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Objective. Lower frequencies of slow oscillations of the posturographic signals can be removed using high-pass filtering. This
procedure releases postural reflexes possessing higher frequencies and lower amplitude range. Mutual dependence between the 𝑥
and 𝑦 components of posturographic signals was analyzed using principal component analysis (PCA). The posturographic signals
of old patients with idiopathic gait disturbance were compared with the control group of similar age and with younger patients.
There was also the analysis of the influence of the eyes state (open versus closed) and the head position (normal or bent back). The
statistically significant differences in the mutual dependence between 𝑥 and 𝑦 components between the groups of patients were
analyzed using MANOVA. The significant differences were observed mainly in the range of filter frequencies 𝑓 = 0.1–1.5Hz and
𝑓 = 2.2–5.5Hz with a maximum effect at approximately 4-5Hz. A detailed post-hoc analysis is also presented. The differences in
the higher frequency range suggest the main disturbance to be connected with the spinal reflexes. Visual and vestibular support
appear insufficient for postural stability control in the idiopathic gait disturbance group. The results suggest that idiopathic gait
disturbance is the final stage of the aging process of postural system.

1. Introduction

All the postural reflexes responsible for standing in the
upright position are represented in posturographic signal
which reflects the process of moving the center of pressure
(COP) to the platform in the quiet stance [1]. The postur-
ographic signal consists of 2 main parts: (a) a slow drift of
the center of mass that is represented by low frequencies
in Fourier’s spectrum (𝑓 < ∼0.6Hz) [2] and (b) small cor-
rections in higher frequencies that reflect postural reflexes.
Postural reflexes can be decomposed into two parts: spinal
reflexes and central nervous system corrections [3]. The
regulatory processes from the spinal reflexes are faster since
they are progressing through a smaller number of synapses
and action potentials have a shorter way to travel. Central

regulation takes place especially in the extrapyramidal tracts
and in the cerebellum. They create the main part responsible
for transferring visual, vestibular, and proprioceptive infor-
mation. Central regulation is slightly slower because of the
higher complexity of all the processes that are involved in the
information transfer. Two components can be distinguished
in CNS: the visual and the vestibular one. When one of
these components deteriorates its working, the function of
the other becomes more important [4–7].

The postural control is affected especially by two factors:
(a) the speed at which action potentials are transmitted from
and to the muscles and (b) the quality of the transferred
information. The transmission speed becomes slower with
age. The speed depends on the quality of myelin sheaths
surrounding the proprioceptive and motor fibers and on the
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velocity of the contraction response of the muscular fibers in
response to incoming stimuli.

In turn, the following factors influence the quality of
information: (a) the precision of the stretching information
from the muscle receptors, (b) the number of motoneurons,
sensory cells, and intermediate neurons in the given part of
the nervous system, (c) the precision of information being
transferred through the intermediate neurons, and (d) the
energetic processes in neural fibers restoring the resting
potential of the nerve cell. Dysfunctions in any of these
elements can influence the final postural stability control.
Static posturography analysis is, however, still unable to
distinguish precisely between the functioning of all these
factors. Thus, one of the purposes of this paper is looking for
the possibility of performing such analyses using advanced
calculation techniques.

2. The Posturographic Signal

The posturographic signal represents all the regulatory pro-
cesses that keep the body in the upright position. Distur-
bances in different regulatory areas can be, however, expected
to exhibit different attributes in the posturographic signal.
For example, disturbances in spinal reflexes are expected
to be evident in higher frequency range due to the shorter
duration of spinal corrections. Oppositely, the dysfunctions
of the central nervous system are expected to be visible in the
lower frequencies due to longer response times. The muscle
fiber contraction being the answer for a single stimulus
has approximately the shape of a reversed cosine. It begins
about 20–30ms after the stimulus reaches the muscle fiber.
The maximum contraction takes place after about 100ms
and it vanishes after about 250ms. The action potential
is transmitted in motoneurons and proprioceptive neurons
at a speed of 50–60m/s. Depending on the distance of
travel, it corresponds to the total transmission time of about
10–40ms.

Based on the presented information, it can be concluded
that the total time of postural correction responses is about
160–1000ms. It corresponds approximately to a frequency
of 1–6Hz. Moreover, it can also be concluded that the
spinal reflexes that use a smaller number of synapses can
be observed in the range of 2–6Hz. The effects of the
central regulation are approximated to occur in the range of
about 1–3Hz due to greater number of synapses and longer
transmission time.

