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The eigenvalue complementarity problem (EiCP) is a kind of very useful model, which is widely used in the study ofmany problems
in mechanics, engineering, and economics. The EiCP was shown to be equivalent to a special nonlinear complementarity problem
or a mathematical programming problem with complementarity constraints. The existing methods for solving the EiCP are all
nonsmooth methods, including nonsmooth or semismooth Newton type methods. In this paper, we reformulate the EiCP as a
system of continuously differentiable equations and give the Levenberg-Marquardtmethod to solve them.Undermild assumptions,
the method is proved globally convergent. Finally, some numerical results and the extensions of the method are also given. The
numerical experiments highlight the efficiency of the method.

1. Introduction

Eigenvalue complementarity problem (EiCP) is proposed
in the study of the problems in mechanics, engineering,
and economics. The EiCP is also called cone-constrained
eigenvalue problem in [1–4]. The EiCP is to find a solution
including a scalar and a nonzero vector satisfying a com-
plementarity constraint on a closed convex cone. The EiCP
can be reformulated to be a special complementarity problem
or a mathematical programming optimization problem with
complementarity constraints and can use nonsmooth or
semismooth Newton type method to solve it, such as [5–7].
The Levenberg-Marquardt method is one of the widely used
methods in solving optimization problems (see, for instance,
[8–15]). Use a trust region strategy to replace the line search,
the Levenberg-Marquardt method is widely considered to be
the progenitor of the trust region method approach for gen-
eral unconstrained or constrained optimization problems.
The use of a trust region avoids the weaknesses of Gauss
Newton method, that is, its behavior when the Jacobian
is rank deficient or nearly so rank deficient. On the other
hand, we reformulate the EiCP as a system of continuously
differentiable equations that is one of the most interesting

themes. The advantage of the reformulation is that we solve
the equations with continuously differentiable functions for
which there are rich powerful solution methods and the-
ory analysis, including the powerful Levenberg-Marquardt
method. So, in this paper, we give the Levenberg-Marquardt
method to solve the EiCP. The EiCP, which we will consider,
is the following problem. Given the matrix 𝐴 ∈ 𝑅

𝑛×𝑛 and the
matrix 𝐵 ∈ 𝑅

𝑛×𝑛, which are positive definite matrix, then we
consider to find a scalar 𝜆 ∈ 𝑅 and a vector 𝑥 ∈ 𝑅

𝑛

\ {0},
such that

(𝐴 − 𝜆𝐵) 𝑥 ≥ 0,

𝑥 ≥ 0,

𝑥
𝑇

(𝐴 − 𝜆𝐵) 𝑥 = 0.

(1)

This paper is organized as follows. In Section 2, we give
some background definitions and known properties. And
we also give the Levenberg-Marquardt method for the EiCP.
The global convergence analysis and some discussions of the
Levenberg-Marquardt method is also given. In Sections 3
and 4, we give some numerical results and some extensions
of the method.
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Throughout the paper, 𝑀
𝑛
(𝑅) denotes a real matrix of

order 𝑛 and 𝑀
𝑛,𝑚
(𝑅) denotes a real matrix of order 𝑛 × 𝑚.

0
𝑛
= (0, . . . , 0) and 𝑒

𝑛
= (1, . . . , 1).

2. Preliminaries

In this section, firstly, we reformulate (1) as a system of
continuously differentiable equations and give some prelimi-
naries used in the following.Then,we propose the Levenberg-
Marquardt method for the EiCP.

