Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 404375, 23 pages
http://dx.doi.org/10.1155/2014/404375

Hindawi

Research Article

A DAG Scheduling Scheme on Heterogeneous Computing
Systems Using Tuple-Based Chemical Reaction Optimization

Yuyi Jiang, Zhiqing Shao, and Yi Guo

College of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Correspondence should be addressed to Zhiqing Shao; zshao@ecust.edu.cn

Received 1 April 2014; Revised 5 May 2014; Accepted 8 May 2014; Published 24 June 2014

Academic Editor: Yu-Bo Yuan

Copyright © 2014 Yuyi Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation
code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG
jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG
scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction
optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed
metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling,
the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO
also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super
molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and

efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

1. Introduction

Modern computer systems with multiple processors working
in parallel may enhance the processing capacity for an appli-
cation. The effective scheduling of parallel modules of the
application may fully exploit the parallelism. The application
modules may communicate and synchronize several times
during the processing. The limitation of the overall applica-
tion performance may be incurred by a large communication
cost on heterogeneous systems with a combination of GPUs,
multicore processors and CELL processors, or distributed
memory systems. And an effective scheduling may greatly
improve the performance of the application.

Scheduling generally defines not only the processing
order of application modules but also the processor assign-
ment of these modules. The concept of makespan (i.e., the
schedule length) is used to evaluate the scheduling solution
quality including the entire execution and communication
cost of all the modules. On the heterogeneous systems [1-
4], searching optimal schedules minimizing the makespan is
considered as a NP-complete problem. Therefore, two classes

of scheduling strategies have been proposed to solve this
problem by finding the suboptimal solution with lower time
overhead, such as heuristic scheduling and metaheuristic
scheduling.

Heuristic scheduling strategies try to identify a good
solution by exploiting the heuristics. An important subclass
of heuristic scheduling is list scheduling with an ordered task
list for a DAG job on the basis of some greedy heuristics.
Moreover, the ordered tasks are selected to be allocated to the
processors which minimize the start times in list scheduling
algorithms. In heuristic scheduling, the attempted solutions
are narrowed down by greedy heuristics to a very small
portion of the entire solution space. And this limitation of the
solution searching leads to the low time complexity. However,
the higher complexity DAG scheduling problems have, the
harder greedy heuristics produce consistent results on a wide
range of problems, because the quality of the found solutions
relies on the effectiveness of the heuristics, heavily.

Metaheuristic scheduling strategies such as ant colony
optimization (ACO), genetic algorithms (GA), Tabu search
(TS), simulated annealing (SA), and so forth take more

The Scientific World Journal

@

FIGURE 1: Two simple DAG models with 7 and 10 tasks.

FIGURE 2: A fully connected parallel system with 3 heterogeneous
processors.

e

FIGURE 3: CCPDAG corresponding to the DAG as shown in Figure 1
and the CCP as indicated in Table 1.

(v1, 0, p1)|(v2> L p2)|(v3s L, p3) (Vs 05 p1) (Vs> L, p1) (Ve 05 p3)|(v7 1, p3)

N >
~__~-
‘ PN
I S\

(v1,0, p1)|(v2> L, p2)|(V4s 05 p2) (V35 0, p3) (V55 0, p1) (Ve 0, p3)|(v7 1, p3)

Molecule

New molecule

FIGURE 4: Illustration of molecular structure change for on-wall
ineffective collision.

pPif M V4 Vs Pi| ™M Vs

On-wall ineffective

collision' P2l v vy

p2| "2

p3| Vs Ve V7 Pyl vs | v

FIGURE 5: Illustration of the task-to-computing-node mapping for
on-wall ineffective collision.

time cost than heuristic scheduling strategies, but they can
produce consistent results with high quality on the problems
with a wide range by directed searching solution spaces.
Chemical reaction optimization (CRO) is a new meta-
heuristic method proposed very recently and has shown its
power to deal with NP-complete problem. There is only
one CRO-based algorithm called double molecular structure-
based CRO (DMSCRO) for DAG scheduling on heteroge-
neous system as far as we know. DMSCRO has a better
performance on makespan and convergence rate than genetic
algorithm (GA) for DAG scheduling on heterogeneous sys-
tems. However, the rate of convergence of DMSCRO as a
metaheuristic method is still defective. This paper proposes a

The Scientific World Journal

@) j=1
(4) for i=1to |CP| do

(7) end while

(8) jej+1

9) i« i% |CP|

(10) end for

(11) //PHASE 2: Assign and schedule tasks
(12) for j=1{1,2,...,]1Q|} do

(13) for each processor P, € P do

CEFT} (Q;) = max ((EFTP, (W)
(19) end for

(AEFTw)Vwer = (EFTPx (w))
(22) end for

Vwer

(1) //PHASE I: Find the constrained critical paths (CCPs)
(2) Find set of critical paths CP according to the description in the second paragraph of Section 3.1.

(5) while there exist ready nodes in CP; do
(6) Insert ready node v, into constrained critical path Queue (Q;).

(14) for each node w € Q; do
(15) Find the start time of node k, which is the predecessor of w
ST (w, k) = max (((AEFT,) + CM (w, P, k, P,)) , AT})
(16) Find the finish time of the node
EFTp, (w) = max (STp, w.K)),, o+ ECp (W)
17) end for
(18) Find the finish time of the CCP Q;

Vwer)

(20) Assign the processor to CCP Q; which minimizes CEFT,, (Qj).
(21) Let P, be assigned, update AEFT,, of each task w in Q;

J

ALGgoriTHM 1: CEFT.

(6) end if
7) add Start and End

(10) end for

(1) for each E; = (ev,, ev,, w,,) in E

2) CCP, = BelongCCP (ev,);

(3) CCP, = BelongCCP (ev,);

(4) if (CCP,+CCP,) & (CCPE (CCP,, CCP,)) does not exist
(5) create CCPE (CCP,, CCP,)

(8) add edges among Start and CCP nodes
9) add edges among End and CCP nodes

AvrGoriTHM 2: Gen_.CCPDAG(DAG, CCP) generating CCPDAG.

new CRO-based algorithm, tuple molecular structure-based
CRO (TMSCRO), for the mentioned problem, encoding the
two basic components of DAG scheduling, module execution
order and module-to-processor mapping, into an array of
tuples. Combining this kind of molecular structure with the
elementary reaction operator designed in TMSCRO has a
better capability of intensification and diversification than
DMSCRO. Moreover, in TMSCRO, the concept of con-
strained critical paths (CCPs) [5] and constrained-critical-
path directed acyclic graph (CCPDAG) are applied to creat-
ing initial population in order to speed up the convergence
of TMSCRO. In addition, the first initial molecule, InitS, is
also considered to be a super molecule [6] for accelerating

convergence, which is converted from the scheduling result
of the algorithm constrained earliest finish time (CEFT).

In theory, a metaheuristic method will gradually
approach the optimal result if it runs for long enough, based
on No-Free-Lunch Theorem, which means the performances
of the search for optimal solution of each metaheuristic
algorithm are alike when averaged over all possible fitness
functions. We have conducted the simulation experiments
over the graphs abstracted from two well-known real
applications: Gaussian elimination and molecular dynamics
application and also a large set of randomly generated
graphs. The experiment results show that the proposed
TMSCRO can achieve similar performance as DMSCRO

The Scientific World Journal

(1) InitS = ConvertMole(InitCCPS);

(3) MoleN =1;
(4) while MoleN < PopSize —1 do
(5) for each CCP,; in CCP molecule CCPS

(13) end for
(14) Generate a new CCP molecule CCPS';
(15) S = ConvertMole(CCPS")

(17) MoleN « MoleN + I;
(18) end while

(2) update each f; in molecule InitS as defined in the last paragraph of Section 5.1.1

(6) find the first successor Succ(i) in CCPDAG from i to the end;

(7) for each CCP}, j € (i, Succ(i))

(8) find the first predecessor Pred(j) from Succ(i) to the begin in CCP molecule CCPS;
9) if Pred(j) < i

(10) interchanged position of (CCP;, sp,) and (CCP > SP j) in CCP molecule CCPS;
11) end if

(12) end for

(16) update each f; in reaction molecule S as defined in the last paragraph of Section 5.1.1

AvrcoriTHM 3: InitTMolecule(InitCCPS) generating the initial population.

(v1> 0, p2)|(Vas L, p1|(v2 0, p3)|(v35 1, p3)|(v5, 0, p2)|(Ve 05 p3)|(v7> 1, p1)

Seupm| =T
New molecule I ~~~__ e 1
i A

- P

(v1,0, p1)|(v2> 1, p2)|(v3, 1, p3)

(v4,0, p1)

(V5, l,pl)

(vs, 0, p3)

(v7,1, p3)

Molecule

~
~
~
S
- =<

~

.-
PraS
- ~

hS|

e

Pi| Va V7
| M Vs
v 2 v
P v vy Vs ps3 2 3 (9

(vy,0, Pl) (v25 1’P3) 35 1>P3) (VG» 1, py (vy5 0>P1) (Vs) 1, Pz) (v7, l,p3)

New molecule 2

FIGURE 6: Illustration of molecular structure change for decompo-
sition.

in the literature in terms of makespan and outperforms the
heuristic algorithms.
There are three major contributions of this work.

