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Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal
buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A
typical cross-section for such elements is a Z-shaped profile,made out of a central web and two-sidewings. Galloping instabilities are
often determined in practice using theGlauert-DenHartog criterion.This criterion relies on accurate predictions of the dependence
of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis
and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper.
These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel
tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry,
has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible
way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes
and turbulence models.

1. Introduction

Aeroelastic phenomena are becomingmore andmore impor-
tant from the point of view of its potential relevance in
modern structural design. It is well known that bluff bodies
in cross-flow are subject to typical aeroelastic phenomena
like vortex shedding, translational and torsional galloping,
and even flutter. Some of these phenomena can even appear
coupled occasionally. Galloping is a typical instability of
flexible, lightly damped structures. Under certain conditions,
these structures may have large amplitude, normal to wind
oscillations, at much lower frequencies than those of vortex
shedding found in the von Kármán vortex street.

Theoretical foundations of galloping are well established
and understood [1], very often supported by experiments,
like in Parkinson and Smith [2], Novak [3], Novak [4], and
Simiu and Scanlan [5]. As it is well known, galloping can be
explained by taking into account that although the incident
velocity 𝑈 is uniform and constant, because of the lateral
oscillation of the body, in a body reference system, the total
velocity changes both magnitude and direction with time.

Therefore, the structure angle of attack also changes with
time, hence the aerodynamic forces acting on the body.

In the simplestmodel of galloping (one degree of freedom
model), it is assumed that the two-dimensional body (𝑥-𝑧
plane), whosemass per unit length is𝑚, is elasticallymounted
on a support with a damping coefficient 𝜁 and a stiffness𝑚𝜔2

𝑛

(where 𝜔
𝑛
is the angular natural frequency). This structure

at rest is oriented at given angle of attack 𝛼
0
with respect to

the incident flow. Assuming the structure oscillating along 𝑧-
axis direction within an uniform flow with velocity 𝑈, the
relative velocity between the fluid and the body is 𝑈

𝑟
=

[𝑈
2
+ (d𝑧/d𝑡)2]1/2, and the angle of attack due to oscillation

is 𝛼 = (d𝑧/d𝑡)/𝑈. Therefore, drag 𝑑(𝛼) and lift 𝑙(𝛼) are as
follows:

𝑑 (𝛼) =
1

2
𝜌𝑐𝑈
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𝑐
𝑑
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𝑟
𝑐
𝑙
(𝛼) .

(1)
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In these expressions, 𝜌 stands for the fluid density, 𝑐 for
a characteristic length normal to incident flow, 𝑐

𝑑
for the

drag coefficient, and 𝑐
𝑙
for the lift coefficient. The projection

of those forces in 𝑧-axis direction is 𝑓
𝑧
(𝛼) = −𝑑(𝛼) sin𝛼 −

𝑙(𝛼) cos𝛼. On the other hand, the equation of the movement
of the body, is

𝑚[
d2𝑧
d𝑡2

+ 2𝜁𝜔
𝑛

d𝑧
d𝑡

+ 𝜔
2

𝑛
𝑧] = 𝑓

𝑧
(𝛼) . (2)

Considering the movement to be quasisteady and assum-
ing the angles of attack due to oscillation to be small enough
(𝛼 ≪ 1), from the expression (2), the Glauert-Den Hartog
criterion for galloping instability is derived. In effect, if the
aerodynamic force (proportional in this case to d𝑧/d𝑡) is
considered as a contribution to the total damping of the
system (aerodynamic damping), the total damping coefficient
is

𝜁
𝑇
= 𝜁 +

𝜌𝑈𝑐

4𝑚𝜔
𝑛

(
d𝑐
𝑙

d𝛼
+ 𝑐
𝑑
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼=0

, (3)

and therefore the oscillation will be stable if 𝜁
𝑇

> 0 and
unstable if 𝜁

𝑇
< 0. As the mechanical damping 𝜁 is generally

positive, instability will only occur if (d𝑐
𝑙
/d𝛼 + 𝑐

𝑑
) < 0,

expression known as Glauert-Den Hartog criterion, which is
a necessary condition for galloping instability. The sufficient
condition is 𝜁

𝑇
< 0, or, according to (3):