The center of mass of the human body is located at
a height of 0.8-0.9m. The frequency of vibrations of the
inverted pendulum can be estimated to be about 0.6-0.7Hz
[2]. Thus, oscillations ranging from 0.6 to 1Hz are related to
substantial fluctuations of the upright position of the human
body, implying serious anomalies of the postural control.
Oppositely, oscillations <0.6Hz are related to a slow center
of mass (COM) drift rather than to postural reflexes. When
compared to fluctuations at higher frequency range, these
fluctuations are often of higher amplitude and because of
it, they mask proper reflexes of the posture control. Postur-
ographic signals are characterized in their Fourier spectra
by the decreasing amplitudes while frequencies increase.

Thus, analysis of posturographic signals requires, first of all,
removing the lower frequencies in order to uncover higher
frequency corrections with lower amplitudes.

2.1. The Division of Posturographic Signals into Their Com-
ponents. The attempt to separate posturographic signals
into the separate components relating individual regulatory
processes of the CNS is a very complex task. Amoud et
al. [8] divided the posturographic signals of old and young
participants, using empirical mode decomposition (EMD),
into 4 components. The mean frequencies of the successive
components were 0.5Hz, 1–1.5Hz, 3-4Hz, and 6–8Hz. The
age related differences were observed in the parameters “area
of Hilbert transform” and “average rotation frequency.” A
similar decomposition was also presented by Ramdani et
al. [9]. Amoud et al. [8] showed the differences between
age groups both using basic-EMD with separate analysis
for 𝑥 and 𝑦 components and using complex-EMD where
the interdependence between 𝑥 and 𝑦 components is not
removed. Discrete wavelet decomposition andmodified PCA
to decompose the stabilogram into three components were
proposed by Maatar et al. [10]. He called these components:
trend, rambling, and trembling.

Loram et al. [11–13] presented another type of analysis of
posturographic signal. He showed using an advanced EMG
method that the calf muscles are actively adjusted 2.6 times
per second and about 2.8 times per unidirectional sway of
the center of mass (COM). These alternating, small move-
ments provide impulsive ballistic regulation of COM. This
experiment shows that the activity of proper posturographic
reflexes should be found in the Fourier spectrum in the range
of𝑓 > 2Hz and themodifications of the unidirectional large-
amplitude sway are very small when compared to the size of
this sway.

The use of the digital filters to the posturographic signal
is very sparse. Horlings et al. [6] showed that persons
with the bilateral proprioceptive loss of the lower legs are
characterized by other pelvises to shoulder characteristics in
the high-pass filter posturographic signals of 𝑓 > 3Hz.

In the present study, a number of digital high-pass filters
ranging from 𝑓 = 0.05 to 6Hz were analyzed. Next,
principal component analysis (PCA) was used to analyze
the common relation between 𝑥 and 𝑦 components and to
partially remove the noise. PCA is a method that depends
only partially on the spectrum of given components. The
task that appears in this method concerns the building of the
matrix being orthogonally rotated using PCA. Possessing the
standard posturographic signal, it is possible to include the
components 𝑥 and 𝑦 into this matrix (spatial decomposition)
or to include the same components shifted in time (tem-
poral decomposition). Up to now, PCA method was purely
used in the analysis of posturographic signals. The PCA
method has been used to compare independence of different
parameters estimated from nonfiltered signals, rather than to
apply the spatiotemporal decomposition of the signal itself
[14–16].

The removal of slow frequencies that reflect a slow center
of mass drift was not performed in earlier studies. Therefore,
the filtering procedure and other methods of the signal
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decomposition are the promising tools in developing new,
innovative diagnosis methods.

3. Materials and Methods

3.1. Subjects. Posturographic signals were recorded in the
Clinics of Neurology in the Medical University of Luebeck.
The investigation was performed according to the principles
of the Declaration of Helsinki and was approved by Ethics
Committee at the University of Luebeck. The informed
consent was obtained from subjects after the aim of the
procedure was explained.

