝑅
𝑖𝑑

= 10 kΩ, 𝑅
𝑖

= 𝑅
𝑓
;

the operational amplifiers where biased with 𝑉sat = ±16V
and ±18V. To adjust the values of the coefficients 𝑎, 𝑏, 𝑐,
𝑑
1
with four decimals, linear precision potentiometers were

used, for example, 𝑅
𝑓𝑎
, 𝑅
𝑓𝑏
, 𝑅
𝑓𝑐
, and 𝑅

𝑓𝑑
in Figure 5. Several

experimental results for some optimized values of 𝑎, 𝑏, 𝑐, 𝑑
1

are shown in Figures 9–13.
From these experimental results, one can infer that the

value of the MLE increases just by increasing the number of
scrolls. More important is that the chaotic behavior becomes
more complex when the MLE is optimized. That way, not
only chaotic synchronized systems [9, 10] can become be
more robust but also other complex systems like hyperchaotic
systems [13] and with more directions [14] (2D, 3D, etc.)

it may be improved using optimized multiscroll chaotic
oscillators.

5. Conclusion

The experimental realization of a multiscroll chaotic oscilla-
tor based on saturated nonlinear function (SNLF) series has
been presented. Its (positive) maximum Lyapunov exponent
was optimized and the feasible solutions (combinations) of
the coefficient values for 𝑎, 𝑏, 𝑐, 𝑑

1
were ranked and listed

in Tables 4 and 5. The multiscroll chaotic oscillator was
implemented with the commercially available operational
amplifier TL081, and the values of the circuit elements were
listed along with the values for the SNLF in Table 3. In
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(a) 𝑎 = 1.0000, 𝑏 = 0.7884, 𝑐 = 0.6435, 𝑑1 =
0.6665;MLE = 0.3713

(b) 𝑎 = 0.8661, 𝑏 = 1.0000, 𝑐 = 0.3934, 𝑑1 =
0.9903;MLE = 0.3607

(c) 𝑎 = 0.7746, 𝑏 = 0.6588, 𝑐 = 0.5846, 𝑑1 =
0.4931;MLE = 0.3460

(d) 𝑎 = 1.0000, 𝑏 = 0.7000, 𝑐 = 0.7000, 𝑑1 =
0.2542;MLE = 0.3425

(e) 𝑎 = 0.7743, 𝑏 = 0.6716, 𝑐 = 0.5892, 𝑑1 =
0.8469;MLE = 0.3391

(f) 𝑎 = 0.9248, 𝑏 = 0.7491, 𝑐 = 0.6686, 𝑑1 =
0.6814;MLE = 0.3385

(g) 𝑎 = 0.7178, 𝑏 = 0.6593, 𝑐 = 0.5546, 𝑑1 =
0.2247;MLE = 0.3376

(h) 𝑎 = 0.7060, 𝑏 = 0.6451, 𝑐 = 0.5523, 𝑑1 =
0.2181;MLE = 0.3320

Figure 9: Optimized MLE for generating 2 scrolls.
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(a) 𝑎 = 0.9097, 𝑏 = 1.0000, 𝑐 = 0.2632, 𝑑1 =
0.9946;MLE = 0.4574

(b) 𝑎 = 0.8641, 𝑏 = 0.6711, 𝑐 = 0.5107, 𝑑1 =
0.9198;MLE = 0.4323

(c) 𝑎 = 0.8505, 𝑏 = 0.5476, 𝑐 = 0.5337, 𝑑1 =
0.8211;MLE = 0.4045

(d) 𝑎 = 0.7002, 𝑏 = 1.0000, 𝑐 = 0.1858, 𝑑1 =
1.0000;MLE = 0.3802

(e) 𝑎 = 0.7090, 𝑏 = 0.4600, 𝑐 = 0.6188, 𝑑1 =
.7951;MLE = 0.3680

(f) 𝑎 = 0.8224, 𝑏 = 0.7317, 𝑐 = 0.6642, 𝑑1 =
1.0000;MLE = 0.3132

Figure 10: Optimized MLE for generating 3 scrolls.

addition, SPICE simulations were presented in Figure 7 to
generate from 15 to 18 scrolls, and experimental results were
given for generating 2, 3, 5, 7, and 10 scrolls in Figures 9, 10,
11, 12, and 13, respectively.