(
d𝑐
𝑙

d𝛼
+ 𝑐
𝑑
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼=0

< −
4𝑚𝜁𝜔

𝑛

𝜌𝑈𝑐
. (4)

Later, in a number of papers, Novak [3, 4] extended
the analysis of transverse galloping to the three-dimensional
case. Other researchers have investigated other interesting
phenomena like the influence of turbulence [6–10] or the
hysteresis phenomenon [11, 12] in transverse galloping. In
the last decades, besides theoretical work, large efforts have
been devoted to experimentally study the galloping features
of many bodies having different cross-sections. Although
most of the effort in galloping oscillation research has been
concentrated in bodies with square or rectangular cross-
sections, prismatic bodies with other cross-sectional shapes
have been also considered [13–18].

In the last years some research on galloping has been
carried out at IDR/UPM because of the above-mentioned
interest on the use of large louvers for sun-shading in building
façades, amongst other applications. A systematic parametric
analysis of simple cross-section two-dimensional bodies has
been accomplished. The geometries analysed up to now are
isosceles triangular cross-sections (the varying parameter
being the main vertex angle, 𝛽 [19–21] and ellipses [22],
as well as biconvex and rhomboidal cross-sections [23] and
the varying parameter in these last cases being the relative
thickness of the cross-section, 𝜏. In all cases, the unstable
regions in the 𝛽-𝛼 plane (isosceles triangles) and in the 𝜏-𝛼
plane (elliptical, biconvex, and rhomboidal bodies), where 𝛼
stands for the wind angle of incidence, were determined).

Z-shaped cross-sections are not rare in modern archi-
tecture. Sun-shading louvers are examples where Z-shaped

cross-sections may be found in slender structures susceptible
to gallop. This type of Z-shaped cross-sections has also been
experimentally analysed [24].

The validity of the numerical methods in the study of this
kind of problemswould have an important added value, since
it would allow for predicting the aerodynamic properties
of different shapes and profiles without performing the
more expensive experimental tests. However, most of the
numerical studies encountered are mainly focused on under-
standing the physical mechanism involved in flow separation
of bluff bodies, such as circular, rectangular, square, and
trapezoidal cylinders in a particular configuration. In this
line, different high-fidelity numerical simulations have been
performed using direct numerical simulation (DNS), large
Eddy simulation (LES), Reynolds-averaged Navier-Stokes
(RANS), or URANS models. Examples of these studies on
cylinders of rectangular sections are provided by Tamura et
al. [25], Hayashi and Ohya [26], and Rodi [27], in computing
the mean aerodynamic coefficients using DNS. Hirano et al.
[28] performed an LES simulation of the flow showing good
accuracy, compared to the experimental results, for mean
drag, lift, and the Strouhal number, or Oka and Ishihara
[29], who also include an accurate method for estimating the
aerodynamic coefficients using a systematic elongation of the
spanwise length. Several RANS computations can be found
in Bosch and Rodi [30] using the 𝑘-𝜀 turbulence model and
Bao et al. [31] who tried to use one-equation models such as
Spalart-Allmaras. RANS models provide considerable saving
in computational effort but normally have problems to get
accuracy in flows with high pressure gradients.

Apart from the square and circular cross-sections, trape-
zoidal and triangular sections have also been analysed with
details by several researchers: Lee [32], Cheng and Liu [33],
and Oka and Ishihara [29] and Bao et al. [31] have studied
the developing of the recirculation region vortex shedding
phenomena and its interaction with the separated shear layer.
These detailed works draw conclusions about the variation of
the Strouhal number with the Reynolds number and aspect
ratio.

Currently, these studies have been focused on the predic-
tion of drag, lift, Strouhal number, and flow features in the
downstream region of the profile for one particular config-
uration, showing that precise numerical computations can
provide valuable information of the flow solutions in good
agreement with experimental data. However, a thorough
analysis of galloping stability requires the study of a large
number of parameters (geometrical and physical), which
makes previous computations, though accurate, nonpracti-
cal. In this line, Robertson et al. [34] made a numerical
study of rotational and transverse galloping rectangular
bodies using two-dimensional spectral high-order methods.
Very good qualitative results were obtained showing the
possibility to use numerical methods in the prediction and
discussion of this problem. The work was performed at very
low Reynolds numbers (250) far beyond current industrial
configurations where turbulence effects can be of importance
and although the separation point is almost independent of
the Reynolds number in rectangular structures, it is not so
for the reattachment length and base pressure.
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Figure 1: Z-shaped profile parameters.