384 participants were included in the study. The patients
were divided into 4 groups: 3 age-fitted groups of normal,
healthy patients (groups B1–B3) and a group of older patients
with idiopathic gait disturbance (groupA). GroupA included
54 patients of average age 81.9 ± 6.5. Next, group B1 included
98 normal patients of average age 76.5 ± 4.1, 193 patients
of average age 61.6 ± 5.2 joined group B2, and finally 39
normal, healthy patients of average age 30.1 ± 5.6 were
included in group B3. The patients in group A either (a)
reported nonspecific gait disturbances resulting in stumbling
or falling in the period of the previous six months or (b)
were neurologically diagnosed as having an unexplained and
unclassified gait disorder. Patients were rejected if the gait
disorder could be explained by one or more of the following
reasons: paraparesis, hemiparesis, tetraspasticy, or tetrapare-
sis, any kind ofmyelopathic, cerebellar,myopathic, vestibular,
brainstem, or neuropathic lesions, any degenerative disease
of the peripheral or central motor system, intake of CNS-
relevant drugs, and anymedical, dermatologic, or orthopedic
dysfunction interfering with gait.

Normal, healthy patients who did not exhibit any devi-
ations in the neurological examination joined groups B1–
B3. The healthy persons had to present an inconspicuous
gait pattern and had to be able to perform six tandem steps
without deviation during at least one of two subsequent
trials.

3.2. Apparatus and Procedure. The participants stood
upright, with their feet 80mm apart on a force-measuring
platform. The center of pressure displacement was recorded
under static conditions in the anteroposterior (𝑦 coordinate)
and mediolateral (𝑥 coordinate) directions. Signal recording
procedure was performed 4 times for each participant
under different conditions in respect to eyes state and head
position: (1) eyes open (EO) and normal position of the head
(head normal HN); (2) eyes closed (EC) and HN; (3) EO
and standing with head maximally pulled back (head bent
back HBB; vestibular stimuli are partially excluded from the
body balance); (4) EC and HBB. In the EO condition, the
participants fixed their gaze on a small dot drawn on the
wall at gaze level and at the distance of 𝐿 = 2m. Pressure
forces were digitized using the sampling rate of 𝑓 = 50Hz.
The data were recorded for 30 s, but only the last 20.48 s
were taken into further analysis. The initial fragment of
9.52 s was treated as a posture stabilization period [17] and
rejected. Each sweep had, therefore, 1024 2-dimensional data
points.

3.3. Signal Analysis

3.3.1. Filtering and Principal Component Analysis. First, the
components 𝑥 and 𝑦 of the signal were filtered using high-
pass filters which removed the low-frequency components
of the signals. Signals were filtered using FIR digital filter
(Matlab) with a filter order 𝑅 = 300. Analysis was applied
for 30 different high-pass filter frequencies ranging from 𝑓 =
0.05Hz to 6Hz. After filtering, the 𝑥 and 𝑦 signals were
normalized: 𝑥

𝑛
= (𝑥 − 𝑥)/𝜎

𝑥
and 𝑦

𝑛
= (𝑦 − 𝑦)/𝜎

𝑦
. Next,

the PCA method (Principal Component Analysis) was used.
PCA is a commonly accepted method of feature extraction
and noise reduction [18]. It is recommended by Oliveira et al.
[19] as a more suitable method for estimating the common
relation between 𝑥 and 𝑦 components of the posturographic
signal than classic linear regression.

As a result of PCAmethod, the orthogonal rotation of the
datamatrix was performed in order tomaximize variations in
the successive columns of resultantmatrix. In three successive
experiments, thematrix analyzed using PCAwas constructed
from 4, 6, and 8 columns. These three experiments are called
𝑇
2
, 𝑇
3
, and 𝑇

4
. The index 𝑖 at the letter 𝑇

𝑖
denotes the number

of successive samples of the signals𝑥
𝑛
and𝑦
𝑛
which create the

successive columns in the input PCA matrix. The presented
approach is the generalization of the approach presented in
[20] where the input PCA matrix was built from 4 columns:
I: 𝑥
𝑛
(1∼1023), II: 𝑥

𝑛
(2∼1024), III: 𝑦

𝑛
(1∼1023), and IV: 𝑦

𝑛
(2∼

1024). Columns I-II and III-IV reflect the same signals being
shifted in time by one sample (i.e., 𝑡 = 0.02 s). Because of it,
these columns are strongly correlated.