(1) Developing TMSCRO based on CRO framework
by designing a more reasonable molecule encoding
method and elementary chemical reaction operators
on intensification and diversification search than
DMSCRO.

(2) For accelerating convergence, applying CEFT and
CCPDAG to the data pretreatment, utilizing the
concept of CCPs in the initialization, and using the
first initial molecule, InitS, to be a super molecule in
TMSCRO.

(3) Veritying the effectiveness and efficiency of the pro-
posed TMSCRO by simulation experiments. The
simulation results of this paper show that TMSCRO
is able to approach similar makespan as DMSCRO,
but it finds good solutions faster than DMSCRO by
12.89% on average (by 26.29% in the best case).

Decomposition

) V2 d

Ps3 V3 V6 v7 pP1 Vi Ve V4
pa| Vs
ps| "2 V3 vz

FIGURE 7: Illustration of the task-to-computing-node mapping for
decomposition.

2. Related Work

Most of the scheduling algorithms can be categorized into
heuristic scheduling (including list scheduling, duplication-
based scheduling, and cluster scheduling) and metaheuristic
(i.e., guided-random-search-based) scheduling. These strate-
gies are to generate the scheduling solution before the
execution of the application. The approaches adopted by these
different scheduling strategies are summarized in this section.

2.1. Heuristic Scheduling. Heuristic methods usually provide
near-optimal solutions for a task scheduling problem in less

The Scientific World Journal

(v150, p1)|(va, 1, p1)|(v25 0, p2)|(¥5, 0, p3)|(v3, 0, p3){(ve, 1, p3)|(v7, 1, p3)

NN _-T

New Molecule 1 1 <

PN
- ~

(v1> 0, p1)|(vas 1, p1)|(v2, 0, p2)|(v3, 1, p3)|(¥5, 0, p1)|(ve, 0, p3)|(v7, 1, p3)

Molecule 1

(v1,0, p1)|(va2, 1, p2)|(v3, L, p3)|(vas 0, p1)|(vs, L, p1)|(ve» 0, p3)|(v7, 1, p3)

Molecule 2 N (/
// \\

% S

(v1, 0, p)|(v2, 1, po)|(V45 05 p2)|(v3, 0, p3)|(vs, 0, p1)|(vs, 0, p3)|(v7, L, p3)

(v1,0, p1)|(v2> L, p3)|(v3, L, p3)|(ve» L p1)|(va, 0, p1) (Vs> 1, o) (V75 1, p3))

Molecule 1 ‘ S~ \L \L
=~

1,0, p2)(vas 1, p2)| (v, 0, p3)((v3, 1, p1) (Ve» L P2)[(v5, 0, p1) (V75 L, 1)

New molecule 1

(v1,0, p2)|(v4> L, p1)|(v2, 0, p3)[(v3, 1, p3)((vs, 0, p2)| (v, O, p3)|(v7, 1, py))

Molecule 2

F1GURE 10: Illustration of molecular structure change for synthesis.

New molecule 2
. . b1 Vi Ve Yy
FIGURE 8: Illustration of molecular structure change for intermolec-
ular ineffective collision.
%3 Vs
1| V3 Vs v7
Pi| " V4 Vs Pi| M V4
P3 V2 V3 vy
Pl v Pl v Synthesis
Y 2| M1 V4 Ve
v
b3 s Ve v7 b3 5 V3 Ve v7)2 Vy vy
Intermolecular
. . L. p3 V2
ineffective collision
%3 41 Vs
Pi| M1 Vs Vs pPi| M Vs
v v v,
P2 2 P2 2 4 P v, v Ve
v V, v v vV, . . .
P3| Vs 6 7 P3| s 6 FIGURE 11: [llustration of the task-to-computing-node mapping for

FIGURE 9: Illustration of the task-to-computing-node mapping for
intermolecular ineffective collision.

than polynomial time. The approaches adopted by heuristic
method search only one path in the solution space, ignoring
other possible ones [7]. Three typical kinds of algorithms
based on heuristic scheduling for the DAG scheduling prob-
lem are discussed as below, such as list scheduling [7, 8],
cluster scheduling [9, 10], and duplication-based scheduling
(11, 12].

The list scheduling [7, 13-21] generates a schedule solu-
tion in two primary phases. In phase 1, all the tasks are
processed in a sequence order by their assigned priorities,
which are normally based on the task execution and com-
munication costs. There are two attributes used in most list
scheduling algorithms, such as b-level and t-level, to assign
task priorities. In a DAG, b-level of a node (task) is the length
of the longest path from the end node to the node; however, ¢-
level of a node is the length of the longest path from the entry
node to the node. In phase 2, the processors are assigned to
each task in the sequence.

The heterogeneous earliest finish time (HEFT) schedul-
ing algorithm [16] assigns the scheduling task priorities based

synthesis.

on the earliest start time of each task. HEFT allocates a task
to the processor which minimizes the task’s start time.

The modified critical path (MCP) scheduling [22] con-
siders only one CP (critical path) of the DAG and assigns the
scheduling priority to tasks based on their latest start time.
The latest start times of the CP tasks are equal to their ¢-levels.
MCP allocates a task to the processor which minimizes the
task’s start time.

Dynamic-level scheduling (DLS) [23] uses the concept of
the dynamic level, which is the difference between the b-level
and earliest start time of a task on a processor. Each time the
(task, processor) pair with the largest dynamic-level value is
chosen by DLS during the task scheduling.

Mapping heuristic (MH) [24] assigns the task scheduling
priorities based on the static b-level of each task, which is
the b-level without the communication costs between tasks.
Then, a task is allocated to the processor which gives the
earliest start time.

Levelized-min time (LMT) [17] assigns the task schedul-
ing priority in two steps. Firstly, it groups the tasks into
different levels based on the topology of the DAG, and then
in each level, the task with the highest priority is the one with

FIGURE 12: Gaussian elimination for a matrix of size 7.

the largest execution cost. A task is allocated to the processor
which minimizes the sum of the total communication costs
with the tasks in the previous level and the task’s execution
cost.

There are two heuristic algorithms for DAG scheduling
on heterogeneous systems proposed in [8]. One algorithm
named HEFT_T uses the sum of t-level and b-level to
assign the priority to each task. In HEFT_T, the critical
tasks are attempted to be on the same processor, and the
other tasks are allocated to the processor that gives earliest
start time. The other algorithm named HEFT_B applies the
concept of b-level to assign the priority (i.e., scheduling
order) to each task. After the priority assignment, a task
is allocated to the processor that minimizes the start time.
The extensive experiment results in [8] demonstrate that
HEFT_B and HEFT_T outperform (in terms of makespan)
other representative heuristic algorithms in heterogeneous
systems, such as DLS, MH, and LMT.

Comparing with the list scheduling algorithms, the
duplication-based algorithms [23, 25-29] attempt to dupli-
cate the tasks to the same processor on heterogeneous
systems, because the duplication may eliminate the commu-
nication cost of these tasks and it may effectively reduce the
total schedule length.

The clustering algorithms [8, 11, 30-32] regard task col-
lections as clusters to be mapped to appropriate processors.
These algorithms are mostly used in the homogeneous sys-
tems with unbounded number of processors and they will use
as many processors as possible to reduce the schedule length.
Then, if the number of the processors used for scheduling is

The Scientific World Journal

FIGURE 13: A molecular dynamics code.

. {‘0@6

FIGURE 14: A random graph with 10 nodes.

The Scientific World Journal

140

120 +

100 |

80 |

Makespan

60 +

40 +

20 +

0
Py Pyg Ps,

CCR=0.2

] DMSCRO
B TMSCRO

FIGURE 15: Average makespan for Gaussian elimination.

HEFT_T

P 4
I HEFT B
[

300

250 +

200 -

Makespan
I
S

100 -

0.1 0.2 1 2 5
CCR

I HEFT B "] DMSCRO

] HEFT_T B TMSCRO

FIGURE 16: Average makespan for Gaussian elimination; the number
of processors is 8.

more than that of the available processors, the task collections
(clusters) are processed further to fit in with a limited number
of processors.

2.2. Metaheuristic Scheduling. In comparison with the algo-
rithms based on heuristic scheduling, the metaheuristic
(guided-random-search-based) algorithms use a combinato-
rial process for solution searching. In general, with robust
performance on many kinds of scheduling problems, the
metaheuristic algorithms need sampling candidate solutions

7
150
100 | .
=]
xcd
2
=
<
=
50 | -
0
Py By Pyg Py
CCR= 1.0
I HEFT B] DMSCRO
] HEFT_T B TMSCRO

FIGURE 17: Average makespan for the molecular dynamics code.

300 T T T T T

250 -

200 -

Makespan
@
)

100 |

50 F

0.1 0.2 1 2 5
CCR

I HEFT B "] DMSCRO

] HEFT_T I MSCRO

FIGURE 18: Average makespan for the molecular dynamics code; the
number of processors is 16.

in the search space, sufficiently. Many metaheuristic algo-
rithms have been applied to solve the task scheduling problem
successfully, such as GA, chemical reaction optimization
(CRO), energy-efficient stochastic [33], and so forth.