To the authors’ knowledge, a complete and critical study
of the application of current “state of the art” numerical
methods to the analysis of galloping instabilities at high
Reynolds numbers has not been performed yet.

In this paper, the transverse galloping characteristics
of two-dimensional bodies having Z-shaped cross-sections
(Figure 1) are analysed numerically. The overall aerodynamic
forces and pressure distributions on the body walls as long
as the stability maps are computed and compared with
referenced experimental test cases. The study is a critical
demonstration of the feasibility of using standard industrial
solvers in the prediction of galloping. So, contrary to other
authors, we are more interested in global results and compu-
tational efficiency than the detailed analysis of one particular
configuration. After a first evaluation of different models,
the numerical solution is solved with a 2D RANS-SST tur-
bulence model which provides a good compromise between
accuracy and computational effort. Detailed analysis of some
critical configurations where numerical and experimental
results show some disagreement is also included. In order
to clarify the influence of the geometry on the transverse
galloping, fourteen different Z-shaped cross-sections have
been considered.

The paper is organized as follows. In Section 2, after the
definition of the geometry and flow condition of the problem,
a short introduction of the DLR TAU Code is used in the
computations and a critical evaluation of different turbulence
models and grid sensitivity are performed. Section 3 shows
the aerodynamic coefficients, stabilitymaps, andpressure dis-
tributions of the whole range of configurations with different
aspect ratios. A comparison between RANS and URANS for
some critical configuration is also included. Finally, Section 4
extracts the conclusions from the study.

2. Numerical Analysis and Validation Tests

2.1. Problem Description. The Z-shaped louvers are made out
a thick central body (web) with two thin plates attached to its
extremes (wings). The geometry of the Z-shaped louvers is
defined by some geometrical parameters shown in Figure 1.
All the parameters are in function of the chord of the slats,
𝑐, the slat angle 𝜑, and 𝑛. The angle 𝜑 is defined by the angle
between the central body and the wings; 𝑛 is an integer used
to classify the different the aspect ratios studied. Two different

Table 1: Case matrix of the numerical study.

𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 𝑛 = 7

𝜑 = 45∘ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝜑 = 90∘ ✓ ✓ ✓ ✓ ✓ ✓ ✓

families of louvers, identified by the angle 𝜑 and for each one
of them different geometries, were considered, namely 𝜑 =

90
∘, with 𝑛 = 1, 2, . . . , 7, and 𝜑 = 45

∘, with 𝑛 = 1, 2, . . . , 7. The
whole set of tested louver shapes is shown in Figure 2.

These configurations have been experimentally studied
at IDR/UPM, Alonso et al. [24]. The test facility is a two-
dimensional open circuit wind tunnel where the test chamber
dimensions are 0.15m width, 0.90m high, and 1.20m long.
The aerodynamic loads weremeasured with a six-component
strain-gauge balance. Additional details of the wind tunnel
chamber and the experimental results can be found in [24].
The flow conditions were an inlet velocity of 25m/s, a
Reynolds number of 1.7 ⋅ 105 with the chord, 𝑐 = 0.1m, as
reference length, and 4% of turbulence intensity. The angles
of attack used for the numerical study vary from 0∘ to 180∘
with increments of 5∘.

The parameters used in the present study are defined to
match the experimental results: the Reynolds number, Re, is
defined on the basis of the free stream velocity and the chord
of the slats as reference length, giving a value of 1.7 ⋅ 105. The
drag and lift coefficients are defined as 𝑐

𝑑
= 2𝑑/𝜌𝑈

2

∞
𝑐, 𝑐
𝑙
=

2𝑙/𝜌𝑈
2

∞
𝑐, respectively; 𝑑 and 𝑙 are the drag an lift forces acting

on the Z-profile, respectively, and 𝜌 is the flow density. The
pressure coefficient is defined as 𝑐

𝑝
= 2(𝑝 − 𝑝

∞
)/𝜌𝑈
2

∞
, with

𝑝
∞

being the pressure at the far field.
The case matrix of the numerical study is given in Table 1.