In the case of experiment 𝑇
𝑖
, the input PCA matrix

consists of 𝑖 vectors 𝑥
𝑛
shifted by 1 sample to each other and

of 𝑖 vectors 𝑦
𝑛
shifted by 1 sample to each other: 𝑥

𝑛
(1∼1024

− 𝑖+1), 𝑥
𝑛
(2∼1024 − 𝑖+2), . . . , 𝑥

𝑛
(𝑖, 1024), 𝑦

𝑛
(1∼1024 − 𝑖+1),

𝑦
𝑛
(2∼1024 − 𝑖 + 2), . . ., 𝑦

𝑛
(𝑖, 1024). The 𝑖 successive samples

of the given signal 𝑥
𝑛
or 𝑦
𝑛
are strongly correlated; however,

the correlation decreases with an increasing distance between
samples. Applying the PCAmethod to the presented compo-
sition of the PCA matrix gives, as a result, the signal possess-
ing 𝑖-times reduced noise in the first and second column after
orthogonal rotation andmainly the noise in the remaining 𝑖−
2 columns. Increasing 𝑖 causes, as a result, better noise reduc-
tion. However, if 𝑖 is increasing, some part of the signal begins
to be included in the third and next columns of the rotated
matrix. The noise reduction is connected with higher signal
reduction being stored in columns I and II.This reduced part
of the signal is included mainly in the column III.

The application of 𝑖 samples corresponds approximately
to the application of the signal filtering using the filter
frequency 𝑓 = 𝑓

𝑠
/(2𝑖), where 𝑓

𝑠
is the sampling frequency

of the signal [21]. In the case of the posturographic signals,
the often procedure consists in preliminary low-pass filtering
using 𝑓 = 10Hz that removes mainly the noise. Applying 𝑖 =
2, 3, and 4 for 𝑓

𝑠
= 50Hz signals corresponds approximately

to the low-pass filtering procedure using approximately 𝑓
𝑓
=

12.5Hz, 8.33Hz, and 6.25Hz.
After applying the PCAmethod to the 2𝑖-columnmatrix,

the resultant, orthogonally rotated matrix includes mainly
the 𝑥 and 𝑦 components in columns I and II, while columns
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Figure 1: Example of the posturographic signal after 2.6Hz high-
pass filtering.The low frequency and large-amplitude oscillations are
removed uncovering the relation between 𝑥

𝑛
and 𝑦

𝑛
components.

After the PCA rotation, the first column 𝑆
1
represents the long

diagonal of the path area and the second column (𝑆
2
) represents the

short diagonal.

III, IV and the others contain mainly the noise. The column
III stores some small part of both signals, as well. The
singular values (𝑆) of the resultant matrix are approximately
proportional to the standard deviations of the successive
columns. Two parameters were analyzed in detail: the ratio
between column II of 𝑆 (𝑆II) and column I (𝑆I) (𝑠2 = 𝑆II/𝑆I),
which refers to the mutual relation between the components
𝑥
𝑛
and 𝑦

𝑛
and the ratio between columns III and I (𝑠

3
=

𝑆III/𝑆I) which refers to the remaining part of the signal and
noise. When the parameter 𝑠

2
is equal to about 1, then there

is no relation between the components 𝑥
𝑛
and 𝑦

𝑛
. The lower

the 𝑠
2
, the greater the relation between components 𝑥

𝑛
and

𝑦
𝑛
.
Figure 1 shows the example of the high-pass filtered

posturographic signal using filter frequency 𝑓 = 2.6Hz
in which high relation between 𝑥

𝑛
and 𝑦

𝑛
is observed. 𝑥

𝑛

and 𝑦
𝑛
components are visible to be dependent each to

other. This figure shows also the necessity of the preliminary
normalization of the components. If one of the components
𝑥
𝑛
/𝑦
𝑛
would be stronger than the second one, the ratio

between 𝑆II and 𝑆I in PCA method would refer mainly
to the ratio between them and not to their common dep-
endence.

Figure 2 shows the exemplary results of the PCA decom-
position. Two upper signals represent the 𝑥

𝑛
and 𝑦

𝑛
com-

ponents before orthogonal rotation and the lower 4 signals
present the result of the PCA rotation for 𝑖 = 2. It can
be observed that the common oscillation of both 𝑥

𝑛
and

𝑦
𝑛
components results in high oscillation in the first PCA

component 𝑆I.
The experiment presented in [20] has shown that high-

pass filtering was able to remove the low-frequency and high
amplitude trend and has uncovered the relation between
𝑥 and 𝑦 components of the posturographic signals in the
range of about 2–5Hz. The current compares the results
obtained for different number of successive samples used in
the PCA method: 𝑖 = 2, . . . , 4. Additionally the parameter 𝑠

3

is analyzed.