As we all know, (1) can be rewritten as

𝜔 = (
𝑥

𝜆
) ,

𝑓 (𝜔) = (𝐼
𝑛
, 0) 𝜔 = 𝑥,

𝑔 (𝜔) = (𝐴, 0) 𝜔 − (0
𝑛
, 1) 𝜔 (𝐵, 0) 𝜔 = (𝐴 − 𝜆𝐵) 𝑥,

𝑓
𝑇

(𝜔) 𝑔 (𝜔) = 0,

(𝑒
𝑛
, 0) 𝜔 = 1,

(2)

where 𝑓 : 𝑅
𝑛+1

→ 𝑅
𝑛 is a continuously differentiable

function and the matrix 𝐴 ∈ 𝑅
𝑛×𝑛. Using the nonlinear

complementarity problem (NCP) function 𝜙 : 𝑅
2

→ 𝑅,
which satisfied the following basic property

𝜙 (𝑎, 𝑏) = 0 iff 𝑎𝑏 = 0, 𝑎 ≥ 0, 𝑏 ≥ 0. (3)

By the property, (2) can be recasted as the following system
of equations:

𝐻(𝜔) = (

𝐻
1
(𝜔)

.

.

.

𝐻
𝑛
(𝜔)

) = (

𝜙 (𝑓
1
(𝜔) , 𝑔

1
(𝜔))

.

.

.

𝜙 (𝑓
𝑛
(𝜔) , 𝑔

𝑛
(𝜔))

) = 0,

(𝑒
𝑛
, 0) 𝜔 = 1.

(4)

Then, 𝜔 solves the EiCP (1) if and only if 𝜔 solves (4). Define
a merit function for (4) as

Ψ (𝜔) =
1

2

𝑛

∑

𝑖=1

𝜙
2

(𝑓
𝑖
(𝜔) , 𝑔

𝑖
(𝜔)) =

1

2
‖𝐻 (𝜔)‖

2

. (5)

We use a special NCP function named Fischer-Burmeister
function, defined as

𝜙 (𝑎, 𝑏) = √𝑎
2 + 𝑏2 − (𝑎 + 𝑏) . (6)

We know that the favorable property of Ψ is that Ψ is
a continuously differentiable function on the whole space,
although 𝐻 is not a continuously differentiable function in
general (see, for example, [16]). Thus, we give the system of
continuously differentiable equations for (1) as the following
equations:

𝐹 (𝜔) = (
Ψ (𝜔)

(𝑒
𝑛
, 0) 𝜔 − 1

) = 0, (7)

where 𝐹 : 𝑅𝑛+1 → 𝑅
2, which is a continuously differentiable

function. In what follows, we will give the Levenberg-
Marquardt method. Denote

Φ (𝜔) =
1

2
‖𝐹 (𝜔)‖

2

. (8)

The least-squares formulation of (7) is the following uncon-
strained optimization problem:

min
𝜔∈𝑅
𝑛+1

Φ (𝜔) =
1

2
‖𝐹(𝜔)‖

2

. (9)

Now, we give the Levenberg-Marquardt method for
solving (1). The global convergence result of the method is
also given.

Method 1 (the Levenberg-Marquardt method for the EiCP).
Given 0 < 𝛼 < 1, 0 < 𝛽 < 1, 𝑝 > 2, 𝜌 > 0, 0 < 𝛿 ≤ 2. 𝑃 > 0,
𝜖 > 0, 𝜔

0
∈ 𝑅
𝑛+1, 𝜇
0
= ‖𝐹(𝜔

0
)‖
𝛿, and 𝑘 := 0.

Step 1. If ‖∇Φ(𝜔)‖ ≤ 𝜖, then stop. Otherwise, compute 𝑑
𝑘
by

(𝐹
󸀠

(𝜔
𝑘
)
𝑇

𝐹
󸀠

(𝜔
𝑘
) + 𝜇
𝑘
𝐼) 𝑑 + 𝐹

󸀠

(𝜔
𝑘
)
𝑇

𝐹 (𝜔
𝑘
) = 0. (10)

Step 2. If ∇Φ(𝜔
𝑘
)
𝑇

𝑑
𝑘
+ 𝜌‖𝑑

𝑘
‖
𝑃

> 0, let 𝑑
𝑘
= −∇Φ(𝜔

𝑘
);

otherwise, 𝑑
𝑘
is computed by (10). Then, find the smallest

nonnegative integer𝑚 such that

Φ(𝜔
𝑘
+ 𝛽
𝑚

𝑑
𝑘
) ≤ Φ (𝜔

𝑘
) + 𝛼𝛽

𝑚

∇Φ(𝜔
𝑘
)
𝑇

𝑑
𝑘
. (11)

Set 𝜔
𝑘+1

= 𝜔
𝑘
+ 𝛽
𝑚

𝑑
𝑘
.

