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As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains
the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price
movement are another important stylized fact.The incorporation of mixture of data characteristics in the time scale domain during
the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component
analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude
oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous
microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data
characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology
proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional
insights into the heterogeneous market microstructure with economic viable interpretations.

1. Introduction

With the technological advancement and development of
global economic integration, both the demand and the
supply of crude oil are influenced by increasingly complex
and diverse market participants around the world. This,
together with numerous influential factors, such as weather
conditions, political stability, economic prospects, consumer
expectations, and business indicators, has led to the fluctuat-
ing price movement in the crude oil market. This situation
has exacerbated in recent years accompanying the wave
of liberalization and globalization, which are beyond the
explanatory abilities provided by the current models and
methodologies. Meanwhile, since crude oil is traded less
frequently than equities, this results in higher levels ofmarket
imperfection and relatively lower levels of market efficiency,
which leads to theoretically valuable and challenging research

problems.Therefore, there has been arising interest fromboth
academics and industries for more accurate modeling and
forecasting of its price movement [1, 2].

Traditionally the structural and econometric models,
mostly linear in nature, have been the mainstream approach
in the crude oil forecasting field. ARMA model represents
the typical time series approach while regression model as
well as vector autoregressive (VAR) model represents the
typicalmultivariate approaches.Mostly they offer satisfactory
performance over the medium to long time horizon but
fail over the short time horizons. This indicates that the
characteristics of prices in the crude oil market contain
unknown nonlinear features in the case of time seriesmodels,
as well as nonlinear interrelations with othermacroeconomic
factors in the case ofmultivariatemodels. Current approaches
alone can only offer insufficient level of explanatory and
forecasting power for the price movement.
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The nonparametric nonlinear artificial intelligence based
approaches such as neural network, support vector regres-
sion, and empirical mode decomposition largely rely on
the data mining exercises to extract nonlinear data pat-
terns [3, 4]. They have shown some promising performance
improvement.However, the performance improvement is not
consistent for all test cases [5]. Meanwhile, arguments often
arise for their results as they risk overfitting the data. Results
solely that relied on these approaches also suffer from their
powerful but “black box” approaches as limited insights into
the underlying influencing factors with economic rationale
can be inferred [3, 4, 6]. Therefore, better understanding of
the underlying DGP and accurate forecasting in the crude oil
market remains one of the most difficult problems in the field
[1, 2].

Recent empirical researches have increasingly revealed
the significance of multiscale data behaviors, where the
mainstream approaches had failed to explain and incorporate
during the modeling process. Therefore, the semiparametric
paradigm based on computational harmonic analysis has
emerged as the preferred alternativemethod [7].This is based
on the notion that the seemingly unstationary nonlinear
data consist of different stationary data of both linear and
nonlinear characteristics. This is consistent with HMH; that
is, the market is heterogeneous in nature, and exploitation of
this stylized fact leads to better understanding of the under-
lying DGPs and forecasting accuracy.Thus it is inappropriate
to abandon the use of linear models in favor of nonlinear
models, which could lead to ignorance of important deter-
ministic patterns. However, different underlying DGPs also
need to be incorporated during the modeling process. Linear
models, however, capture only parts of them. For example,
there are ample empirical evidences suggesting the transient
data features, which lead to the extreme value theory in the
forecasting field.

Thus, the multiscale decomposition method provides
an important alternative but only a handful of works have
explored it in this field. Some preliminary findings using
the wavelet analysis to analyze the multiscale structure of
DGP have led to some positive performance improvement
in areas such as crude oil, electricity, equities, and exchange
rate markets. These empirical studies have used one single
family of wavelets to extract data features of interest. For
example, wavelet analysis has been widely used to preprocess
or denoise the data. For derivatives market, Haven et al.
[8] and Almeida and Moriconi [9] use the wavelet analysis
to denoise the option data and find that it significantly
improves the option valuation accuracy [8, 9]. For crude
oil market, Jammazi and Aloui [10] use wavelet analysis to
denoise the data while shifting the focus of the paper on
the choice of different activation functions on the perfor-
mance improvement [10]. Yousefi et al. [11] use the wavelet
analysis to decompose the crude oil price and extend the
decomposed data components directly to make forecasts [11].
For electricity forecasting purpose, Amjady and Keynia [12],
Meng et al. [13], and Aggarwal et al. [14] based their neural
network forecasting model on the wavelet preprocessed data
series and have obtained positive performance improve-
ment [12–14]. Xu et al. [15] have attempted to combine