0 1 2 3 4 5 6
(s)

xn

yn

SI
SII
S III

SIV

Figure 2: Example of the decomposition of the posturographic
signal using spatiotemporal decomposition. The input PCA matrix
was built from 4 columns: I: 𝑥

𝑛
(1∼1023), II: 𝑥

𝑛
(2∼1024), III: 𝑦

𝑛
(1∼

1023), and IV: 𝑦
𝑛
(2∼1024). Columns I-II and III-IV reflect the same

signals being shifted in time by one sample (i.e., 𝑡 = 0.02 s). The
two upper signals represent the 𝑥

𝑛
and 𝑦

𝑛
signals after high-pass

filtering 𝑓 = 3Hz. The 4 lower signals are the PCA columns after
rotation. The 𝑆I and 𝑆II represent mainly the signal. 𝑆III and 𝑆IV
represent mainly the noise.The synchronous deflection in 𝑥

𝑛
and 𝑦

𝑛

is connected with high amplitude of the deflection in 𝑆I (see dashed
line).

4. Results

Theanalysis shows the parameters 𝑠
2
and 𝑠
3
which are defined

above. MANOVA analysis was performed separately for the
set of 𝑠

2
and 𝑠
3
values. The analysis took into consideration

two factors: 4 patient groups (A/B
1–3) and 4 registering

conditions (EOHN, EOHBB, ECHN, and ECHBB). The analysis
was performed separately for every used high-pass filter
frequency (30 values ranging from 𝑓 = 0.05 to 6Hz).

Figure 3 presents the results for the parameter 𝑠
2
and

Figure 4 shows the results for the parameter 𝑠
3
.

Successive subfigures show the results for 3 experiments
𝑇
2
, 𝑇
3
, and 𝑇

4
in which 𝑖 = 2, 3, and 4 were used. Results

are presented separately for every filter frequency, eyes/head
condition, and age group. These figures show 2 main filter
ranges in which differences between groups are especially
observed. The first range is about 0.1–1.5Hz and the second
range is about 2–5Hz.

The significance of the observed differences was analyzed
using ANOVA analysis. Two factors were analyzed: “patient
groups” and “eyes/head position.” Figures 5–8 show the
significance of differences in the logarithmic scale between
successive groups and registration conditions for the vari-
ables 𝑠

2
and 𝑠
3
. The lowest value in the OY axis “−15” refers to

the significance being lower than 𝑃 < 10−15.
Figure 5 shows that the significance of the variable 𝑠

2

increases with high-pass filter frequency used. The best
significance is observed for the PCAmatrix being built using
𝑖 = 2, in general. The significant difference is observed for
the filter frequency 𝑓 > 2Hz and reaches its maximum at
𝑓 = 5Hz.

Figure 6 shows the same analysis for 𝑠
3
. The parameter

𝑠
3
is characterized, in general, by the better discrimination

power between patient groups than 𝑠
2
. Figure 4 shows the

general tendency for 𝑠
3
to increase with age in the range

𝑓 = 0.1–1Hz and to decrease with age in the range
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Figure 3: The detailed 𝑠
2
values obtained in successive patient groups for different registration methods. Three rows represent different

number of columns (𝑖) in PCA method.

𝑓 = 2–6Hz. Building PCA using 𝑖 = 2 gives different results
compared to using 𝑖 = 3 or 4. In the second case, the
difference between patient groups is strongly significant in
the range of 𝑓 = 0.1–1.5Hz which is not observed for 𝑖 = 2.
This phenomenon can be explained by lower value of low-
pass filter frequency that corresponds to the given value of 𝑖.
Older persons are characterized by higher mean amplitude of
the oscillations in the range 6–20Hz [20]. When using 𝑖 = 3
or 4, more significant part of the signals 𝑥

𝑛
/𝑦
𝑛
is removed

from the first and second component and transferred to the
third component of the resultant PCA matrix. It causes the
increase in 𝑠

3
value for the lower filter frequencies.

Figure 7 shows the significance of the 𝑠
2
differences

between registration methods applied.The results for succes-
sive 𝑖 values are similar; the significance is observed for 𝑓 ≥
3.4Hz. The tendency for 𝑠

2
significance is observed quicker

to increase and to reach the maximumwhen 𝑖 increases from
𝑖 = 2 to 4.
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Figure 4: The detailed 𝑠
3
values obtained in successive patient groups for different registration methods. Three rows represent different

number of columns (𝑖) in PCA method.