Step 3. Let 𝜇
𝑘+1

= ‖𝐹(𝜔
𝑘+1
)‖
𝛿 and 𝑘 := 𝑘+1, and go to Step 1.

Now, we give the global convergence of Method 1.

Theorem 1. Suppose that {𝜔
𝑘
}, 𝑘 = 1, 2, . . . generated by

Method 1. Then, each accumulation point of the sequence is a
stationary point of Φ.

Proof. Suppose that {𝜔
𝑘
}
𝐾
→ 𝜔
⋆, {𝜔
𝑘
}
𝐾
is a subsequence of

{𝜔
𝑘
}, and 𝑘 = 1, 2, . . .. When there are infinitely many 𝑘 ∈ 𝐾

such that 𝑑
𝑘
= −∇Φ(𝜔

𝑘
), by Proposition 1.16 in [17], we get

the assertion. In the following, we assume that if {𝜔
𝑘
}
𝐾
is a

convergent subsequence of {𝜔
𝑘
}, then 𝑑

𝑘
is always computed

by (10). We assume that for every convergent subsequence
{𝜔
𝑘
}
𝐾
for which

lim
𝑘∈𝐾𝑘→∞

∇Φ (𝜔
𝑘
) ̸= 0, (12)

we have
lim sup
𝑘∈𝐾𝑘→∞

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 < ∞, (13)

lim sup
𝑘∈𝐾𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨
∇Φ(𝜔

𝑘
)
𝑇

𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
> 0. (14)

In the following, we also assume that𝜔
𝑘
→ 𝜔
⋆. Suppose that

𝜔
⋆ is not a stationary point ofΦ. By (10), we have

󵄩󵄩󵄩󵄩∇Φ (𝜔
𝑘
)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩
(𝐹
󸀠

(𝜔
𝑘
)
𝑇

𝐹
󸀠

(𝜔
𝑘
) + 𝜇
𝑘
𝐼) 𝑑
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐹
󸀠

(𝜔
𝑘
)
𝑇

𝐹
󸀠

(𝜔
𝑘
) + 𝜇
𝑘
𝐼)
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ;

(15)
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therefore, we have

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩∇Φ (𝜔
𝑘
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
(𝐹󸀠(𝜔

𝑘
)
𝑇

𝐹󸀠 (𝜔
𝑘
) + 𝜇
𝑘
𝐼)
󵄩󵄩󵄩󵄩󵄩󵄩

. (16)

Obviously, the denominator in the above inequality is
nonzero; otherwise, we have ‖∇Φ(𝜔

𝑘
)‖ = 0. Then, the

algorithmhas stopped.On the other hand,we know that there
exists a constant 𝜁 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝜔
𝑘
)
𝑇

𝐹
󸀠

(𝜔
𝑘
) + 𝜇
𝑘
𝐼
󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜁; (17)

moreover,

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩∇Φ (𝜔
𝑘
)
󵄩󵄩󵄩󵄩

𝜁
. (18)

By ∇Φ(𝜔
𝑘
)
𝑇

𝑑
𝑘
≤ −𝜌‖𝑑

𝑘
‖
𝑃 and the fact that the gradient

∇Φ(𝜔
𝑘
) is bounded on the convergent sequence {𝜔

𝑘
}, we get

(13). We next prove (14). If (14) is not satisfied, there exists a
subsequence {𝜔

𝑘
}
𝐾
󸀠 of {𝜔

𝑘
}
𝐾
:

lim
𝑘∈𝐾
󸀠
𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨
∇Φ(𝜔

𝑘
)
𝑇

𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (19)

This implies that lim
𝑘∈𝐾
󸀠
𝑘→∞

‖𝑑
𝑘
‖ = 0. From (18), we know

that

lim
𝑘∈𝐾
󸀠
𝑘→∞

󵄩󵄩󵄩󵄩∇Φ (𝜔
𝑘
)
󵄩󵄩󵄩󵄩 = 0, (20)

which contradicts with (12). Thus, (14) holds. So, according
to the definition given in [17], the sequence {𝑑

𝑘
} is uniformly

gradient related to {𝜔
𝑘
}. We complete the proof.