GA [15, 31, 34-36] is the mostly used metaheuristic
method for DAG scheduling. In [15], a solution for scheduling
is encoded as one-dimensional string representing an ordered
list of tasks to be allocated to a processor. In each string of two
parent solutions, the crossover operator selects a crossover
point randomly and then merges the head portion of one
parent with the tail portion of the other. Mutation operator

400

350 +

300

250

200

150 |

Average makespan

100 |

50 |

10 20 50

The number of tasks

I HEFT B [DMSCRO
] HEFT_T B TMSCRO

FIGURE 19: Average makespan of different task numbers, CCR = 10;
the number of processors is 32.

180

160

140

120 +

100 |

80 |

Makespan

60

40

20

Py Py Py Ps,
CCR=0.2

I HEFT B "1 DMSCRO
] HEFT_T I 1MSCRO

FIGURE 20: Average makespan of four algorithms under different
processor numbers and the low communication costs; the number
of tasks is 50.

exchanges two tasks in two solutions, randomly. The concept
of makespan is used to evaluate the scheduling solution
quality by fitness function.

Chemical reaction optimization (CRO) was proposed
very recently [20, 30, 37-39]. It mimics the interactions of
molecules in chemical reactions. CRO has good performance
already in solving many problems, such as quadratic assign-
ment problem (QAP), resource-constrained project schedul-
ing problem (RCPSP), channel assignment problem (CAP)

The Scientific World Journal

180

160

140 +

120 +

100

80

Makespan

40 |

20 |

CCR=1.0

I HEFT B [DMSCRO
] HEFT_T B TMSCRO

FIGURE 21: Average makespan of four algorithms under different
processor numbers and the low communication costs; the number
of tasks is 50.

500

450 - g
400
350
300
250

Makespan

200
150
100 |
50 |

FIGURE 22: Average makespan of TMSCRO under different values
of CCR; the number of tasks is 50.

[39], task scheduling in grid computing (TSGC) [40], and 0-
1 knapsack problem (KP01) [41]. So far as we know, double
molecular structure-based chemical reaction optimization
(DMSCRO) recently proposed in [37] is the only one CRO-
based algorithm with two molecular structures for DAG
scheduling on heterogeneous systems. CRO-based algorithm
(just DMSCRO) mimics the chemical reaction process in
a closed container and accords with energy conservation.
In DMSCRO, one solution for DAG scheduling including
two essential components, task execution order and task-
to-processor mapping, corresponds to a double-structured

The Scientific World Journal

121.5
121
120.5
120
119.5
119
118.5
118
117.5

117 | Lo o

11645 1 1 1 1 1 1 1 1

Makespan

Time (Ms) x10

—— TMSCRO
--- DMSCRO

FIGURE 23: The convergence trace for Gaussian elimination; ccr =
0.2; the number of processors is 8.

163.5
163
162.5
162 |
161.5
161
160.5
160
159.5

Makespan

Time (Ms) x10

—— TMSCRO
--- DMSCRO

FIGURE 24: The convergence trace for the molecular dynamics code;
ccr = 1; the number of processors is 16.

molecule with two kinds of energy, potential energy (PE)
and kinetic energy (KE). The value of PE of a molecule
is just the fitness value (objective value), makespan, of the
corresponding solution, which can be calculated by the fitness
function designed in DMSCRO, and KE with a nonnegative
value is to help the molecule escape from local optimums.
There are four kinds of elementary reactions used to do
the intensification and diversification search in the solution
space to find the solution with the minimal makespan, and
the principle of the reaction selection is in detail presented
in Section 3.2. Moreover, a central buffer is also applied in
DMSCRO for energy interchange and conservation during
the searching progress. However, as a metaheuristic method
for DAG scheduling, DMSCRO still has very large time
expenditure and the rate of convergence of this algorithm
needs to be improved. Comparing with GA, DMSCRO is
similar in model and workload to TMSCRO proposed in this
paper.

Our work is concerned with the DAG scheduling prob-
lems and the flaw of CRO-based method for DAG scheduling,
proposing a tuple molecular structure-based chemical reac-
tion optimization (TMSCRO). Comparing with DMSCRO,

51

50.5 R

50 f-]

49.5

Makespan

49

48.5 |

48

Time (Ms) x10

—— TMSCRO
--- DMSCRO

FIGURE 25: The convergence trace for the randomly generated DAGs
with each containing 10 tasks.

Makespan

,,,,,,,,,,,,,,

93 - - - - - -
0 2 4 6 8 10 12 14
Time (Ms) x10*
—— TMSCRO
--— DMSCRO

FIGURE 26: The convergence trace for the randomly generated DAGs
with each containing 20 tasks.

TMSCRO applies CEFT [5] to data pretreatment to take
the advantage of CCPs as heuristic information for accel-
erating convergence. Moreover, the molecule structure and
elementary reaction operators design in TMSCRO are more
reasonable than those in DMSCRO on intensification and
diversification of searching the solution space.

3. Background

3.1. CEFT. Constrained earliest finish time (CEFT) based
on the constrained critical paths (CCPs) was proposed for
heterogeneous system scheduling in [5]. In contrast to other
approaches, the CEFT strategy takes account of a broader
view of the input DAG. Moreover, the CCPs can be scheduled
efficiently because of their static generation.

The constrained critical path (CCP) is a collection with
the tasks ready for scheduling only. A task is ready when
all its predecessors were processed. In CEFT, a critical path
(CP) is generally the longest path from the start node to the
end node for scheduling in the DAG. The DAG is initially
traversed and critical paths are found. Then it is pruned off the
nodes that constitute a critical path. The subsequent traversals

10

175.5
175
174.5 H

—
~
N

173.5 H

Makespan
3
w

1725 ¢
172 +
171.5
171

Time (Ms) x10°

—— TMSCRO
--- DMSCRO

FIGURE 27: The convergence trace for the randomly generated DAGs
with each containing 50 tasks.

of the pruned graph produce the remaining critical paths.
While the nodes are being removed from the task graph, a
pseudo-edge to the start or end node is added if a node has
no predecessors or no successors, respectively. The CCPs are
subsequently formed by selecting ready nodes in the critical
paths in a round-robin fashion. Each CCP may be assigned
a single processor which has the minimum finish time of
processing all the tasks in the CCP. All the tasks in a CCP not
only reduce the communication cost, but also benefit from a
broader view of the task graph.

Consider the CEFT algorithm generates schedules for n
tasks with |P| heterogeneous processors. Some specific terms
and their usage are indicated in Table 1.

The CEFT scheduling approach (Algorithm 1) works in
two phases. (1) The critical paths are generated according to
the description in the second paragraph of Section 3.1. The
critical paths are traversed and the ready nodes are inserted
into the constrained critical paths (CCPs) CCP;,Vj =
1,2,...,]Q|. If no more ready nodes are in a critical path, the
constrained critical path takes nodes from the next critical
path following round-robin traversal of the critical paths. (2)
All the CCPs are traversed in order (line 12). Then, STy (w, k),
the maximum of AT, and the start time of the predecessors
of each node w, is calculated (1). EFT p (W) is computed as the
sum of ST (w, k) and ECp, (w) (2). EP (Q)) is the maximum
of the finish times of all the CCP nodes on the same processor
P, (3). The processor is then assigned to constrained-critical-
path CCP ; which minimizes the CEFTPr(CCP j) value (line
20). After the actual finish time AEFT,, of each task w in CCP;
is updated, the processor assignment continues iteratively.

3.2. CRO. Chemical reaction optimization (CRO) mimics
the process of a chemical reaction where molecules undergo
a series of reactions between each other or with the envi-
ronment in a closed container. The molecules are manip-
ulated agents with a profile of three necessary properties
of the molecule, including the following. (1) The molecular
structure S: S actually structure represents the positions of
atoms in a molecule. Molecular structure can be in the
form of a number, a vector, a matrix, or even a graph

The Scientific World Journal

which is independent of the problem, (2) (Current) potential
energy (PE): PE is the objective function value of the current
molecular structure w, that is, PE, = f(w). (3) (Current)
kinetic energy (KE): KE is a nonnegative number and it helps
the molecule escape from local optimums. There is a central
energy buffer implemented in CRO. The energy in CRO
may accord with energy conservation and can be exchanged
between molecules and the buffer.

Four kinds of elementary reactions may happen in CRO,
which are defined as below.