2.2. DLR TAU Solver. The industrial DLR TAU Code [35]
is used in the computations. The DLR TAU Code solves
the compressible Reynolds-averaged Navier-Stokes (RANS)
equations on unstructured hybrid grids employing a second-
order finite volume discretization. The solver uses an edge-
based dual-cell approach, that is, a vertex-centred scheme.
The inviscid terms are computed employing either a second-
order central scheme with the standard Jameson-Schmidt-
Turkel (JST) numerical dissipation model or a variety of
upwind schemes using linear reconstruction for second-
order accuracy and a scalar or matrix artificial dissipation.
Viscous and turbulent terms are discretized with a central
second-order scheme.

The turbulence models implemented within the TAU
code include linear as well as nonlinear eddy viscositymodels
spanning to both one and two equation model families.

Two different turbulence models have been tested in
the computations: the Spalart-Allmaras original (SAO) [36],
yielding highly satisfactory results for a wide range of appli-
cations while being numerically robust, and the two equa-
tion standard 𝑘-𝜔 model and its variation, the SST (shear-
stress-transport) 𝑘-𝜔 model [37], which combines several
desirable elements of 𝑘-𝜔 and 𝑘-𝜀 models. The SST (shear-
stress-transport) 𝑘-𝜔 model uses Wilcox’s 𝑘-𝜔 with a good
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Figure 2: Set of tested louver Z-shaped profiles with 𝜑 = 90
∘ (a) and 𝜑 = 45

∘ (b) with 𝑛 = 1, 2, . . . , 7.

Table 2: Characteristics of validation grids.

𝛼 = 60
∘ Number of elements Number of nodes Residual Conver. iterations Comp. time (min)

Coarse 12923 16642 5.6𝑒 − 5 50000 4.6
Medium 28397 35632 9.5𝑒 − 6 100000 11.6
Fine 57408 70276 3.8𝑒 − 6 200000 67.2
Extra fine 99562 119552 2.2𝑒 − 6 300000 143.4

behaviour in modelling the near solid walls and the standard
𝑘-𝜀 model, appropriate for near boundary layer edges and
free-shear layers. This turbulence model is appropriate for
adverse pressure gradients and separating flow.

2.3. Mesh Validation. Figure 3 shows the computational
domain and a sketch of a typical mesh used in the present
study. A 2D hybrid mesh allows creating a good resolu-
tion boundary layer zone with quadrilateral and triangular
elements for the rest of the domain. A circular domain with
a radius of 100-chords (100𝑐) is employed, which ensures that
far field boundary condition does not affect the numerical
results.

Four different grids (see Table 2) of the same configura-
tion (𝜑 = 45

∘ and 𝑛 = 5, angle of attack𝛼 = 60
∘) with different

densities have been created to check the mesh convergence of
the numerical results. The four meshes (Figure 4) have been
solved with the Spalart-Allmaras model turbulence.

No-slip boundary condition is imposed at the wall of
the profile. To solve correctly the boundary conditions, it is
important to define the 𝑦

+ carefully, (𝑦+ = 𝑢
+
Δ𝑦/]); 𝑦+

depends on the wall normal direction near the surface of the
profile (Δ𝑦), the viscosity (]), and the friction velocity (𝑢+).
In this study, Δ𝑦 has been fixed to 5 ⋅ 10−5 m, which gives a
value of 𝑦+ around the unity for all the cases.

Local time step, multigrid acceleration, and LU-SGS
semi-implicit smoother, with a Courant-Friedrich-Levy
number, CFL = 1.5, are used in the computations of the
steady states. Moreover, the Jameson-Schmidt-Turkel (JST)
numerical dissipation model has been used with 𝑘

2
and 𝑘

4

coefficients fixed in 2/3 and 1/64, respectively, (values by
default in DLR TAU Code). These values have been proven
to give a good numerical stability of the solution.

The DLR-TAU solver uses a preconditioner for the low-
mach number problem. This preconditioner reduces the
stiffness of the problem by rendering the eigenvalues of
the Jacobian matrix of the same magnitude, acting on the
temporal derivative of the unknowns. A modification of the
well-known Choi-Merkle and Turkel preconditioner scheme
is implemented in TAU (see Turkel et al. [38] for details).