Remark 2. In Method 1, we can also use some other line
search, such as the nonmonotone line search. The line search
is to find the smallest nonnegative integer𝑚 such that

Φ(𝜔
𝑘
+ 𝛽
𝑚

𝑑
𝑘
) − max
0≤𝑗≤𝑚(𝑘)

Φ(𝜔
𝑘−𝑗
) − 𝛼𝛽

𝑚

∇Φ(𝜔
𝑘
)
𝑇

𝑑
𝑘
≤ 0,

(21)

where𝑚(0) = 0,𝑚(𝑘) = min{𝑀
0
, 𝑚(𝑘 − 1) + 1}, and𝑀

0
> 0

is a integer.

Remark 3. In Method 1, we can also use the following
equation to compute 𝑑

𝑘
in Step 1.We can find an approximate

solution 𝑑
𝑘
∈ 𝑅
𝑛 of the equation

(𝐹
󸀠

(𝜔
𝑘
)
𝑇

𝐹
󸀠

(𝜔
𝑘
) + 𝜇
𝑘
𝐼) 𝑑 + 𝐹

󸀠

(𝜔
𝑘
)
𝑇

𝐹 (𝜔
𝑘
) − 𝑟
𝑘
= 0,

(22)

where 𝑟
𝑘
is the residuals and satisfies

󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑘

󵄩󵄩󵄩󵄩∇Φ (𝜔
𝑘
)
󵄩󵄩󵄩󵄩 , (23)

where 𝛼
𝑘
≤ 𝑎 < 1 for every 𝑘.

Table 1

Method 1 𝜆 𝑥 SPA 𝜆 𝑥

4.99542 (0.24366, 0.75633)
𝑇

5 (0.25, 0.75)
𝑇

7.00343 (0.50625, 0.49373)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7.66150 (0.71184, 0.28784)
𝑇

8 (1, 0)
𝑇

3. Numerical Results

Wegive somenumerical experiments for themethod. Andwe
compare Method 1 with the scaling and projection algorithm
(denoted by SPA in [18]). The numerical results indicate
that Method 1 works quite well in practice. We consider
the eigenvalue complementarity problems, which are all
taken form [3, 18]. All codes for the method are finished in
MATLAB. The parameters used in the method are chosen as
𝜌 = 10, 𝑃 = 3, 𝛼 = 0.1, and 𝜖 = 10−4.

Example 4. We consider

(𝐴 − 𝜆𝐵) 𝑥 ≥ 0,

𝑥 ≥ 0,

𝑥
𝑇

(𝐴 − 𝜆𝐵) 𝑥 = 0,

(24)

where

𝐵 = (
1 0

0 1
) ,

𝐴 = (
8 −1

3 4
) .

(25)

By [3], we know that Example 4 has three eigenval-
ues. Now, we consider random initial points to compute
Example 4 by Method 1. Numerical results for Example 4 by
Method 1 and SPA method are presented in Table 1.

Table 1 shows that Method 1 are able to detect all the
solutions for the small size matrix. But the SPA method can
only detect 2 solutions from [3].

Example 5. We consider

(𝐴 − 𝜆𝐵) 𝑥 ≥ 0,

𝑥 ≥ 0,

𝑥
𝑇

(𝐴 − 𝜆𝐵) 𝑥 = 0,

(26)

where

𝐵 = (

1 0 0

0 1 0

0 0 1

) ,

𝐴 = (

8 −1 4

3 4 0.5

2 −0.5 6

) .