(1) On-wall ineffective collision: on-wall ineffective col-
lision is a unimolecule reaction with only one
molecule. In this reaction, a molecule w is allowed to
change to another one ', if their energy values accord
with the following inequality:

PE, + KE, > PE,;)

after this reaction, KE will be redistributed in CRO.
The redundant energy with the value KE_, = (PE_ +
KE, — PE,/) x t will be stored in the central energy
buffer. Parameter t is a random number from KELoss-
Rate to 1 and KELossRate, a system parameter set
during the CRO initialization, is the KE loss rate less
than L

(2) Decomposition: decomposition is the other uni-
molecule reaction in CRO. A molecule w may decom-
pose into two new molecules, @, and w}, if their
energy values accord with inequality (2), in which
buf denotes the energy in the buffer, representing
the energy interactions between molecules and the
central energy buffer:

PEw + KEw + buf > PEw{ + PEwé; (2)

after this reaction, bufis updated by (3) and the KEs of
w{ and w; are, respectively, computed as (4) and (5),
where Edecomp = (PE, + KE,) — (PE,; + PE,)
and ul, y2, u3, p4 is a number randomly selected
from the range of [0, 1]. Consider

buf = Edecomp + buf - (PEw; + PEwg) , (3)

KE, = (Edecomp + buf) x pul x 2, (4)

@

KE,; = (Edecomp + buf - KEw{) X p3 x p4. (5)

(3) Intermolecular ineffective collision: intermolecular
ineffective collision is an intermolecule reaction with
two molecules. Two molecules, w, and w,, may

! . .
change to two new molecules, w; and w,, if their
energy values accord with the following inequality:

PE,, +PE,, +KE, +KE, >PE, +PE,; (6)
after this reaction, the KEs of wi and wg, KEw;

and KE,;, will share the spare energy Eintermole
calculated by (7). KEw{ and KEw; are computed as (8)

The Scientific World Journal

and (9), respectively, where y1 is a number randomly
selected from the range of [0, 1]. Consider

Eintermole = (PE, +PE, +KE, +KE,)

(7)

- (PE,, +PE,;),
KE, = Eintermole x p1, (8)
KE,, = Eintermoler x (1 — p1). 9)

(4) Synthesis: synthesis is also an intermolecule reaction.
Two molecules, w, and w,, may be combined to a
new molecule, w', if their energy values accord with
inequality (10). The KE of ' is computed as (11):

PE, +PE, +KE, +KE, =PE,, (10)

KE, = PE, +PE, +KE, +KE, —PE,. (1)

The canonical CRO works as follows. Firstly, the ini-
tialization of CRO is to set system parameters, such as
PopSize (the size of the molecules), KELossRate, InitialKE
(the initial energy of molecules), buf (initial energy in the
buffer), and MoleColl (MoleColl is a threshold value to
determine whether to perform a unimolecule reaction or an
intermolecule reaction). Then the CRO processes a loop. In
each iteration, whether to perform a unimolecule reaction
or an intermolecule reaction is first decided in the following
way. A number ¢ is randomly selected from the range of
[0,1]. If € is bigger than MoleColl, a unimolecule reaction
will be chosen, or an intermolecular reaction is to occur. If
it is a unimolecular reaction, a parameter 6 as a threshold
value is used to guide the further choice of on-wall collision
or decomposition. NumHit is the parameter used to record
the total collision number of a molecule. It will be updated
after a molecule undergoes a collision. If the NumHit of
a molecule is larger than 0, a decomposition will then be
selected. Similarly, a parameter 9 is used to further decide
selection of an intermolecule collision reaction or a synthesis
reaction. 9 specifies the least KE of a molecule. Synthesis
reaction will be chosen when both KEs of the molecules w,
and w, are less than 9, or intermolecular ineffective collision
reaction will take place. When the stopping criterion satisfies
(e.g., a better solution cannot be found after a certain number
of consecutive iterations), the loop will be stopped and the
best solution is just the molecule that possesses the lowest PE.

4. Models

This section discusses the system, application, and task
scheduling model assumed in this work. The definition of the
notations can be found in the Notations section.

4.1. System Model. In this paper, there are multiple heteroge-
neous processors in the target system, which are presented by
P ={p; |i=123,...,|P|}. They are fully interconnected
with high speed network. Each task in a DAG can only be

1

executed on one processor on heterogeneous system. The
edges of the graph are labeled with communication cost
that should be taken into account if its start and end tasks
are executed on different processors. The communication
cost is zero when the same processor is assigned to two
communicating modules.

We assume a static computing system model in which
the constrained relations and the execution costs of tasks
are known a priori and the execution and communication
can be performed simultaneously by the processors. In this
paper, the heterogeneity is represented by ECp (w), which
means the execution cost of a node w using processor P,.
As the assumption of the MHM model, the heterogeneity in
the simulations is set as follows to make a processor have
different speed for different tasks. The value of each ECp (w)
is randomly chosen within the scope of [1 — g%, 1 + g%] by
using a parameter g (g € (0, 1)). Therefore, the heterogeneity
level can be formulated as (1 + g%)/(1 — g%). g is set as the
value that makes the heterogeneity level 2 in this paper unless
otherwise specified.

4.2. Application Model. In DAG scheduling, finding optimal
schedules is to find the scheduling solution with the mini-
mum schedule length. The schedule length encompasses the
entire execution and communication cost of all the modules
and is also termed as makespan. In this paper, the task
scheduling problem is to map a set of tasks to a set of
processors, aiming at minimizing the makespan. It takes as
input a directed acyclic graph DAG = (V, E), with [V| nodes
representing tasks, and |E| edges representing constrained
relations among the tasks. V' = (v, vy,...,¥;,..., V) is @
node sequence in which the hypothetical entry node (with
no predecessors) v; and end node (with no successors)
Viyp» respectively, represent the beginning and the end of
execution. The execution cost value of v; on processor p; is
denoted as EC,, (v;), and the average computation cost of v;,

denoted as W(v;), can be calculated by (12). The parameter
for the amounts of computing power available at each node
in a heterogeneous system and its heterogeneous level value
is given in the 5th paragraph of Section 6 and Table 1.

E ={E, | i = 1,2,3,...,|E|} is an edge set in which
E; = (evyev,ewy,), with evy &ev, € {v,v,,....vy}
representing its start and end nodes, and the value of
communication cost between ev, and ev, is denoted as ew, .
The DAG topology of an exemplar application model and
system model is shown in Figures 1 and 2, respectively.

Consider

(12)

The constrained-critical-path sequence of DAG =
(V,E) is denoted as CCP = (CCP,,CCP,,...,CCPccp|)
with CCP; = (cv;;,¢Vi, ...,V ccp,) in which the set
{evi eVips eV oot SV vas o v

The start time of the task v; on processor p;. is denoted as
ST, (v;), which can be calculated using (13), where Pred(v;) is
the set of the predecessors of the task v;. And the earliest finish

12

The Scientific World Journal

1) fori=1;i<|V];it+

2) for each CCP ;in molecule CCPS

3) for each cv; in CCP;

(4) v, =V

(5) fi=0

(6) pi = spp

(7) Generate a new tuple (v, f;, p;)
(8) end for

9) end for

(10) end for

(12) for each (v;, f;, p;) in reaction molecule S

(22) change p; randomly
(23) end for
(24) return S;

(11) Generate a new reaction molecule S = ((v;, £, p1), (Vs f2, P2)+ s (Vg frvp Py)5

(13) find the first successor Succ(v;) in DAG from i to the end;

(14) for each v € (v;> Suce(v;))

(15) find the first predecessor v, = Pred(vj) from Succ(v;) to the begin in reaction molecule S;
(16) if k<i

17) interchanged position of (v;, f;, p;) and (v}, f;, p;) in reaction molecule S;

(18) end if

19) end for

(20) end for

(21) for each p; in reaction molecule S to randomly change;

ALGORITHM 4: ConvertMole(CCPS) converting a CCPS to an S.

(1) slength = 0;

(4) Find the finish time of v

(5) if slength < EFT,, v)

(6) update scheduling length
slength = EFTPV(V);

(7) endif

(8) end for

(9) return slength;

(2) for each node vin S = ((vy, f1, P1)s (Vs fos P2)s > Vyps fivp Pivy)) do
(3) Calculate the start time of predecessor node pv of v

ST, (v, pv) = max ((EFT,, + CM (v, p,, pv, p,,)) ATy,);

EFT, (v) = max ((STPV (np V)vaePred(V))

+EC, (0);

AvrcoriTHM 5: Fit(S) calculating the fitness value of a molecule and the processor allocation optimization.

time of the task v; on processor py is denoted as EFT, (v;),
which can be calculated using (14):

0) Vl‘ — Vl
max EFT (Vi) s pk — pm
STpk (Vi) = 7 v;ePred(v;) Pr
max (EFT, (v;)+ew;;), £,
vjePred(vi) (Pm (J) J5) Pr# P,
(13)
EFTPk (Vi) = STPk (Vi) + ECpk (Vi) . (14)

The communication to computation ratio (CCR) can
be used to indicate whether a DAG is communication
intensive or computation intensive. For a given DAG, it is

computed by the average communication cost divided by the
average computation cost on a target computing system. The
computation can be formulated as follows:

Z(v,‘,vj,ewi,j)eE eVvi,j
W(Vi)

CCR = (15)

5. Design of TMSCRO

TMSCRO mimics the interactions of molecules in chemical
reactions with the concepts of molecule, atoms, molecular
structure, and energy of a molecule. The structure of a
molecule is unique, which represents the atom positions in a
molecule. The interactions of molecules in four kinds of basic