The preconditioner is only activated for steady solutions.
In case of unsteady problems, it should be deactivated to
recover the temporal accuracy. A lower time step than usual
is considered to reduce numerical errors associated with the
low-mach number problem.

The simulations have been computed in an 8 processors
multicore cluster. Each node is an Intel(R) Xeon(R) CPU
E5620 @ 2.40GHz with 24Gb of RAM. The computational
time for each simulation is shown in Table 2.

The aerodynamic coefficients as a function of the number
of elements, obtained with these four validation meshes,
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Figure 3: Computational circular domain and hybrid mesh used in the present study.

are shown in Figure 5. The numerical results converge to
the experimental value for this configuration. With the
current results, the fine mesh (see Table 2), which guarantee
a good compromise between mesh independence and the
computational effort, has been chosen to perform the battery
of the simulations of this study.

2.4. Turbulence Model Validation. In order to compare the
effect of the turbulencemodel, a complete lift and drag curves
are obtained for the configuration 𝜑 = 45

∘ and 𝑛 = 5. The
angle of attack ranged from 0∘ to 180∘ with an increment of
2∘, making a total of 46 angles of attack computed.

As previously mentioned, the Navier-Stokes equations
have been solved with the Spalart-Allmaras original (SAO)
and the 𝑘-𝜔 SST (shear-stress-transport) turbulence models.
In addition to those RANS computations, the problem has
also been solved with the Euler equations.

The reason to solve the problem with Euler equations is
the fact that, in this kind of profiles, the detachment of the
flow is geometry induced (and almost independent of the
Reynolds number), instead of a pressure induced separation,
which requires a better modelling of the boundary layer.
A mesh (Figure 6) without refinement for the boundary
layer, created with 40604 triangle elements, has been used
in this computation. The Euler solution has the advantage
of requiring coarse meshes, since the boundary layer is not
solved, which obviously will affect the computational cost,
and taking into account the large number of simulations to

Table 3: Comparison between the computational cost of Euler and
RANS calculations for 𝛼 = 60

∘. Similar values are obtained in other
configurations.

Number of
elements Residual Conver.

iterations
Comp. time

(min)
Euler 12923 3.5𝑒 − 4 200000 16.0
Fine-SA 57408 3.8𝑒 − 6 200000 67.2
Fine-𝑘-𝜔 SST 57408 1.0𝑒 − 8 200000 77.0

carry out, the choice of the turbulence model is balanced
between the accuracy of the results and the computational
time. The aim of this comparison is to check the capacity of
the turbulence model in obtaining the base pressure, in the
vortex detached zone behind the profile, which have a strong
impact on the final forces.

Figure 8 shows a comparison between the three simula-
tions. It is observed that the Euler results underpredict the
stall area, which confirms the fact that even in this kind of
configurations it is necessary to account for the viscosity in
the prediction of the detachment.Therefore, it is necessary to
use Navier-Stokes with turbulence model even if it means an
increase in the computational time as observed in Table 3.

An additional analysis of the simulations shows good
agreement with the experimental results. However, there are
two areas where the turbulence models and the experiments
show largest discrepancies (see Figure 8).The 𝑐

𝑙max and the 𝑐𝑑
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at high angle of attack zones are better predicted by the 𝑘-𝜔
SST. The 𝑘-𝜔 SST model estimates, with more accuracy, the
base pressure value, giving overall better results. Finally, the
𝑘-𝜔 SST has been selected to solve all the configurations. A
more detailed study of these two areas is shown in Section 3.2.

As an additional validation, it has been checked the
possibility that the wind tunnel blockage could substantially

modify the numerical results. To this end, the dimensions of
the wind tunnel test chamber which is 0.15m width, 0.90m
high, and 1.20m long, have been reproduced. In this case,
differentmeshes for the following angles of attack: 0∘, 20∘, 40∘,
60∘, 80∘, 100∘, 120∘, 140∘, 160∘, and 180∘ have been created.

The results in Figure 7 show no difference with and with-
out tunnel blockage consideration. This conclusion allows
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Figure 9: Lift and drag coefficient integral over the surface profile of each configuration (𝑛 = 1, 3, 5 and 7), for 𝛼 = 45
∘.

using the mesh with circle domain for all the rest of configu-
rations, which facilitates the numerical study in terms of grid
generation.