the wavelet analysis with the support vector machine and
have obtained positive performance improvement in the
empirical studies inAustralian electricitymarket [15]. Conejo
et al. [16] have combined the wavelet analysis and ARMA
model to analyze the Spanish electricity market and obtained
positive results [16]. Meanwhile, another emerging trend
is to identify the causal relationship or interrelationship
among different financial markets. For example, recently,
Benhmad [17] has conducted the empirical studies to test
for Granger causality between oil price and US GDP and
finds it varying across time scale domain [17]. Work in
Reboredo and Rivera-Castro [18] and Reboredo and Rivera-
Castro [19] has identified the contagion and interdependence
relationship between crude oil and exchange rate, as well as
the crude oil and the stock markets in Europe, respectively
[18, 19].

As the real data naturally have multiple representations
and are redundant when using a group of wavelet families to
represent them, the single basis approach implies obviously
very strong and questionable assumptions. Thus it is of
critical importance to represent the DGP by using mixture
of different bases, as suggested by recent empirical researches
[7, 20, 21]. Since data now have multiple representations in
the dictionary of bases with no unique solution, sparsity is
proposed as the measure to guide the searching process for
the optimal multiple bases representations.The true underly-
ing component should concentrate on its band of influences,
which usually represent a few significant points, which in
turn correspond to the sparsity definition. Morphological
component analysis (MCA) is one emerging technique in
the field of sparsity representations of signals. Some positive
performance improvements have been witnessed with lim-
ited applications in engineering fields where MCA has been
used to extract multiple data features of interests [22–25]. For
example, in image processing, Liang et al. [26] use the MCA
to solve the face hallucination problem, whose resolution
relies on the accurate decomposition of the original image
into the global high resolution image and an unsharp mask
[26]. Grosdidier and Baussard [27] use MCA to extract
the target signature from the Range-Doppler images, which
contributes to more accurate suppression of noises [27].
Abrial et al. [25] show that MCA can be applied to analysis of
spherical data maps [25]. In the field of medical engineering,
Gao et al. [28] propose MCA as an effective mammographic
mass detection tool that could achieve satisfactory detection
performance [28]. Meanwhile, applications of MCA also
extend to different fields of engineering. Bobin et al. [29]
extend MCA to multichannel case to solve the multichannel
inverse problems [29]. Zeng et al. [30] use MCA to separate
transient events and stationary noises based on their different
morphological characteristics in vibration signals in theWatt
experiment [30].

This paper proposes amorphological component analysis
based hybrid methodology for modeling and forecasting of
crude oil price. Results in this study explore and unveil the
complex market structure consisting of data components of
different data characteristics modeled using morphological
component analysis. Empirical studies have been conducted
in the marker benchmark West Taxes Intermediate (WTI)
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and Brent markets to investigate the performance improve-
ments of the proposed model, against traditional benchmark
models. The main contribution of this paper is the introduc-
tion of multiple basis based approach, to recover the under-
lying constituent component with only the prior information
of the signals available to study the heterogeneous market
structure without the inside information. This represents the
important divergence from the widespread oversimplified
single basis approach, inconsistent with market structure,
and is only valid at macroscale. The introduction of MCA
based approach incorporated the stylized fact that there
are redundant forms of representations on the underlying
data generating process, which need to be optimized, and
contributes to the understanding and forecasting of the
evolutions in the market microstructure.

This paper is organized as follows. Section 2 provides
a brief account of the sparsity decomposition and MCA
theories behind. Section 3 proposes and illustrates MCA
based hybridmethodologies and their numerical procedures.
Experiment results for empirical studies are reported and
analyzed in Section 4, based on which finalizing conclusions
are drawn in Section 5.