Similar analysis for the variable 𝑠
3
presented in Figure 8

shows that the differences between registration methods
are strongly significant in all the ranges of the used filter
frequencies. The differences are observed especially between
eyes open and eyes closed: 𝑠

3
is lower for EC condition.

4.1. Aging Process in the Post Hoc Analysis. The 𝑠
2
results

are very similar for 𝑖 = 2, . . . , 4, in general. The differences
occur for filter frequencies 𝑓 > 4Hz because the low-pass
filter frequency corresponding to the given 𝑖 becomes lower
(𝑓
2
≅ 12.5Hz for 𝑖 = 2, 𝑓

3
≅ 8.3Hz for 𝑖 = 3, and
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Figure 5: Analysis of the parameter 𝑠
2
. The figure shows the

statistical significance 𝑝 of the main effect in MANOVA analysis for
the factor “patient groups.” Logarithmic scale is used. Starting from
about 2.4Hz, an increase in the filter frequency causes the increase
in the ability of 𝑠

2
to separate different age groups. While building

PCA matrix, the use of 𝑖 = 2 gives relative best results.

lo
g
1
0
p

0.
05 0.

2
0.

4
0.

6
0.

8 1
1.

4
1.

8
2.

2
2.

6 3
3.

4
3.

8
4.

5
5.

5

0
2

−2

−4

−6

−8

−10

−12

−14

−16

−18

Factor: patient groups
i = 2

i = 3

i = 4

Variable s3
(Hz)

0
.1

0
.3

0
.5

0
.7

0
.9

1
.2

1
.6 2

2
.4

2
.8

3
.2

3
.6 4 5 6

Figure 6: Analysis of the parameter 𝑠
3
. The figure shows the value 𝑝

of the statistical significance of themain effect inMANOVA analysis
for the factor “patient groups.” Logarithmic scale is used. Building
PCA using 𝑖 = 2 gives different results compared to using 𝑖 = 3 or 4.
In the case of 𝑖 = 3 and 4, the difference between patient groups is
strongly significant in the range of 0.1–1.5Hz which is not observed
for 𝑖 = 2. In the range 𝑓 > 2Hz, the significance is increasing for all
𝑖 = 2, 3, and 4 up to 𝑓 = 4.5Hz.

𝑓
4
≅ 6.25Hz for 𝑖 = 4). The post hoc analysis for 𝑠

2
concerns

the parameter 𝑖 = 2 which exhibits relative most strong
significance as presented in Figure 5. The neighboring age
groups are especially analyzed.

A detailed comparison between subjects in group B3
(mean age 30 yrs) and group B2 (mean age 61 yrs) shows
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Figure 7: Analysis of the parameter 𝑠
2
. The figure shows the

statistical significance 𝑝 of the main effect in MANOVA analysis
for the factor “eyes/head state.” The differences between registration
conditions are especially visible for the high-pass filters 𝑓 ≥ 3.4Hz.
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Figure 8: Analysis of the parameter 𝑠
3
. The figure shows the high

statistical significance 𝑝 of the main effect in MANOVA analysis for
the factor “eyes/head state.” The very high significance is observed
for every filter frequency used.The values for eyes closed (ECHN and
ECHBB) are as a rule lower than for open eyes.

the highest statistical significance for the registration pattern
ECHN (𝑃 < 0.01 for 𝑓 = 4-5Hz). This result suggests that
the role of labyrinth in the postural stability becomes more
important when the patient has the eyes closed.The decrease
in 𝑠
2
if postural control is only supported by the labyrinth

suggests that, in the age range from 30 to 60 years, the
aging process of the vestibular system deteriorates postural
control to a higher degree than the aging process of the
visual system. A less important role of the deterioration of
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visual support may be explained by a lowering of the 𝑠
2

parameter in the EOHN registration method (𝑃 < 0.05 for
𝑓 = 4-5Hz). In turn, 𝑠

2
is becoming lower for ECHBB

(𝑃 < 0.05 for 𝑓 = 2.6–3.2Hz). This may suggest that
other modulations compared to the visual or vestibular ones
may also be weakened (possible in the cerebellum and/or
spinal cord). The lower range of frequency, when compared
to the range 4-5Hz, may be the result of higher, thus slower,
oscillations while ECHBB registering or alternatively may
suggest a weakening of some higher levels of regulation.