The Scientific World Journal 13
(1) Initialize PopSize, KELossRate, MoleColl and InitialKE, 6 and 9;
(2) Call Algorithm 2 to generate the initial population of TMSCRO, CROPop;
(3) Call Algorithm 3 to calculate PE of each molecule in CROPop;
(4) while the stopping criteria is not met do
(5) Generatee € [0,1];

(6) if ¢ > MoleColl

(7) Select a reaction molecule S from CROPop randomly;
(8) if (NumHity — MinHitg) > 6) & (S # [nitS)

9) Call DecompT to generate new molecules S} and S};
(10) Call Algorithm 3 to calculate PES; and PESQ;

11) if Inequality (2) holds

(12) Remove S from CROPop;

(13) Add S} and S}, to CROPop;

(14) end if

(15) else

(16) Call OnWallT to generate a new molecules S';

17) Call Algorithm 3 to calculate PEg;

(18) If (S = InitS)

(19) InitS = §';

(20) end if

(21) Remove S from CROPop;

(22) Add S’ to CROPop;

(23) end if

(24) else

(25) Select two molecules S, and S, from CROPop randomly;
(26) if (KEg, < 9) & (KEg, < 9) & (S, # InitS) & (S, # InitS)
(27) Call SynthT to generate a new molecule s’

(28) Call Algorithm 3 to calculate PEg;

(29) if Inequality (10) holds

(30) Remove S, and S, from CROPop;

(31) Add S’ to CROPop;

(32) end if

(33) else

(34) Call IntermoleT to generate two new molecules S; and S;;
(35) Call Algorithm 3 to calculate PEg and PEg ;

(36) if (S, = InitS)

(37) InitS = S};

(38) else if (S, = InitS)

(39) InitS = S};

(40) end if

(41) Remove S, and S, from CROPop;

(42) Add S} and S}, to CROPop;

(43) end if

(44) endif

(45) end while

(46) return the molecule with the lowest PE in CROPop;

ArcoriTHM 6: TMSCRO(DAG) The TMSCRO outline(framework).

chemical reactions, on-wall ineffective collision, decomposi-
tion, intermolecular ineffective collision, and synthesis, aim
to transform to the molecule with more stable states which
has lower energy. In DAG scheduling, a scheduling solution
including a task and processor allocation corresponds to a
molecule in TMSCRO. This paper also designs the operators
on the encoded scheduling solutions (tuple arrays). These
designed operators correspond to the chemical reactions and
change the molecular structures. The arrays with different
tuples represent different scheduling solutions, and we can

calculate the corresponding makespan of the scheduling
solution. A scheduling solution makespan corresponds to the
energy of a molecule.

In this section, we first present the data pretreatment
of the TMSCRO. After the presentation of the encoding of
scheduling solutions and the fitness function used in the
TMSCRO, we present the design of four elementary chemical
reaction operators in each part of the TMSCRO. Finally, we
outline the framework of the TMSCRO scheme and discuss a
few important properties in TMSCRO.

14

TABLE 1: Specific terms and their usage for the CEFT algorithm.

ECp, (w) Execution cost of a node w using processor P,
Communication cost from node v to w, if P, has
CM(w, P,, v, P,) been assigned to node v and P, is assigned to
node w
Possible start time of node w which is assigned

the processor P, with the v node being any

ST, (w, v) predecessor of w which has already been
scheduled

EFT, (w) Finish time of node w using processor P,

AEFT,, Actual finish time of node w

crrr,) T el s cmsned it

ATp Availability time of P,

Pred(w) Set of predecessors of node w

Succ(w) Set of successors of node w

AEC(w) Average execution cost of node w

TaBLE 2: CCP corresponding to the DAG as shown in Figure 1(1).

i CCP,
1 A-B-D
2 C-G
3 F

4 E

5 H

6 I

7 J

TaBLE 3: Configuration parameters for the simulation of TMSCRO.

Parameter Value
InitialKE 1000
0 500
9 10
Buffer 200
KELossRate 0.2
MoleColl 0.2
PopSize 10
g 033
Number of runs 50

TaBLE 4: Configuration parameters for the Gaussian elimination
graphs.

Parameter Possible values
CCR {0.1,0.2,1,2, 5}
Number of processors {4, 8,16, 32}
Number of tasks 27

5.1. Molecular Structure, Data Pretreatment, and Fitness
Function. This subsection first presents the encoding of
scheduling solutions (i.e., the molecular structure) and data
pretreatment, respectively. Then we give the statement of the
fitness function for optimization designed in TMSCRO.

The Scientific World Journal

5.1.1. Molecular Structure and Data Pretreatment. A reason-
able initial population in CRO-based methods may increase
the scope of searching over the fitness function [20] to
support faster convergence and to result in a better solution.
Constrained critical paths (CCPs) can be seen as the classifi-
cation of task sequences constructed by constrained earliest
finish time (CEFT) algorithm, which takes into account all
factors in DAG (i.e., the average of each task execution
cost, the communication costs, and the graph topology).
Therefore, TMSCRO utilizes the CCPs to create a reasonable
initial population based on a broad view of DAG.

The data pretreatment is to generate the CCPDAG
from DAG and to construct CCPS for the initialization
of TMSCRO. The CCPDAG is a directed acyclic graph
with |CCP| nodes representing constrained critical paths
(CCP,), two virtual nodes (i.e., start and end) representing
the beginning and exit of execution, respectively, and |CE|
edges representing dependencies among the nodes. The edges
of CCPDAG are not labeled with communication overhead
which is different from DAG. The data pretreatment includes
two steps.

(1) The CCP and the processor allocation of each element
of CCP in DAG can be obtained by executing CEFT
and the first initial CCP solution, InitCCPS =
((CCPy, sp;), (CCP,, 5py), - . ., (CCPccpy» SPiccp))
can also be got, in which ((CCP;,sp;)) is sorted as
the generated order of CCP; and sp; is processor
assignment of CCP; after executing CEFT. Consider
the graph as shown in Figure 1; the resulting CCPs
are indicated in Table 2.

(2) After the execution of CEFT for DAG, the CCPDAG is
generated with the input of CCP and DAG. A detailed
description is given in Algorithm 2.

As shown in Algorithm 1, the edge E; of DAG with the
start node CCP; and the end node CCP, is obtained in each
loop (line1). BelongCCP(v;) represents which CCP; in CCPv;
belongs to (line 2 and line 3). If CCP, and CCP, are different
CCPs and there is no edge between them (line 4), then the
edge between CCP, and CCP, is generated (line 5). Finally,
the nodes, start and end, and the edges among them and CCP
nodes are added (line 7, line 8, and line 9). Consider the DAG
as shown in Figure 1 and the CCP as indicated in Table 1. The
resulting CCPDAG is shown in Figure 3.

In this paper, there are two kinds of molecular structures
of TMSCRO, CCPS, and S. CCP molecular structure CCPS
is just used in the initialization of TMSCRO, which can
be formulated as in (16). Whereas the reaction molecular
structure S converted from CCPS is used to participate in
the elementary reaction of TMSCRO. In CCPS, ((CCP;, sp;))s
are sorted as the topology of CCPDAG in which CCP; is
constrained critical path (CCP), and sp; is the processor
assigned to CCP;. |CCP| < [|V| because the number of
elements in each SCCP; is greater than or equal to one.
A reaction molecule S can be formulated as in (17), which
consists of an array of atoms (i.e., tuples) representing a
solution of DAG scheduling problem. A tuple includes three
integers v;, f;, and p;. The reaction molecular structure S is

The Scientific World Journal 15
TABLE 5: The experiment results for the Gaussian elimination graph under different processors, CCR = 0.2.
HEFT_B HEFT.T DMSCRO TMSCRO TMSCRO TMSCRO TMS.CRO
The number (the variance of
(the average (the average (the average (the average (the best (the worst
of processors makespan) makespan) makespan) makespan) makespan) makespan) resultant
P p P P P P makespans)
112.2 122.227 109.9 109.31 109.2 109.9 0.2473
112.2 112.648 108.9 107.83 107.1 108.9 0.9613
16 80.4 92.354 775 76.62 76.3 78.9 1.6696
32 79.64 85.454 775 76.62 76.1 78.9 1.7201
TABLE 6: The experiment results for the Gaussian elimination graph under different CCRs; the number of processors is 8.
HEFT_B HEFT_T DMSCRO TMSCRO TMSCRO TMSCRO (thzl\\//igiicoe of
CCR (the average (the average (the average (the average (the best (the worst resultant
makespan) makespan) makespan) makespan) makespan) makespan) makespans)
0.1 108.2 110.312 106.78 105.04 104.76 106.6 1.7271
0.2 112.2 112.648 108.9 107.83 1071 108.9 0.9613
1 120.752 124.536 115.63 114.717 114.3 115.4 0.3787
2 207.055 197.504 189.4 188.303 188.1 188.75 0.1522
5 263.8 263.8 252.39 250.671 250.3 251.79 0.9178

encoded with each integer in the permutation representing
a task in DAG, the constraint relationship between a tuple
and the one before it, and the processor p;. In each reaction
molecular structure S, v; represents a task in DAG and
(V15 V3. .., Vpy)) is a topological sequence of DAG. In S, if v
of the tuple A, which is before tuple B, is the predecessor of
vg of tuple B in DAG, the second integer of tuple B, f3, will
be 1, or it will be 0. p; represents the processor allocation of
each v; in the tuple. The sequence of the tuples in a reaction
molecular structure S represents the scheduling order of each
task in DAG:

CCPS

= ((CCPI’ SP1) > (CCPZ, sz) e (CCPICCPI’ SP|cc1=|)) >
(16)

S= ((Vl’fl’pl)’(v2>f2’p2)""’(VIVI’fIVI’pIVI))' (17)

5.1.2. Fitness Function. The initial molecule generator is used
to generate the initial solutions for TMSCRO to manipulate.
The first molecule InitS is converted from InitCCPS. Part
three sp; of each tuple is generated by a random perturbation
in the first InitCCPS. A detailed description is given in
Algorithms 3 and 4 and presents how to convert a CCPS to
an S.