(27)

From [3], we also know that Example 5 have 9 eigen-
values. Now, we consider random initial points to compute
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Table 2

Method 1 𝜆 𝑥 SPA 𝜆 𝑥

4.60705 (0.55617, 0.44898, 0.13390)
𝑇

4.1340 (0, 1, 0.2679)
𝑇

4.18288 (0.08023, 0.51776, 0.38374)
𝑇

5 (0.3333, 1, 0)
𝑇

5.03988 (0.14265, 0.42924, 0.42811)
𝑇

6 (0, 0, 1)
𝑇

5.87521 (0.30666, 0.27220, 0.50890)
𝑇

8 (1, 0, 0)
𝑇

6.00946 (0.12341, 0.36685, 0.50975)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7.01141 (0.35296, 0.30395, 0.38277)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

8.00737 (0.40141, 0.35921, 0.23934)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

9.36479 (0.47314, 0.290185, 0.23667)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

9.99838 (0.57695, 0.13243, 0.29060)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

the above Example 5 by Method 1. Numerical results for
Example 5 by Method 1 and the SPA method are presented
in Table 2.

Table 2 shows that Method 1 is able to detect all the
solutions. But, the SPA method can only detect 4 Pareto
eigenvalues from the analysis of [3].

Example 6. We consider

(𝐴 − 𝜆𝐵) 𝑥 ≥ 0,

𝑥 ≥ 0,

𝑥
𝑇

(𝐴 − 𝜆𝐵) 𝑥 = 0,

(28)

where

𝐵 = (

1 0 0

0 1 0

0 0 1

) ,

𝐴 = (

100 106 −18 −81

92 158 −24 −101

2 44 37 −7

21 38 0 2

) .

(29)

From [3], we also know that Example 6 have 23 eigen-
values. Now, we consider random initial points to compute
Example 6 by Method 1. Numerical results for Example 6 by
Method 1 and the SPA method are given in Table 3.

Table 3 shows that Method 1 is able to detect all 23
solutions. But, the SPA method can only detect 2 Pareto
eigenvalues from [3]. The numerical results indicate that
Method 1 works quite well for the big size EiCP in practice.

Discussion. In this section, we study the numerical behaviors
of Method 1 for solving the Pareto eigenvalue problem. The
EiCP problem is very useful in studying the optimization
problems arising in many areas of the applied mathematics
and mechanics. By using the F-B function, we reformulate
the EiCP as a system of continuously differentiable equations.
Then, we use the Levenberg-Marquardt method to solve it.
From the above numerical results, we know that Method 1 is
very effective for small size and big size EiCP problems.

4. Extensions

4.1. Bieigenvalue Complementarity Problems (BECP). Wealso
can use Method 1 to solve the bieigenvalue complementarity
problems (denoted by BECP). The BECP is to find (𝜆, 𝜇) ∈
𝑅 × 𝑅 and (𝑥, 𝑦) ∈ 𝑅𝑛 \ {0} × 𝑅𝑚 \ {0} such that

𝑥 ≥ 0, 𝜆𝑥 − 𝐴𝑥 − 𝐵𝑦 ≥ 0, 𝑥
𝑇

(𝜆𝑥 − 𝐴𝑥 − 𝐵𝑦) = 0,

𝑦 ≥ 0, 𝜇𝑦 − 𝐶𝑥 − 𝐷𝑦 ≥ 0, 𝑦
𝑇

(𝜇𝑦 − 𝐶𝑥 − 𝐷𝑦) = 0,

(30)

where 𝐴 ∈ 𝑀
𝑛
(𝑅), 𝐵 ∈ 𝑀

𝑛,𝑚
(𝑅), 𝐵 ∈ 𝑀

𝑚,𝑛
(𝑅), and 𝐷 ∈

𝑀
𝑚
(𝑅).