2. Relevant Theories

2.1. Sparsity Decomposition and Morphological Component
Analysis. Over the years, numerous bases have been devel-
oped to capture particular data features. Typical bases used
include global oscillating discrete sine and cosine transform
(DST andDCT) and locally oscillating discrete wavelet trans-
form (DWT).With the availability of a large number of bases
to construct an overly complete dictionary, guiding measures
are needed to select and distinguish bases for specific data
features to provide themost efficient representations. Sparsity
is one such measure. Different basis may be more efficient in
representing particular data features and thus provide sparse
representation better than for other data features.Meanwhile,
sparsity provides a measure for bases to discriminate against
different data features [23–25]. Therefore, the goal of sparsity
decomposition is to search for the appropriate representation
of signals based on the morphological diversity criteria. It
attempts to represent the signals using a dictionary of over-
complete redundant basis dictionary and model them as the
linear combination of different morphologically diversified
components [24]. Formally it is defined as follows.

Suppose 𝐷 is an overcomplete dictionary constructed as
the union of orthonormal bases as 𝐷 = [𝜉

1
, . . . , 𝜉

𝐷
], from

a collection of signal waveforms or atoms 𝛿
1
, . . . , 𝛿

𝐾
. The

projection coefficient 𝛼 can be defined for mapping signal
𝑦 ∈ 𝑅

𝑛 into the bases domain as in the following:

𝑦 = 𝛼
𝑖
𝐷. (1)

The signal is sparse in dictionary 𝐷 if most entries of
projection coefficients 𝛼 are zero and there exist only a few
significant ones. This constraint also ensures an uncertainty
principle that states that a component that is sparse in a
particular basis 𝛿

𝑘
is not sparse in a mutually incoherent

basis 𝛿
𝑖
, 𝑖 ̸= 𝑘. This group of basis pairs may include DCF and

wavelets and wavelets and Dirac bases.
Suppose signal 𝑦 can be represented by a linear combina-

tion of 𝑘 components 𝑆
𝑘
, 𝑘 = 1, . . . 𝐾, where each component

𝑆
𝑘
is sparse in the corresponding unique bases in dictionary

𝛿
𝑘
. The goal of sparsity decomposition is to search for

components obtained from orthogonal transform with basis
functions and provides the optimal linear representation of
a data series 𝑦. This problem is formulated as the linear
optimization problem in the following for 𝑎

𝑘
:
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𝑎
𝑘
,

(2)

where the function 𝑙
𝑜
norm refers to ‖𝑥‖

𝑜
, that is, the support

of 𝑥, counting the number of nonzero components of vector
𝑥.

Since it is a typical NP-hard combinatorial discrete
optimization problem, algorithms with relaxed condition or
approximate accuracy have been developed over the years to
reduce computational complexity. These include the greedy
matching pursuit (MP) [31], basis pursuit (BP) and basis
pursuit denoising (BPDN) [32], LARS [33], and MCA [34].
Compared to BP, MCA represents an alternative efficient
approach based on iterative thresholding algorithm.

Different orthogonal bases have been developed over
the years. Typical examples are the traditional discrete
cosine function (DCF), wavelets, and so forth. DCF is a
global invariance function, well researched in the literature.
Wavelets are more complex continuous functions that have
high energy concentration over short intervals of time, which
is in direct contrast to the globally time invariant sinusoid
functions used in more traditional spectrum analysis tools
such as Fourier analysis [35].Wavelets are defined as solutions
to the two-scale difference equation as in the following [36]:

𝐶
𝜓
(𝑥) = √2∑

𝑘∈𝑧

ℎ
𝑘
𝜓 (2𝑥 − 𝑘) . (3)

Therefore, wavelet functions satisfy both admissibility
and unit energy conditions that guarantee their time scale
localization with zero vanishing moments.

There are different families (or types) of wavelets. Each is
capable of adapting to and accentuating certain data charac-
teristics. Typical wavelet families include Haar, Daubechies,
and Coiflets, each with different characteristics such as
support and vanishing moments [36].