As a conclusion, the optimized coefficients 𝑎, 𝑏, 𝑐, 𝑑
1

were realized with precision potentiometers to generate the
attractor, which showed more complex chaotic behavior
as the maximum Lyapunov exponent increases. Another
interesting conclusion is that the value of the maximum

Lyapunov exponent is higher when the number of scrolls is
increased, meaning that the more scrolls are generated, the
more the guarantee of chaotic regime.
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(a) 𝑎 = 0.9890, 𝑏 = 0.7300, 𝑐 = 0.2070, 𝑑1 =
1.00;MLE = 0.6908

(b) 𝑎 = 0.9910, 𝑏 = 0.6810, 𝑐 = 0.2300, 𝑑1 =
0.9818;MLE = 0.6814

(c) 𝑎 = 0.9880, 𝑏 = 0.7480, 𝑐 = 0.1890, 𝑑1 =
1.0000;MLE = 0.6663

(d) 𝑎 = 0.9840, 𝑏 = 0.6810, 𝑐 = 1.0000, 𝑑1 =
0.9830;MLE = 0.6651

(e) 𝑎 = 0.9890, 𝑏 = 0.6810, 𝑐 = 0.2040, 𝑑1 =
0.9790;MLE = 0.6645

(f) 𝑎 = 1.0000, 𝑏 = 0.7840, 𝑐 = 0.2000, 𝑑1 =
1.0000;MLE = 0.6533

(g) 𝑎 = 0.9800, 𝑏 = 0.7960, 𝑐 = 0.1570, 𝑑1 =
1.0000;MLE = 0.6523

(h) 𝑎 = 1.0000, 𝑏 = 0.7330, 𝑐 = 0.2050, 𝑑1 =
1.0000;MLE = 0.6471

Figure 11: Optimized MLE for generating 5 scrolls.
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(a) 𝑎 = 1.0000, 𝑏 = 0.7890, 𝑐 = 0.1490, 𝑑1 =
1.0000;MLE = 0.6391

(b) 𝑎 = 1.0000, 𝑏 = 0.4030, 𝑐 = 0.4000, 𝑑1 =
1.0000;MLE = 0.6218

(c) 𝑎 = 1.0000, 𝑏 = 0.8190, 𝑐 = 0.2310, 𝑑1 =
1.0000,MLE = 0.6244

(d) 𝑎 = 1.0000, 𝑏 = 0.7280, 𝑐 = 0.2100, 𝑑1 =
1.0000;MLE = 0.6857

Figure 12: Optimized MLE for generating 7 scrolls.

(a) 𝑎 = 1.0000, 𝑏 = 0.5160, 𝑐 = 0.1190, 𝑑1 =
1.0000;MLE = 0.8853

(b) 𝑎 = 1.0000, 𝑏 = 0.5130, 𝑐 = 0.1180, 𝑑1 =
1.0000;MLE = 0.8792

(c) 𝑎 = 1.0000, 𝑏 = 0.5160, 𝑐 = 0.1580, 𝑑1 =
1.0000; MLE = 0.8438

(d) 𝑎 = 1.0000, 𝑏 = 0.5410, 𝑐 = 0.1060, 𝑑1 =
1.0000; MLE = 0.8712

(e) 𝑎 = 1.0000, 𝑏 = 0.5930, 𝑐 = 0.0840, 𝑑1 =
1.0000; MLE = 0.8545

(f) 𝑎 = 1.0000, 𝑏 = 0.7000, 𝑐 = 0.1160, 𝑑1 =
1.0000; MLE = 0.7825

Figure 13: Optimized MLE for generating 10 scrolls.
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