Let 𝜔 = (

𝑥

𝑦

𝜆

𝜇

), 𝑓(𝜔) = 𝑥, 𝑔(𝜔) = 𝑦, 𝑃(𝜔) = 𝜆𝑥−𝐴𝑥−𝐵𝑦,

and𝑄(𝜔) = 𝜇𝑦−𝐶𝑥−𝐷𝑦.We canwrite the above bieigenvalue
complementarity problems as 𝑓(𝜔) ≥ 0, 𝑔(𝜔) ≥ 0, 𝑃(𝜔) ≥ 0,
𝑄(𝜔) ≥ 0, 𝑓𝑇(𝜔)𝑃(𝜔) = 0, 𝑔𝑇(𝜔)𝑄(𝜔) = 0, (𝑒

𝑛
, 0
𝑛
, 0, 0)𝜔 = 1,

and (0
𝑛
, 𝑒
𝑛
, 0, 0)𝜔 = 1. By using F-B function, similar to

rewriting the EiCP, we can rewrite the above bieigenvalue
complementarity problems as the following equations:

𝐻
1
(𝜔) = (

𝜙 (𝑓
1
(𝜔) , 𝑃

1
(𝜔))

.

.

.

𝜙 (𝑓
𝑛
(𝜔) , 𝑃

𝑛
(𝜔))

) = 0,

𝐻
2
(𝜔) = (

𝜙 (𝑔
1
(𝜔) , 𝑄

1
(𝜔))

.

.

.

𝜙 (𝑔
𝑛
(𝜔) , 𝑄

𝑛
(𝜔))

) = 0,

(𝑒
𝑛
, 0
𝑛
, 0, 0) 𝜔 − 1 = 0,

(0
𝑛
, 𝑒
𝑛
, 0, 0) 𝜔 − 1 = 0.

(31)

Let

Φ
1
(𝜔) =

1

2

󵄩󵄩󵄩󵄩𝐻1(𝜔)
󵄩󵄩󵄩󵄩

2

,

Φ
2
(𝜔) =

1

2

󵄩󵄩󵄩󵄩𝐻2(𝜔)
󵄩󵄩󵄩󵄩

2

.

(32)
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Table 3

Method 1 𝜆 𝑥 SPA 𝜆 𝑥

26.28209 (0.32922, 0.28109, 0.00067, 0.68363)
𝑇 100 (1, 0, 0, 0)

𝑇

26.41489 (0.34225, 0.04798, 0.30622, 0.31649)
𝑇 158 (0, 1, 0, 0)

𝑇

28.71143 (0.59383, 0.30244, 0.01458, 0.43984)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

29.13415 (0.39357, 0.16933, 0.31781, 0.12821)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

32.60775 (0.35641, 0.26564, 0.17973, 0.62135)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

32.86388 (0.13771, 0.33320, 0.02167, 0.50745)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

37.57690 (0.30291, 0.19045, 0.21854, 0.27608)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

41.01635 (0.28247, 0.19667, 0.23447, 0.26953)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

46.46811 (0.34130, 0.28631, 0.18549, 0.16868)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

49.14424 (0.25544, 0.18482, 0.28418, 0.27187)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

66.96950 (0.47995, 0.22175, 0.00256, 0.29497)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

77.42278 (0.26550, 0.28105, 0.30904, 0.14384)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

77.45752 (0.21870, 0.31154, 0.24021, 0.22741)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

99.42333 (0.36284, 0.32018, 0.16593, 0.13579)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

99.99801 (0.67443, 0.13866, 0.00391, 0.18299)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

107.49890 (0.39982, 0.33534, 0.17631, 0.08845)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

127.38892 (0.32969, 0.37065, 0.18570, 0.10872)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

148.53897 (0.34127, 0.45333, 0.01989, 0.17409)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

157.99623 (0.28006, 0.37495, 0.14411, 0.07701)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

197.17149 (0.48407, 0.60907, 0.15118, 0.18058)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

204.57942 (0.55801, 0.67908, 0.17056, 0.14984)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

226.27891 (0.26236, 0.32696, 0.08010, 0.01135)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