2.2. Support Vector Regression (SVR). Support vector regres-
sion (SVR) is an emerging machine learning theory. It adopts
the structural risk minimization principle during the data
training and learning process and models it as a convex
optimization problem to balance between fitting accuracy
and model generalizability. Thus it alleviates the overfitting
and local minima issues with the traditional supervised
learning algorithm, such as neural network models, which
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are based on the empirical risk minimization principle [37].
Support vector regression is the extension of the support
vector machine theory in regression analysis [37]. This is
achieved introduction of some loss function such as the most
popular 𝜖-insensitive loss function. Typically for a set of data
points (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑚
, 𝑦
𝑚
), where 𝑥

𝑖
∈ 𝑅
𝑛
, 𝑦
𝑖
∈ 𝑅
𝑛,

the linear regression problem is formulated as

𝑓 (𝑥) = 𝜔𝜙 (𝑥) + 𝑏, 𝜙 : 𝑅
𝑛
󳨀→ 𝐹, 𝜔 ∈ 𝐹, (4)

where 𝜙(𝑥
𝑖
) denotes the transformation in feature 𝐹. Given

nonlinear data, kernel function 𝑘⟨𝑥
𝑖
⋅ 𝑥⟩ is used for 𝜙(𝑥

𝑖
) to

map nonlinear inputs into linear inputs in higher dimensions.
𝑤 is the weight in feature space 𝐹.

Introducing the 𝜖 loss function, the regression problem
is further transformed into the convex optimization problem
formulated as in
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𝑖
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(5)

where 𝜖 is the loss function that measures the forecast
deviations allowed. Two slack variables 𝜉

𝑖
, 𝜉
∗

𝑖
are introduced

to measure the size of positive and negative deviations.
𝐶 is the penalty variable for empirical errors. 𝑤𝑇𝑤 is the
regularized term.

Applying Lagrangian and Karush-Kuhn-Tucker condi-
tions, the dual problem of the original optimization problem
is formulated and solved as in the following to reduce
dimensionality and computational costs:
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}
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(6)

As an emerging technique, application of SVR in fore-
casting literature has been growing in recent years. It is
typically viewed as an improvement over the traditional
neural networkmodels to avoid the local minima issue. Some
very recent development includes its variant named multiple
input multiple output SVR. For example, Bao et al. [38],
Bao et al. [39], and Xiong et al. [40] have used the MIMO
SVR in predicting the time series multiple steps ahead. The
application evaluation of the proposed algorithm using the
physics time series and stock market data has confirmed the
improved predictive accuracy in the stock market [38–40].
Cao and Tay [41] and Ince and Trafalis [42] find separately
that the performance of SVR is better than the neural network
model [41, 42]. In electricity market, Aggarwal et al. [43]
obtain significant performance improvement over traditional
models and neural network models [43]. Zhao et al. [44] use
the SVR model to forecast price movement and variance and

constructed the prediction interval, claiming the model to
be better than the traditional GARCH approach [44]. The
SVR model is also being applied in forecasting crude oil
price and has achieved superior positive performance. Xie
et al. [45] construct a support vector regression based time
series forecasting model for crude oil market and found its
performance superior to backpropagation neural network
and ARMA model [45]. Despite the positive results reported
in the literature, SVR suffers from the same problems as
neural network; that is, its performance is also sensitive to
the chosen parameters, especially the trade-off parameters
𝐶, reflecting human preference for the balance between
overfitting and generalizability. Recent progress in using the
metaheuristics approach to determine the parameters has led
to significantly improved performance. For example, Li and
Tan [46] and Bao et al. [47] have shown that the evolutionary
algorithms such as PSO and memetic algorithm can be used
to determine more optimal model specifications for SVR and
result in improved performance [46, 47]. Tian et al. [48] have
also provided an alternativemultiple kernel based framework
that emphasizes the inductive approach to determine the
parameters in SVR tuning [48]. Although there are debates on
the economics insights that SVR basedmodels can offer, SVR
model serves as a very good optimization model during the
forecasting process, especially when its parameters are fine-
tuned with some advanced techniques.