Comparison between group B1 (mean 76 y) and group
B2 (mean 61 y) shows that significant differences occur while
performing the classic registration pattern EOHN (𝑃 < 0.05
for 𝑓 = 3.8–5Hz). It can be concluded that the visual
modulation is becoming weakened at this stage of the aging
process followed by a weakening of vestibular modulation,
but to a lesser extent. It can be observed in group B2 that
the visual and vestibular systems working together make it
possible to maintain the “juvenile” regulation pattern. This is
not observed in B1 group where 𝑠

2
is lowered approximately

to a similar level for each registration method.
Comparison between groupsA (gait dist.) andB1 (healthy

76 y) shows a further lowering of 𝑠
2
for all registration

methods (EOHN: 𝑃 < 0.05 for 𝑓 = 3–6Hz, 𝑃 < 0.01 for 4-
5Hz; EOHBB: 𝑃 < 0.05 for 𝑓 = 3.8–6Hz; ECHBB: 𝑃 < 0.05 for
𝑓 = 2.2–4Hz). The differences are statistically insignificant
for ECHN only.The presented results suggest a further general
deterioration in the functioning of segmental correction
reflexes on postural stability and a further weakening of the
influence of the visual system as well as a slightly lesser
weakening of the vestibular system.

The results for 𝑠
3
are even more significant than for

𝑠
2
. Thus, the value of 𝑠

3
can be a good discriminator of

aging process. The interpretation of the results is, however,
ambiguous. Based on 𝑠

3
, it is difficult to interpret the results

and to conclude about the functioning of different parts of
postural control system. It is dedicated for further research.

5. Discussion

The presented results for high-pass filtered posturographic
signals let us suggest that acquisition of the filtering for the
posturographic signals makes it potentially possible to obtain
valuable diagnostic parameters. It can be expected that differ-
ent parameters calculated for filtered signals will be probably
more discriminatory than those for nonfiltered signals.

Though the filtering is unable tomake a complete division
of the signal into components coming from different parts
of the postural system, it is still possible to find statistically
significant differences in different patient groups. Filtering
is able to remove major slow oscillations possessing high
amplitude and to release the effects of the postural reflexes
that possess the spectrum in the range 2–6Hz. In the present
experiment the differences were observed mainly for the 𝑓 >
2Hz frequency.

The filter order is an important parameter in the process
of filtering. The maximum possible filter order is 1/3 of the
signal length [22]. It was 𝑅max = 1024/3 = 341 in our

analyzed signals. The higher filter order denotes the more
sharp border of low-frequency cutoff in the spectrum. A filter
order (𝑅 = 300) was used in the current study in order to
make the filtering effective. It must be pointed out, however,
that in the case of other acquisition time and/or sampling
frequency, the filter order giving the samefiltering parameters
as in the current paper would be different than 𝑅 = 300.

The presented results make it possible to determine
the mean intensity of the aging process of the postural
system. Between 30 (B3) and 60 yrs (B2), the deterioration
of the vestibular component is more visible than that of the
visual one. Hytonen et al. [23] showed that older persons
rely more on visual support to keep stable posture. Next,
between 60 (B2) and 76 yrs (B1), a further weakening of two
analyzed components is observed, with the faster progression
inweakening of the visual component. In group B1, the effects
of the visual and/or the vestibular system on the 𝑠

2
are small.

It can be concluded that, at this point, they are not able to
improve the strongly deteriorated proprioceptive system.

The integrity of the CNS determines the demand of the
attention support to maintain proper posture [24]. Jacobs
and Horak [3] claimed that conscious attention plays an
important role in postural stability in the elderly, which
is manifested by deteriorating posturographic parameters
during mental tasks. The present paper considers idiopathic
gait disturbances to be the next stage in the deterioration
of postural functions. As a result, postural stability becomes
more difficult to sustain even when the patient is fully
concentrated.

It must be stressed, however, that the results obtained
in the present paper should be treated as only pilot ones.
𝑠
2
and 𝑠
3
are the parameters that only partially describe the

postural system. It is probable that other parameters will
better discriminate between different groups of patients and
registering conditions.

Also, one should remember that it is possible to use
more advancedmethodswhich divide posturographic signals
into their components and which remove noise. Registration
with higher sampling frequencies and lower noise levels will
ensure greater precision and accuracy of low-amplitude and
high-frequency components in the signal and will allow for
expanding the range of filters above the 6Hz that was used in
the present paper.
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