231.92132 (0.26744, 0.33127, 0.04324, 0.00457)
𝑇

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Then, we can give the system of continuously differentiable
equations for the bieigenvalue complementarity problems as
the following continuously differentiable equations:

(

Φ
1
(𝜔)

Φ
2
(𝜔)

(𝑒
𝑛
, 0
𝑛
, 0, 0) 𝜔 − 1

(0
𝑛
, 𝑒
𝑛
, 0, 0) 𝜔 − 1

) = 0. (33)

In the following numerical test, the parameters used in the
method are also chosen as 𝜌 = 10, 𝑃 = 3, 𝛼 = 0.1, and 𝜖 =
10
−4.

Example 7. We consider the BECP, where 𝐴 = 0,𝐷 = 0,

𝐵 = (
1 0

0 1
) ,

𝐶 = (
1 0

0 1
) .

(34)

We use Method 1 to solve the Example 7. Results for
Example 7 with random initial point are given in Table 4.

4.2. The Paretian Version. We consider using Method 1 to
compute the following Paretian version:

𝑥 ≥ 0, 𝑀 (𝜆) 𝑥 ≥ 0, 𝑥
𝑇

𝑀(𝜆) 𝑥 = 0, (35)

Table 4

𝜆 𝜇 𝑥 𝑦

0.95803 0.96145 (0.69993, 0.30006)
𝑇

(0.69782, 0.30217)
𝑇

0.96205 0.97990 (0.69259, 0.30740)
𝑇

(0.68925, 0.31074)
𝑇

0.95574 0.94739 (0.48255, 0.51744)
𝑇

(0.47451, 0.52548)
𝑇

0.96069 0.93502 (0.37373, 0.62626)
𝑇

(0.37670, 0.62329)
𝑇

0.94582 1.04493 (0.69415, 0.30584)
𝑇

(0.69598, 0.30401)
𝑇

0.96200 1.03264 (0.46627, 0.53372)
𝑇

(0.47934, 0.52065)
𝑇

0.95517 1.06445 (0.35869, 0.64130)
𝑇

(0.37196, 0.62803)
𝑇

0.95744 1.05645 (0.39169, 0.60830)
𝑇

(0.39707, 0.60292)
𝑇

where 𝑀 standing for the pencil associated to a finite
collection {𝐴

0
, 𝐴
1
, . . . , 𝐴

𝑟
} of real matrices of order 𝑛 and

𝑀(𝜆) =

𝑟

∑

𝑘=0

𝜆
𝑘

𝐴
𝑘
. (36)

Example 8. We consider the quadratic pencil model, where

𝑀(𝜆) = 𝜆
2

(

2 0 0

0 6 0

0 0 10

) + 𝜆(

7 0 0

0 30 0

0 0 20

) + (

−2 6 0

2 16 3

0 5 0

) .

(37)

We use Method 1 to compute Example 8. We present the
results of Example 8 with random initial point in Table 5.
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Table 5

𝜆 𝑥

0.25315 (0.97503, 0.01611, 0.00884)
𝑇

−4.38990 (0.00000, 1.00000, 0.00000)
𝑇

−3.74482 (0.95986, 0.02679, 0.01334)
𝑇

−0.84644 (0.39691, 0.42913, 0.17392)
𝑇

−5.000000 (0.00000, 1.00000, 0.00000)
𝑇

−0.60280 (0.40400, 0.37328, 0.22271)
𝑇

−3.66880 (0.83349, 0.10559, 0.06090)
𝑇

−1.87686 (0.19023, 0.25846, 0.55130)
𝑇

−1.98258 (0.04642, 0.06140, 0.89217)
𝑇

−0.01062 (0.10208, 0.03658, 0.86133)
𝑇

5. Conclusion

In this paper, we reformulate the EiCP as a system of
continuously differentiable equations and use the Levenberg-
Marquardt method to solve them. The numerical experi-
ments show that our method is a promising method for solv-
ing the EiCP. The numerical experiments of the extensions
confirm the efficiency of our method.
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