3. A Morphological Component Analysis
(MCA) Based Hybrid Methodology

The proposed MCA based hybrid methodology follows the
“divide and conquer” principle. The theoretical basis behind
the proposed approach is the proposition of heterogeneous
market hypothesis (HMH), relaxing the homogeneous and
rational assumption of efficient market hypothesis (EMH)
underlying the majority of mainstreammodels.The rationale
is that EMH assumes homogeneous time horizon, frequency,
and individual characteristics in the data, which provides the
acceptable level of approximations over the medium to long
term time horizon when the market structure is relatively
simpler due to strict regulations and demand for the forecast-
ing accuracy, are only at moderate level. However, over the
shorter interval, there are market imperfections that enable
price predictability. Meanwhile, with increasingly complex
market structure due to deregulation and technological
development, recent empirical evidence in the exchange rate
and equity markets suggests that the heterogeneous nature of
market is no longer ignorable and could be the key to explain
and reconcile EMH and empirical stylized facts that suggest
price predictability [49, 50]. Meanwhile, the heterogeneous
market hypothesis (HMH) arises to complement the tradi-
tional efficient market hypothesis (EMH) [51–57]. The HMH
proposes that the market consists of heterogeneous agents
with heterogeneous investment strategies and investment
time horizons. Compared to the homogeneous reaction to the
news shocks in the EMH, HMH states that these agents or
investors react to news shocks differently based on their own
characteristics. On one hand, their investment time horizon
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and dealing frequency are diversely different. For example
pensions funds and central banks tend to have low dealing
frequency focusing on long time horizon while the market
traders tend to have high dealing frequency with short time
horizon. On the other hand, these agents or investors employ
diversely different investment strategies or measures based
on their own characteristics and focus. In the meantime,
as recent harmonic analysis research suggests, appropriate
recovery of the underlying morphologically diversified com-
ponents based on sparsity decomposition is important to data
trend modeling. The original data series with the mixture
of linear and nonlinear data characteristics need to be
decomposed into the underlying morphologically diversified
DGP, whose distributional characteristics conform to the
assumptions ofmainstream econometricmodels. Technically
to study the heterogeneous market structure without inside
information, innovative algorithms such as MCA that can
recover the underlying constituent component are needed
since only the prior information of the signals is available.

The proposedMCAapproach also represents a significant
paradigm shift from traditional approaches, over simplifying
assumptions that are inconsistent with market structure,
and is only valid at macroscale. The MCA based approach
incorporates the stylized fact that there are redundant forms
of signal representations. The accuracy of optimal extraction
of components with overcomplete dictionary of bases that
represent our assumptions has a limit, governed by the uncer-
tainty principle. However, the approximation of accuracy can
improve continuously with the development of technology.
Based onHMH,MCAassumes that the data are influenced by
some underlying components, which have morphologically
diverse features, distinguishable with a dictionary of bases,
together with additive noises as defined as in

𝑟 (𝑡) = ∑𝜉
(𝑖)
𝛼
(𝑖)

+ 𝑛, (7)

where 𝑟(𝑡) and 𝛼
(𝑖) refer to the original data series and

underlying component series of morphologically different
characteristics such as permanent and transient data char-
acteristics. Consider 𝑖 ∈ 𝑘 where 𝛿

1
, . . . , 𝛿

𝑘
refers to the

collection ofmorphologically different dictionaries including
undecimated discrete wavelet, discrete cosine transform, and
the Dirac basis. 𝜉

(𝑖) refers to the coefficient vectors for
different complete dictionaries. 𝑛 refers to the contaminating
noises, possibly of Gaussian white noise of irrelevant nature.

MCA involves several key steps, including components
extraction, feature identification, data modeling, and final
forecast phases, as illustrated in Algorithm 1.

Firstly in the components extraction phase, the set of
dictionaries with mutually incoherent bases is constructed.
This is to ensure that the sparest solution can be found as the
uncertainty principle ensures that no signal can have sparse
representations in mutually incoherent bases simultaneously.
Then, the underlying components can be extracted using
the constructed dictionary based on MCA algorithm. The
process of feature extraction in MCA follows the standard
iterative thresholding algorithm as in Algorithm 2 [25, 34].

Secondly the nonlinear statistics test is used to test and
identify linear and nonlinear data characteristics.

Thirdly appropriate model specifications from a set of
model pools, consisting of linear, nonlinear, and random
walk, are chosen and used to model the extracted compo-
nents. Individual forecasts are made for each component
accordingly.The optimal one is chosen based on the trial and
error method.