Potential energy (PE) is defined as the objective function
(fitness function) value of the corresponding solution repre-
sented by S. The overall schedule length of the entire DAG,
namely, makespan, is the largest finish time among all tasks,
which is equivalent to the actual finish time of the end node
in DAG. For the DAG scheduling problem by TMSCRO, the
goal is to obtain the scheduling that minimizes makespan and

TaBLE 7: Configuration parameters for the molecular dynamics code
graphs.

Parameter Possible values
CCR {0.1,0.2,1,2, 5}
Number of processors {4, 8,16, 32}
Number of tasks 41

ensure that the precedence of the tasks is not violated. Hence,
each fitness function value is defined as
PEg = makespan = Fit (S). (18)
Algorithm 5 presents how to calculate the value of the
optimization fitness function Fit(S).

5.2. Elementary Chemical Reaction Operators. This subsec-
tion presents four elementary chemical reaction operators for
sequence optimization and processor allocation optimization
designed in TMSCRO, including on-wall collision, decompo-
sition, intermolecular collision, and synthesis.

5.2.1. On-Wall Ineffective Collision. In this paper, the operator,
OnWallT, is used to generate a new molecule S’ from a given
reaction molecule S for optimization. OnWallT works as
follows. (1) The operator randomly chooses a tuple (v;, f;, p;)
with f; = 0in S and then exchanges the positions of (v;, f;, p;)
and (vi_y, fiop> Pic1)- (2) fioi» fiand f;,; in S are modified as
defined in the last paragraph of Section 5.1.1. (3) The operator
changes p; randomly. In the end, the operator generates a new
molecule S’ from S as an intensification search. Figures 4 and
5 show the example which is the molecule corresponding to
the DAG as shown in Figure 1(2).

16

The Scientific World Journal

TABLE 8: The experiment results for the molecular dynamics code graph under different processors, CCR = 1.0.

HEFT_B HEFT.T DMSCRO TMSCRO TMSCRO TMSCRO TMS.CRO
The number (the variance of
(the average (the average (the average (the average (the best (the worst
of processors makespan) makespan) makespan) makespan) makespan) makespan) resultant
P p P P P P makespans)
149.205 142.763 139.51 138.13 137.87 138.6 0.1749
131.031 122.265 118.8 116.9 116.2 117.33 0.2764
16 124.868 115.584 113.52 113.36 113.1 113.43 0.0237
32 120.047 103.784 102.617 101.29 101.023 101.47 0.0442

TABLE 9: The experiment results for the molecular dynamics code graph under different CCRs; the number of processors is 16.

HEFT_ B HEFT.T DMSCRO TMSCRO TMSCRO TMSCRO (thzl\\:lsriicoe of
CCR (the average (the average (the average (the average (the best (the worst resultant
makespan) makespan) makespan) makespan) makespan) makespan) makespans)
0.1 82.336 90.136 80.53 77781 773 78.9 0.9459
0.2 82.356 87.504 80.53 78.704 78.21 79.13 0.2002
1 124.868 115.584 113.52 113.36 113.1 113.43 0.0237
2 216.735 174.501 167.612 164.7 164.32 164.91 0.0742
5 274.7 274.7 265.8 262.173 262.022 262.6 0.1344

TaBLE 10: Configuration parameters for random graphs.

Parameter Possible values
CCR {0.1,0.2,1,2, 5,10}
Number of processors {4, 8,16, 32}
Number of tasks {10, 20, 50}

5.2.2. Decomposition. In this paper, the operator, DecompT,
is used to generate new molecules S| and S} from a given
reaction molecule S. DecompT works as follows. (1) The
operator randomly chooses two tuples (tuples) (v;, f;, p;) with
f; =0and (v;, f,, p,) with f, = 0in S and then finds the tuple
with the first predecessor of (v;, f;, p;), such as (v}, f;, p;),
from the selection position to the beginning of reaction
molecule S. (2) A random number k € [j+1,i—1] is generated,
and the tuple (v;, f;, p;) is stored in a temporary variable temp,
and then from the position i — 1, the operator shifts each tuple
by one place to the right position until a position k. (3) The
operator moves the tuple temp to the position k. The rest of
the tuples in S| are the same as those in S. (4) f;, f;,; and f; in
Sare modified as defined in the last paragraph of Section 5.1.1.
(5) The operator generates the other new molecule S; as the
former steps. The only difference is that, in step 2, we use
(V> f1> pp) instead of (v;, f;, p;). (6) The operator keeps the
tuples in S}, which is at the odd position in S, and retains
the tuples in S, which is at the even position in S, and then
changes the remaining p,s of tuples in S|” and S}, randomly.
In the end, the operator generates two new molecules S/ and
S, from S as a diversification search. Figures 6 and 7 show the
example which is the molecule corresponding to the DAG as
shown in Figure 1(2).

5.2.3. Intermolecular Ineffective Collision. In this paper, the
operator, IntermoleT, is used to generate new molecules S;
and S, from given molecules S, and S,. This operator first
uses the steps in OnWallT to generate S; from S;, and then
the operator generates the other new molecule S, from S,
in similar fashion. In the end, the operator generates two
new molecules S and S, from S; and S, as an intensification
search. Figures 8 and 9 show the example which is the
molecule corresponding to the DAG as shown in Figure 1(2).

5.2.4. Synthesis. In this paper, the operator, SynthT, is used to
generate a new molecule S’ from given molecules S, and S,
for optimization. SynthT works as follows. (1) If [V] is plural,
then the integer i = |V|/2; elsei = (V] + 1)/2. (2) S; and
S, are cut off at the position i to become the left and right
segments. (3) The left segments of S’ are inherited from the
left segments of S;, randomly. (4) Each tuple in the right
segments of S’ comes from the tuples in S, that do not appear
in the left segment of S', with their f, modified as defined
in the last paragraph of Section 5.1.1 as well. (5) The operator
keeps the tuples in S', which are at the same position in S, and
S, with the same p,s, and then changes the remaining p,s in

S, randomly. As a result, the operator generates S’ from S,
and S, as a diversification search. Figures 10 and 11 show the
example which is the molecule corresponding to the DAG as
shown in Figure 1(2).

5.3. The Framework and Analysis of TMSCRO. The frame-
work of TMSCRO is shown as an outline to schedule a DAG
job in Algorithm 6 and the output of Algorithm 6 is just
the resultant near-optimal solution for the corresponding
DAG scheduling problem. In this framework, TMSCRO first

The Scientific World Journal

17

TaBLE 11: The experiment results for the random graph under different task numbers, CCR = 10; the number of processors is 32.

The number of tasks (;?:iige TMSCRO TMSCRO (thzl\\//ii?r?coe of
(the best makespan) (the worst makespan)
makespan) resultant makespans)
10 73 67 65.1 62.2
20 148.9 143.9 139.421 136.8
50 350.7 341.7 334.17 331.9

TABLE 12: The experiment results for the random graph under different processors, CCR = 0.2; the number of tasks is 50.

HEFT_B HEFT_T DMSCRO TMSCRO TMSCRO TMSCRO TMS.CRO
The number (the variance of
(the average (the average (the average (the average (the best (the worst
of processors makespan) makespan) makespan) makespan) makespan) makespan) resultant
P P p P P P makespans)
4 167.12 178.023 159.234 157.63 15712 158.3 0.3923
136.088 145.649 128.17 127178 127.06 127.7 0.1949
16 119.292 125.986 115.9 114.33 114.1 115.2 0.4753
32 111.866 120.065 108.7 108.71 108.31 108.9 0.0733

initializes the process. Then, the process enters a loop. In each
iteration, one of the elementary chemical reaction operators
for optimization is performed to generate new molecules
and PE of newly generated molecules will be calculated.
The whole working of TMSCRO for DAG scheduling on
heterogeneous problem is as presented in the last paragraph
in Section 3.2. However, InitS is considered to be a super
molecule [6], so it will be tracked and only participates in
on-wall ineffective collision and intermolecular ineffective
collision to explore as much as possible the solution space in
its neighborhoods and the main purpose is to prevent InitS
from changing dramatically. The iteration repeats until the
stopping criteria are met. The stopping criteria may be set
based on different parameters, such as the maximum amount
of CPU time used, the maximum number of iterations
performed, an objective function value less than a predefined
threshold obtained, and the maximum number of iterations
performed without further performance improvement. The
stopping criterion of TMSCRO in the experiments of this
paper is that the makespan is not changed after 5000 consecu-
tive iterations in each loop. The time complexity of TMSCRO
is O(iters x [2 x (JV]* + |E| x |P|)], where iters is the number
of iterations in TMSCRO, respectively.