3. Numerical Results for Galloping
Stability Analysis

After completion of the problem definition, mesh, and
turbulence model validation, the simulation of the galloping
instability maps was computed using the fine mesh and a 𝑘-𝜔
SST RANS turbulence model.

The computations are “steady,” which means that some
flow unsteady features that can appear in the solution are
numerically damped.We will see in our analysis that, in most
of the cases, the numerical steady solutions give enough res-
olution for standard industrial problems; however, unsteady
detailed computations can improve the global estimations in
certain configurations where, as we will see, the unsteady
features are more important.

As previously mentioned, the angle of attack is varied
from 0∘ to 180∘ with an increment of 2∘, making a total of 46
angles of attack for each configuration.

3.1. Aerodynamic Coefficients. As a preliminary result,
Figure 9 shows the lift and drag coefficient integrated over
the surface profile for four representative configurations

(𝑛 = 1, 𝑛 = 3, 𝑛 = 5, and 𝑛 = 7) of the 𝜑 = 45
∘ family profiles.

The numerical results agree well with the experimental
values even in the critical 𝑐

𝑙max and in the 𝑐
𝑑
values at high

angles of attack regions. This is not the case for the 𝜑 = 90
∘

family profiles. In Figure 10, the lift and drag coefficients
for configurations 𝑛 = 1, 3, 5, and 7, for 𝜑 = 90

∘, are
shown. In these cases, some differences in the areas of 𝑐

𝑙max
and the 𝑐

𝑑
values at high angles of attack are numerically

underestimated.
Comparison of the pressure distribution at 𝜑 = 90

∘

and 𝑛 = 4 provides an explanation of the reasons of these
discrepancies. Figure 11 sketches the values of 𝑐

𝑝
as a function

of the coordinates, 𝑋 and 𝑍, at 𝛼 = 75
∘, in the region of

𝑐
𝑙max. It is shown that on the upstream part of the profile,
numerical and experimental results agree accordingly but, as
expected, in the downstream region, the detached flow shows
differences between the base pressures. These differences
are the cause of the discrepancies between the aerodynamic
forces.

The main reason of this inaccuracy is due to the strong
unsteady flow which appears in that region, and it is not
properly solved by a steady RANS solver. A better resolution
should be obtained by performing an unsteady simulation
with a time step small enough to solve these structures. As we
will see in Section 3.2, these structures have a strong impact
on the evaluation of the global coefficients.
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For demonstration purposes, Figure 12 also shows the 𝑐
𝑝

values as a function of the coordinates, 𝑋 and 𝑍, in this case
at 𝛼 = 100

∘, where a good agreement between numerical and
experimental lift is obtained. As expected, the numerical and
experimental pressure values are in good consonance.

However, we will see in Section 3.3 that these discrep-
ancies do not have a strong influence in the stability maps,

since they are more defined by the global behavior of the
coefficients than the detailed solutions.

3.2. Unsteady Simulation (URANS). The URANS numerical
method is used to improve the prediction and explain the
discrepancies in the two areas where a lack of accuracy has
appeared: the 𝑐

𝑙max and the 𝑐𝑑 values at high angles of attack. It



10 The Scientific World Journal

TAU k-𝜔 fine mesh
Experimental

−2

−1.5

−1

−0.5

0

0.5

1

c p

−0.02

Z

0.02

0

cp

−2 −1 0 1−0.02 −0.01

X

0.020.010

TAU k-𝜔 fine mesh
Experimental

Figure 12: Value of pressure coefficient in function of the both coordinates,𝑋 and 𝑍, for 𝛼 = 100
∘ in configuration 𝑛 = 4; 𝜑 = 90

∘.

is important to see if, by improving the numerical resolution
of the solution, it is possible to obtain additional details of
the downstream flow structures which eventually produce
changes on the average pressure distribution over the profile.