For data components of linear nature, that is, if the price
series are serially linearly dependent and not independent
and identically distributed (i.i.d), the autoregressive moving
average model (ARMA) is used to model the linear serial
dependence in data, inwhich the current price level is linearly
related to the past price level, incorporating the errors in
previous forecasts as well. Typical ARMAmodel specification
is estimated and forecasts are made as in

𝑟
𝑡
= 𝛿
𝑡
+

𝑚

∑

𝑖=1

𝜙
𝑖
𝑟
(𝑡−𝑖)

+

𝑛

∑

𝑗=1

𝜃
𝑗
𝜀
(𝑡−𝑗)

+ 𝑎
𝑡
, (8)

where 𝑟
𝑡
is the conditional mean of the data at time 𝑡, 𝑟

(𝑡−𝑖)

is the lag 𝑚 returns with parameter 𝜙
𝑖
, and 𝜀

(𝑡−𝑗)
is the lag 𝑛

residuals in the previous period with parameter 𝜃
𝑗
. 𝛿
𝑡
is the

constant coefficient. 𝑎
𝑡
is the error term at time 𝑡.

For nonlinear data, the nonlinear model specification is
estimated and forecasts are made as in

𝑟
𝑡
=

𝑝

∑

𝑖=1

𝜔
𝑖
𝑟
(𝑡−𝑖)

+ 𝑏
𝑡
. (9)

If market is efficient, the random walk model is valid
in that all past information is reflected in the current price,
which is the only needed information to forecast the future
movement. The price series is i.i.d and not predictable based
on past information. Thus the random walk model remains
a very important benchmark model as predictions from
most linear models are less robust and are biased due to
inappropriate extraction of patterns.

Based on the basic assumption in MCA analysis as in (7),
the final forecasts are simply linear summation of individual
forecasts made for different individual components as in

𝑟(𝑡) = 𝑟PT(𝑡) + 𝑟TF(𝑡). (10)

4. Empirical Studies

4.1. Data and Descriptive Statistics. As two representative
benchmark marker markets were considered by US Energy
Information Administration, both the US West Taxes Inter-
mediate (WTI) crude oil market and the European Brent
(Brent) are used as the testing fields for empirical studies
in this paper. The experiments are designed following the
convention in the literature. For both datasets, the per-
formance evaluations of different models are conducted
covering the time period from January 2, 2002, to February
13, 2009, when the latest event and data are incorporated
while the impact of previous direct market disruptions,
such as the Gulf war, is reduced to the minimum. This
includes 1790 daily observations for WTI dataset and 1868
daily observations for Brent dataset. The data source is
Energy InformationAdministration (EIA) of USDepartment
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𝑁 ← the initial decomposition scale

𝑟
𝑡
=

𝑁

∑

𝑖

𝑟
𝑖,𝑡

{Component extraction}

while 𝑖 < 𝑁 do
𝑠
𝑖
← Statistical tests of the null hypothesis that the DGP is i.i.d or linear {Feature identification}

if 𝑠
𝑖
≥ 0 then

𝑟
𝑡
= 𝛿
𝑡
+

𝑚

∑

𝑖=1

𝜙
𝑖
𝑟
(𝑡−𝑖)

+

𝑛

∑

𝑗=1

𝐿𝜃
𝑗
𝜀
(𝑡−𝑗)

+ 𝑎
𝑡
{Linear data modeling}

else

𝑟
𝑡
=

𝑝

∑

𝑖=1

𝜔
𝑖
𝑟
(𝑡−𝑖)

+ 𝑏
𝑡
{Nonlinear data modeling}

end if
end while

𝑟(𝑡) =

𝑁

∑

𝑖

𝑟
𝑖,𝑡

{Forecast reconstruction}

Algorithm 1: A MCA based hybrid methodology.

𝐼max ← number of iterations
𝜆
(0)

← the initial threshold
𝑦
(0)

← 0.
𝜆min ← lower bound
while 𝜆

(𝑡)
> 𝜆min do

𝑟(𝑡) = 𝑟PT(𝑡) + 𝑟TF(𝑡) {Compute the residual}
𝛼
(𝑡)

= 𝜙
𝜆
(𝑡) (𝜉
−1
(𝑟
(𝑡)
)) {Thresholding}

𝑦
(𝑡)

= 𝜉𝛼
(𝑡)

{Reconstruction}
𝜆
(𝑡+1)

← Decreased threshold {𝜆
(𝑡+1)

< 𝜆
(𝑡) following a given strategy}

end while

Algorithm 2: Iterative thresholding algorithm for MCA.