It is very difficult to theoretically prove the optimality
of the CRO (as well as DMSCRO and TMSCRO) scheme
[37]. However, by analyzing the molecular structure, chem-
ical reaction operators, and the operational environment in
TMSCRO, it can be shown to some extent that TMSCRO
scheme has the advantage of three points in comparison with
GA, SA, and DMSCRO.

First, just like DMSCRO, TMSCRO enjoys the advantages
of GA and SA to some extent by analyzing the chemical
reaction operators designed in TMSCRO and the operator
environment of TMSCRO: (1) the OnWallT and IntermoleT
in TMSCRO exchange the partial structure of two differ-
ent molecules like the crossover operator in GA. (2) The

energy conservation requirement in TMSCRO is able to
guide the searching of the optimal solution in a similar
way as the Metropolis Algorithm of SA guides the evolution
of the solutions in SA. Second, constrained earliest finish
time (CEFT) algorithm constructs constrained critical paths
(CCPs) by taking into account a broader view of the input
DAG [5]. TMSCRO applies CEFT and CCPDAG to the
data pretreatment and utilizes CCPs in the initialization of
TMSCRO to create a more reasonable initial population
than DMSCRO for accelerating convergence, because a wide
distributed initial population in CRO-based methods may
increase the scope of searching over the fitness function
[20] to support faster convergence and to result in a better
solution. Moreover, to some degree, InitS is also similar to the
super molecule in super molecule-based CRO or the “elite”
in GA [6]. However, the “elite” in GA is usually generated
from two chromosomes, while InitS is based on the whole
input DAG by executing CEFT. Third, the operators with the
molecular structure in TMSCRO are designed more reason-
ably than DMSCRO. In CRO-based algorithm, the operators
of on-wall collision and intermolecular collision are used
for intensifications, while the operators of decomposition
and synthesis are for diversifications. The better the operator
can get the better the search results of intensification and
diversification are. This feature of CRO is very important,
which gives CRO more opportunities to jump out of the local
optimum and explore the wider areas in the solution space.
In TMSCRO, the operators of OnWallT and IntermoleT
every time only exchange the positions of one tuple and its
former neighbor in the molecule with better capability of
intensification on sequence optimization than DMSCRO, of
which the reaction operators, OnWall (w;) and Intermole
(w;,w,) [37] (w, and w, are big molecules in DMSCRO),
may change the task sequence(s) dramatically. Moreover,
under the consideration that the optimization includes not
only sequence but also processor assignment optimization,

18

The Scientific World Journal

TABLE 13: The experiment results for the random graph under different processors, CCR = 1.0; the number of tasks is 50.

HEFT_B HEFT.T DMSCRO TMSCRO TMSCRO TMSCRO TMS.CRO
The number (the variance of
(the average (the average (the average (the average (the best (the worst
of processors makespan) makespan) makespan) makespan) makespan) makespan) resultant
P p P P P P makespans)
178.662 175.52 168.12 167.703 167.42 168 0.0857
138.572 136.47 131.8 131.451 131.1 131.9 0.178
16 125.772 124.31 122.91 122.32 122.1 122.432 0.0233
32 11711 116.4 114.124 113.127 112.9 113.54 0.1348
TABLE 14: The experiment results for the random graph under different task CCRs, the number of tasks is 50.
CCR The number of The number of The number of The number of
processors is 4 processors is 8 processors is 16 processors is 32
0.1 156.97 115.724 110.3 101.87
0.2 157.63 127178 114.33 108.71
1 167.703 131.451 122.32 113.127
2 294.042 289.878 273.375 269.514
5 473.5 467.61 429.13 428.13

all reaction operators in TMSCRO can change the processor
assignment, but DMSCRO has only two reactions, on-wall
and synthesis [37], for processor assignment optimization.
On the one hand, TMSCRO has 100% probability of searching
the processor assignment solution space by four elemen-
tary reactions, with better capability of diversification and
intensification on processor assignment optimization than
DMSCRO, of which the chance to search this kind of
solution space is only 50%. On the other hand, the division
of diversification and intensification of four reactions in
TMSCRO is very clear; however, this is not in DMSCRO. In
each iteration, the diversification and intensification search
in TMSCRO have the same probability to be conducted,
whereas the possibility of diversification or intensification
search in DMSCRO is uncertainty. This design enhances the
ability to get better rapidity of convergence and search result
in the whole solution space, which is demonstrated by the
experimental results in Section 6.3.

6. Simulation and Results

The simulations have been performed to test TMSCRO
scheduling algorithm in comparison with heuristic (HEFT_B
and HEFT_T) [8] for DAG scheduling and with two
metaheuristic algorithms, double molecular structure-based
chemical reaction optimization (DMSCRO) [37], by using
two sets of graph topology such as the real world application
(Gaussian elimination and molecular dynamics code) and
randomly generated application. The task graph for Gaussian
elimination for input matrix of size 7 is shown in Figure 12,
whereas a molecular dynamics code graph is shown in
Figure 13. Figure 14 shows a random graph with 10 nodes.
The baseline performance is the makespan obtained by
DMSCRO.

Considering that HEFT_B and HEFT_T have better per-
formance than other heuristics algorithms for DAG schedul-
ing on heterogeneous computing systems, as proposed in the
8th paragraph in Section 2.1, these two algorithms are used to
be the representatives of heuristics in the simulation. There
are three reasons why we regard the makespan performance
of DMSCRO [37] scheduling as the baseline performance.
(1) So far as we know, DMSCRO is the only one CRO-based
algorithm for DAG scheduling which takes into account the
searching of the task order and processor assignment. (2)
As discussed in the 3rd paragraph of Section 2.2, DMSCRO
[37] has the closest system model and workload to that
of TMSCRO. (3) In [37], CRO-based scheduling algorithm
is considered as absorbing the strengths of SA and GA.
However, the underlying principles and philosophies of SA
are very different from DMSCRO, and because the DMSCRO
is also proved to be more effective than genetic algorithm
(GA) [15] as presented in [37], we just use DMSCRO to
represent the metaheuristic algorithms. We propose to make
a comparison between TMSCRO and DMSCRO to validate
the advantages of TMSCRO over DMSCRO.

The performance has been evaluated by the parameter
makespan. The makespan values plotted in the bar graph of
makespan and the chart of converge trace are, respectively,
the average result of 50 and 25 independent runs to validate
the robustness of TMSCRO. The communication cost is
calculated by using computation costs and the computation
cost ratio (CCR) values. The computation can be formulated
asin (17):

Communication Cost = CCR * Computation Cost. (19)
All the suggested values for the other parameters of the

simulation of TMSCRO and their values are listed in Table 3.
These values are proposed in [20].

The Scientific World Journal

6.1. Real World Application Graphs. The real world applica-
tion set is used to evaluate the performance of TMSCRO,
which consists of two real world problem graph topologies,
Gaussian elimination [22] and molecular dynamics code [19].

6.1.1. Gaussian Elimination. Gaussian elimination is a well-
known method to solve a system of linear equations. Gaussian
elimination converts a set of linear equations to the upper
triangular form by applying elementary row operators on
them systematically. As shown in Figure 12, the matrix size
of the task graph of Gaussian elimination algorithm is 7, with
27 tasks in total. In [37], this DAG has been used for the
simulation of DMSCRO, and we also apply it to the evaluation
of TMSCRO in this paper. Under the consideration that graph
structure is fixed, the variable parameters are only 22 the
communication to computation ratio (CCR) value and the
heterogeneous processor number. In the simulation, CCR
values were setas 0.1, 0.2, 1, 2, and 5, respectively. Considering
the identical operator is executed on each processor and the
information communicated between heterogeneous proces-
sors is the same in Gaussian elimination, the execution cost of
each task is supposed to be the same and all communication
links have the same communication cost.

The parameters and their values of the Gaussian elimina-
tion graphs performed in the simulation are given in Table 4.

The makespan of TMSCRO, DMSCRO, HEFT_B, and
HEFT_T under the increasing processor number is shown
in Figure 15. As shown in Figure 15, it can also been seen
that as the processor number increases, the average makespan
declines, and the advantage of TMSCRO and DMSCRO over
HEFT_B and HEFT_T also decreases, because when more
computing nodes are contributed to run the same scale of
tasks, less intelligent scheduling algorithms are needed in
order to achieve good performance.

As the intelligent random search algorithms, TMSCRO
and DMSCRO search a wider area of the solution space
than HEFT_B, HEFT_T, or other heuristic algorithms, which
narrow the search down to a very small portion of the solu-
tion space. This is the reason why TMSCRO and DMSCRO
are more likely to obtain better solutions and outperform
HEFT_B and HEFT_T.