The URANS computations use a dual-time stepping
scheme. A Backward difference formula (BDF) is used to dis-
cretize the global time and a fourth-order Runge Kutta with
multigrid acceleration scheme being employed to obtain a
steady state in the fictitious pseudotime. Taking into account
that the frequency of the oscillation is unknown a priori, in
order to define the global time-step of the computations, first,
a characteristic time scale is defined based on the convective
velocity and the length of the profile (𝑡

𝑐
≈ 𝐿/𝑈

∞
). The first

estimation of the time-step is taken as Δ𝑡
𝑐
= 𝑡
𝑐
/100. With

this time step, an unsteady oscillation of 100Hz frequency
is computed. Finally, a more detailed simulation has been
computed taking 100 steps per cycle, giving a global time step
of (with the CFL = 1,) Δ𝑡

𝑐
= 10
−5.

The unsteady computation is initialized with the steady
solution and evolved until statistical convergence, which
requires a total number of 6⋅104 time steps to get a simulation
time of 0.6 s.Themean values of this unsteady simulation are
compared with the results obtained with the RANS solver.

Figure 13 shows the comparison between the aerody-
namic coefficients obtained with the RANS and URANS
simulations and the experimental results. As expected, the
𝑐
𝑙max and the 𝑐

𝑑
values at high angles of attack have greatly

improved compared to the experimental results. The rest of
the angles of attack, where unsteady effects are negligible,
keep the same accuracy of steady computations. By com-
paring the mean pressure distribution (Figure 14) at angle of
attack𝛼 = 165

∘, it is observed how theURANS resultsmodify
themeanbase pressure to provide a better accuracy compared
to experimental data on 𝑐

𝑙
and 𝑐
𝑑
. An additional improvement

should be possible if complex numerical models, like LES or
DES, are used, but at the cost of increasing even more the
computational effort.

Finally, for demonstration purposes, Figure 15 repro-
duces the pressure contours of the numerical solution at

Table 4: Comparison between RANS, URANS, and experimental
values of 𝑐

𝑙
, 𝑐
𝑑
and the computational time for the angle of attack

𝛼 = 80
∘.

𝛼 = 80
∘

𝑐
𝑙

𝑐
𝑑

Comp. time (h)
Experimental 1.14 0.7155 —
Steady 0.755 0.584 1.1
Unsteady 1.108 0.728 23.8

different time steps in a temporal period of lift. The flow
follows a typical von Kármán vortex street with a main
detachment frequency of 76Hz; the detachment appears in
both wings of the profile alternately.

In terms of computational effort, Table 4 shows the results
of 𝑐
𝑙
and 𝑐

𝑑
and the computational time for the angle of

attack 𝛼 = 80
∘ between the steady and unsteady simulations.

The unsteady simulation takes around 24 times the steady
computational time; this is a difference to be taken into
account.

3.3. Stability Maps. The stability parameter (𝐻 = d𝑐
𝑙
/d𝛼 +

𝑐
𝑑
) following the Glauert-Den Hartog criterion and the

numerical computations have been calculated with a central
difference approximation for the first derivative. Despite
the detailed numerical analysis which shows that for some
angles of attack, better accuracy is obtained with unsteady
simulations, in the computation of the stability maps only
“industrial” steady solutions are considered for comparison.

In Figure 16, the numerical and experimental values of
𝐻 as a function of the parameter 𝑛 are compared for both
configurations studied, 𝜑 = 45

∘ and 𝜑 = 90
∘. Inside the

shadow areas, the stability parameter (𝐻) value is negative;
in other words, the Glauert-Den Hartog criterion is satisfied
and galloping instability appears. Consider

𝜑 = 45
∘
. (5)

As it can be observed, a good agreement between the
experimental and numerical results is obtained even for the
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critical regions of 𝑐
𝑙max and high angles of attack.Nonetheless,

some differences are observed: in the family profiles 𝜑 = 45
∘,

a good agreement in the area where the instability appears (in
the range of angles of attack between 𝛼 = 40

∘ and 𝛼 = 60
∘) is

found. As depicted in Figure 9, this area corresponds to the
region of maximum lift and close to the minimum drag, and
it is related to the two-peak structure shown for higher values
of 𝑛. Indeed, for lower values of 𝑛, the lift curve shows a large
flat zone close to its maximum and galloping instability does
not show up. For 𝑛 = 3 or higher, a first peak of maximum
lift appears around 𝛼 = 40

∘, followed by a strong decay
and a second maximum close to 𝛼∼60∘–70∘. This effect is
more accused as long as 𝑛 is increased. It is precisely this
structure which defines the galloping instability. At higher
values of 𝑛∼6-7, the two peaks separate giving place to a small
lift flat region between them; this eventually can produce a
stable area between these two branches. Although the global
magnitudes arewell predicted, this particular detail is notwell

captured by the numericalmethod,mainly because of the lack
of resolution in the Δ𝛼 of the predicted lift curves. Consider

𝜑 = 90
∘
. (6)

Despite some numerical inaccuracies observed in the
numerical computations of this case, the instability regions
of the steady numerical solutions are well captured and agree
with the experimental results.