of Energy. The datasets are conventionally divided on the
60–40 basis, which ensures sufficient samples for statistical
significance of results. The first 60% of the dataset serves
as the training set for estimating model specifications and
parameters. The remaining 40% of dataset is reserved as the
test set for evaluating performance of different models [58,
59]. The directional predictive accuracy of different models
is evaluated using Pesaran-Timmermann test of directional
predictive accuracy [60]. The original daily price series is log
differenced at the first order to remove trend factors. The
statistical predictive accuracy of different models is evaluated
usingmean squared error (MSE), formeasuring the deviation
of the predictive values from the actual observations, and
the Clark-West statistical predictive accuracy test for nested
models, for measuring the predictive accuracy between two
nested models [61, 62]. The directional predictive accuracy
of different models is evaluated using Pesaran-Timmermann
test of directional predictive accuracy [60].

The calculated mean, standard deviation, skewness, and
kurtosis for both WTI and Brent markets are 0.0011, 0.0230,
−0.4326, and 4.8282 and 0.0011, 0.0218, −0.0763, and 4.3898,
respectively. This suggests that on the aggregated level,

crude oil market is relatively efficient and roughly normally
distributed. However, the Jarque-Bera test of normality is
rejected while the BDS test of independence is accepted
at a low confidence level, that is, 70.8% in Brent market,
which indicates that crude oil data deviate from normal and
independent distribution. Therefore, this paper uses MCA
techniques to extract morphologically distinct data compo-
nents. In this paper, three different bases have been attempted,
including DCT, Daubechies 4, and Symlet 4 wavelet family,
where the number 4 is the order for the wavelet family.

The DCT and DST fail to extract the deterministic
underlying components, which suggests the absence of long
term periodic deterministic trends in the market. This is an
interesting and provoking observation as it suggests that the
market is characterized by salient data features and violation
of the stationary character over long term in traditional
modeling technique based on single time framework.

For components extracted using Daubechies 4 and Sym-
let 4, inWTImarket, the calculatedmean, standard deviation,
skewness, and kurtosis are 0, 0.0041, −11.3492, and 273.8995
and 0, 0.0001, 0, and 1.5076, respectively. In Brent market, the
calculated mean, standard deviation, skewness, and kurtosis
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are 0, 0.0022, 15.2061, and 329.3004 and 0, 0.0001, 0, and
1.5015, respectively. Thus distributions of all components
extracted are significantly different from the normal distribu-
tion.This is also confirmed by the rejection of the Jarque-Bera
test and BDS tests.

4.2. Experiment Results. Following conventions in the litera-
ture, three benchmark models, random walk (RW), ARMA,
and SVR model, are used in the model evaluation process
[63]. The lag order for benchmark ARMA(r,m) during the
forecasting process is set to ARMA(1,1). The lag order p
for benchmark SVR model is set to 2. The lag order for
ARMA(r,m) in the forecasting process is determined based
on the Akaike information criteria (AIC) and Bayesian
information criteria (BIC) minimization principle.

Since very little guidance is available in the extant liter-
ature, parameters for MCA are determined using trial and
error method. The rolling window is set to 512 to cover the
relevant information set. Wavelet families used in the MCA
analysis process include Daubechies 4 and Symlets 4 forWTI
market, as well as Daubechies 6 and Symlets 6 for WTI
market.

The 𝜖-insensitive SVR is chosen with the radial basis
function (RBF) kernel. The parameters for SVR model,
including cost, gamma, epsilon, and tolerance of termination,
are determined using the standard grid search method. They
are listed in Table 1.

Predictive accuracy of the proposed algorithm against
alternative benchmark models is as in Table 2.

Experiment results in Table 2 show the superior perfor-
mance of the proposed MCA hybrid methodology, which
outperforms individual benchmark models, random walk
(RW), ARMA, and SVR model, in terms of predictive
accuracy measured by MSE. Meanwhile, result of the Clark-
West test of equal predicative accuracy suggests that the
superior performance against benchmark models is statisti-
cally significant.The performance superiority is significant at
95% confidence level for WTI market and at 90% for Brent
market.

Directional predictive accuracy of the proposed model
against benchmark alternatives is listed in Table 3.

Experiment results in Table 3 show that the proposed
MCA based methodology achieves a higher level of direc-
tional forecasting accuracy than the individual benchmark
models, ARMA and SVR model, in terms of the ratio of
correct predictions. Meanwhile, Pesaran-Timmermann test
of directional predictive accuracy suggests that the superior
performance against benchmark models is statistically sig-
nificant. The performance superiority is significant at 90%
confidence level forWTImarket and at 95% for Brentmarket.

The optimal performance for WTI market is achieved
when components extracted using Daubechies wavelet are
modeled by the Random Walk model, while components
extracted using Symlets wavelets are modeled by the SVR
model. Interestingly the optimal performance for Brent mar-
ket is achievedwhen components extracted usingDaubechies
wavelet are modeled by ARMA model while components
extracted by using Symlets are modeled by the SVR model.

Table 1: Parameters chosen for SVR models.

Models Cost Gamma Epsilon Tolerance of
termination

OriginalWTI 32 1 0.01562500 0.00050000
Daubechies
4WTI

8 0.06250000 0.06250000 0.00000010

Symmlet 4WTI 8 0.06250000 0.06250000 0.00000010
OriginalBrent 2 0.00781250 0.03125000 0.00040000
Daubechies
6Brent

32 0.06250000 0.00390625 0.00000600

Symmlet 6Brent 8 0.06250000 0.06250000 0.00000001

Table 2: Performance comparison of different models.

Models MSE
×10
−4 CWARMA

𝑃 value
CWRW
𝑃 value

RWWTI 8.8140 N/A 0.6641
ARMAWTI 8.8739 0.6641 N/A
SVRWTI 13.4749 0.5076 0.4304
MCA-RW-SVRWTI 8.7337 0.0077 0.0274
RWBrent 7.2035 N/A 0.4485
ARMABrent 7.2153 0.4485 N/A
SVRBrent 12.0060 0.5838 0.6407
MCA-ARMA-SVRBrent 7.1106 0.0702 0.0568

Table 3: Pesaran-Timmermann directional test.

Models Dstat% PT
ARMAWTI 51.96 0.1227
SVRWTI 48.74 0.7499
MCA-RW-SVRWTI 52.65 0.0768
ARMABrent 50.48 0.4524
SVRBrent 46.52 0.9707
MCA-ARMA-SVRBrent 54.30 0.0102

Therefore, these observations support the argument that
crude oil prices are complicated processes with a mixture of
underlying DGPs of different natures. Their modeling and
analysis are tricky issues which require detailed investigation
of the underlying structure in the time scale domain. Thus
appropriate recovery of the underlying structure is critical
to further performance improvement during the modeling
process. Meanwhile, experiment results also show that the
proposed algorithm is generalizable to different datasets with
the flexibility to model nonlinear dynamics characterized by
mixture of data of time varying natures.

5. Conclusions

Based on the HMH, this paper proposes a hybrid modeling
methodology to incorporate multiscale market structure
information into the modeling process, which provides a
view of the microstructure of the underlying DGP, besides
finer modeling accuracy. The proposed algorithm introduces
the MCA techniques to analyze the multiscale market struc-
ture. Empirical studies on two major benchmark crude oil
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markets in the world suggest their effectiveness in analyzing
the heterogeneous market structure and demonstrate signifi-
cant positive performance improvement, as a result.

The proposed methodology reveals that the sparsity
decomposition based methodology using MCA offers more
complete and accurate representation of data features than
the more widely used single basis methodology. The conven-
tional single basis methodology provides only a partial and
twisted view of data features by imposing strict assumptions
in the inappropriate time domain. However, the proposed
algorithm can capture more accurately the underlying DGPs
of diverse natures, in both linear and nonlinear domain,
by incorporating both multitime scale information and the
multiple bases frequency feature information during the
modeling process. Original results reported in this paper
also merit further research on constructing redundant basis
transform to explore the underlying GDPs in the seemingly
fractal and chaotic financial market, whose characteristics
can be revealed more clearly only in appropriate time and
frequency settings. Meanwhile, research results in this paper
also pave the way for further research into two largely
overlooked assumptions behind mainstream wavelet bases
research: the selection of appropriate basis to represent eco-
nomic andfinancial data and the atomic decomposition of the
underlying data features. The performance of the proposed
algorithm is sensitive to the introduced bases parameter.
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