Two main regions of instability appear for this configura-
tion: a region at low angles of attack (between𝛼 = 20

∘ and𝛼 =

40
∘) for 𝑛 values, ranging from 2 to 6, and a second area for

with 𝛼 = 90
∘–110∘ for all 𝑛.The first region is related to a peak

of lift at around 𝛼 = 20
∘. Although the numerical results are

somehow inaccurate and this maximum lift is overpredicted
(making necessary unsteady computation to improve the
results), this inaccuracy has almost no effect on the instability
regions, since the global behavior is well captured.The second
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Figure 15: Pressure field of a period at angle of attack 𝛼 = 80
∘ (a) and 165∘ (b).

region (𝛼 = 90
∘–110∘) shows a similar behavior to the

case 𝜑 = 45
∘. The presence of two maxima in the lift co-

efficient in a region of growing drag is the cause of gallop-
ing. The region is slightly wider for larger values 𝑛, effect
which is well reproduced by the numerical and experimental
data.

An additional and small region appears at high angles
of attack (𝛼∼160∘–170∘). This region is predicted by both
numerical and experimental results, but slightly shifted to
lower 𝛼 in the numerical results. The reason to that is the
lack of numerical precision in this area.The problemhas been

discussed in the previous section, and unsteady numerical
computations are able to improve these results.

Even with these differences, only with the numerical
results we are able to design our geometry in terms of the
stability region. Within the shadow region, the necessary
condition for transverse galloping is satisfied, so this design
geometry is appropriated to extract energy through move-
ment caused by this phenomenon. Otherwise, if the goal is to
avoid this phenomenon, the geometry will be designed with
a configuration which is outside of the transverse galloping
instability zone.
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4. Conclusions

The use of wind tunnel tests for the evaluation of the aero-
dynamic coefficients can be sometimes difficult and costly.
This paper investigates the suitability of numerical models for
the prediction of galloping instability of bodies with different
cross-sections. A numerical method based on the DLR
TAU Code has been used. The method has been validated,
comparing the results with experimental measurements, for
a cross-section which is very interesting from the civil
construction point of view: the Z-profile. The Glauert-Den
Hartog criterion has been used to determine the galloping
regions of instability with respect to the incident wind angle
of attack and cross-section geometrical parameters.

This paper reports the results obtained in a systematic
analysis of the galloping instability, performed on a family of
Z-shaped cross-sections. This profile is made out of a central
web and two sidewings.The analysis determines underwhich
interval of angles of attacks and geometrical parameters, and
this type of profiles become unstable. From the computed
aerodynamic coefficients the 𝐻(𝜑, 𝛼, 𝑛) = d𝑐

𝑙
/d𝛼 + 𝑐

𝑑

functions have been determined and from them stability
maps in the 𝑛-𝛼 plane have been plotted.

According to the results, the family of profiles with better
performance against the apparition of transverse galloping
instabilities is𝜑 = 45

∘.Within this family, instabilities can still
appear at angles of attack between 40∘ and 60∘, contrary to
profiles with smaller aspect ratio, for which this phenomenon
does not appear. On the contrary, if the goal is to induce this
phenomenon to extract energy from the movement [39], the
suitable profiles are with𝜑 = 90

∘ because they aremore prone
to gallop.

Good accuracy in the prediction of the galloping insta-
bility with the numerical method (DLR TAU Code) has been
obtained.

The methodology employed allows important savings in
computational effort.

It has been observed that the RANS simulation is good
enough to predict the necessary condition for the occurrence
of the transverse galloping phenomenon; that is, the Glauert-
Den Hartog criterion is satisfied. However, better accuracy
can be obtained (at a higher computational costs) in the area
where some discrepancies still appear.
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