The simulation results show that the performance of
TMSCRO and DMSCRO is very similar to the fundamental
reason that these algorithms are metaheuristic algorithms.
Based on No-Free-Lunch Theorem in the field of metaheuris-
tics, the performances of all well-designed metaheuristic
search algorithms for optimal solution are the same, when
averaged over all possible objective functions. The optimal
solution will be gradually approached by a well-designed
metaheuristic algorithm in theory, if it runs for long enough.
The DMSCRO developed in [37] is well-designed, and we
use it in the simulations of this paper. Therefore similar
simulation results of the performances of TMSCRO and
DMSCRO indicate that TMSCRO we developed is also well-
designed. The detailed experiment result is shown in Table 5.

In Figure 15, the figure shows that TMSCRO is superior
to DMSCRO slightly. There will be only one reason for it: the
stopping criteria set in this simulation are that the makespan

19

stays unchanged for 5000 consecutive iterations in the search
loop. As discussed in the last paragraph of Section 5, all
metaheuristic methods that search for optimal solutions are
the same in performance when averaged over all possible
objective functions. And these experimental stopping criteria
make TMSCRO and DMSCRO run for long enough to
gradually approach the optimal solution. Moreover, better
convergence of TMSCRO makes it more efficient in searching
good solutions than DMSCRO by running much less itera-
tion times. More detailed experiment results in this regard
will be presented in Section 6.3.

Figure 16 shows that the average makespan of these four
algorithms increases rapidly under the CCR increasing. The
reason for it is because as CCR increases, the application
becomes more communication intensive, making the het-
erogeneous processors in the idle state for longer. As shown
in Figure 16, TMSCRO and DMSCRO outperform HEFT_B
and HEFT_T with the advantage being more obvious as
CCR becomes larger. These experimental results suggest
that, for communication-intensive applications, TMSCRO
and DMSCRO can deliver more consistent performance and
perform more effectively than heuristic algorithms, HEFT_B
and HEFT_T, in a wide range of scenarios for DAG schedul-
ing. The detailed experiment result is shown in Table 6.

6.1.2. Molecular Dynamics Code. Figure 13 shows the DAG
of a molecular dynamics code as presented in [19]. As
the experiment of Gaussian elimination, the structure of
graph and the number of processors are fixed. The varied
parameters are the number of heterogeneous processors and
the CCR values which are used in our simulation are 0.1, 0.2,
1,2, and 5.

The parameters and their values of the molecular dynam-
ics code graphs performed in the simulation are given in
Table 7.

As shown in Figures 18 and 19, under different hetero-
geneous processor number and different CCR values, the
average makespans of TMSCRO and DMSCRO are over
HEFT_B and HEFT_T, respectively. In Figure 17, it can be
observed that, with the number of heterogeneous processors
increasing, the average makespan decreases. The average
makespan with respect to different CCR values is shown in
Figure 18. The average makespan increases with the value of
CCR increasing. The detailed experiment results are shown
in Tables 8 and 9, respectively.

6.2. Random Generated Application Graphs. An effective
mechanism to generate random graph for various applica-
tions is proposed in [42]. By using the probability for an
edge between any two nodes, it can generate a random graph
without incline towards a specific topology.

In the random graph generation of this mechanism,
the topological order is used to guarantee the precedence
constraints; that is, an edge exists between two nodes v, and
v, only if v; < v,. For probability pb, [|[V] * pb] edges are
created from every node m to another node (N, + (1/pb) =
i) mod |V|, where 1 < i < [|V] = pb], and | V] is the total
account of task nodes in DAG.

20

TaBLE 15: Configuration parameters of convergence experiment for
the Gaussian elimination graph.

The Scientific World Journal

TaBLE 17: Configuration parameters of convergence experiment for
the random graphs.

Parameter Value Parameter Values
CCR 0.2 CCR {0.2,1}
Number of processors 8 Number of processors {8, 16}
Number of tasks 27 Number of tasks {10, 20, 50}

TaBLE 16: Configuration parameters of convergence experiment for
the molecular dynamics graph.

Parameter Value
CCR 1
Number of processors 16
Number of tasks 41

The parameters and their values of the random graphs
performed in the simulation are given in Table 10.

Figure 19 shows that TMSCRO always outperforms
HEFT_B, HEFT_T, and DMSCRO with the number of tasks in
a DAG increasing. The comparison of the average makespan
of four algorithms under the increase of heterogeneous
processor number is shown in Figures 20 and 21. As can
be seen from these figures, the performance of TMSCRO
is better than the other three algorithms in all cases. The
reasons for these two figures are the same as those explained
in Figure 15. The detailed experiment results are shown in
Tables 11, 12, and 13, respectively.

As shown in Figure 22, it can be observed that the
average makespan approached by TMSCRO increases rapidly
with CCR values increasing. This may be because as CCR
increases, the application becomes more communication
intensive, making the heterogeneous processors in the idle
state for longer. The detailed experiment results are shown in
Table 14.

6.3. Convergence Trace of TMSCRO. The result of the
experiments in the previous subsections is the final
makespan obtained by TMSCRO and DMSCRO, showing
that TMSCRO can obtain similar makespan performance
as DMSCRO. Moreover, in some cases the final makespan
achieved by TMSCRO is even better than that by DMSCRO
after the stop criteria are satisfied. In this section, the change
of makespan in the experiments as TMSCRO and DMSCRO
progress during the search is demonstrated by comparing
the convergence trace of these two algorithms. These
experiments help further reveal the better performance of
TMSCRO on convergence and can also help explain why the
TMSCRO sometimes outperforms DMSCRO in some cases.

The parameters and their values of the Gaussian elimi-
nation, molecular dynamics code, and random graphs per-
formed in the simulation are given in Tables 15, 16, and 17,
respectively.

Figures 23 and 24, respectively, plot the convergence
traces for processing Gaussian elimination and the molecular
dynamics code. Figures 25, 26, and 27 show the convergence
traces when processing the sets of randomly generated

TaBLE 18: The results of the statistical analysis over the average
coverage rate at different sampling times of all the experiments (the
threshold of P is set as 0.05).

The value of P after Average

DAG . convergence
Friedman test . .
acceleration ratio

Gaussian elimination 7.10%x 1078 4.23%
Molecular dynamics 254 % 108 721%
code
Random graph with 426 % 10°° 23.27%
10 tasks
Random graph with 3 0
20 tasks 3.48 x 10 16.41%
Random graph with 8 o
50 tasks 2.58 x 10 13.32%

DAGs and each set contains the DAGs of 10, 20, and
50 tasks, respectively. These figures demonstrated that the
makespan performance decreases quickly as both TMSCRO
and DMSCRO progress and that the decreasing trends tail
oft when the algorithms run for long enough. These figures
also show that, in most cases, the convergence traces of
both algorithms are rather different even though the final
makespans obtained by them are almost the same.

The statistical analysis results over the average coverage
rate at 5000 ascending sampling points from start time to
end time of all the experiments are shown in Table 18 (the
threshold of P is set as 0.05), which are obtained by Friedman
test, and each experiment is carried out 25 times. We can find
that the differences between two algorithms in performance
are significant from a statistical point of view. The reason
of it is because the super molecule makes TMSOCRO have
a stronger convergence capability, especially early in each
run. Moreover, the performance of TMSCRO on convergence
is better than DMSCRO. Quantitatively, our records show
that TMSCRO converges faster than DMSCRO by 12.89% on
average in all the cases (by 23.27% on average in the best case).

In these experiments, the stopping criteria of the algo-
rithms are that the algorithm stops when the makespan
performance remains unchanged for a preset number of
consecutive iterations in the search loop (in the experiments,
it is 5000 iterations). In reality, the algorithms can also
stop when the total processing time of it reaches a preset
value (e.g., 180s). Moreover, both of TMSCRO and DMSCRO
have the same initial population. In this case, the fact that
TMSCRO outperforms DMSCRO on convergence means
that the makespan achieved by TMSCRO could be much
better than that by DMSCRO when the stopping criteria
of the algorithm are satisfied. The reason for this can be

The Scientific World Journal

explained by the analysis presented in the last paragraph of
Section 5.3.

7. Conclusion

In this paper, we developed a TMSCRO for DAG scheduling
on heterogeneous systems based on chemical reaction opti-
mization (CRO) method. With a more reasonable reaction
molecular structure and four designed elementary chemical
reaction operators, TMSCRO has a better ability on inten-
sification and diversification search than DMSCRO, which
is the only one CRO-based algorithm for DAG scheduling
on heterogeneous systems as far as we know. Moreover,
in TMSCRO, the algorithm constrained earliest finish time
(CEFT) and constrained-critical-path directed acyclic graph
(CCPDAGQG) are applied to the data pretreatment, and the
concept of constrained paths (CCPs) is also utilized in the
initialization. We also use the first initial molecule, InitS, to
be a super molecule for accelerating convergence. As a meta-
heuristic method, the TMSCRO algorithm can cover a much
larger search space than heuristic scheduling approaches. The
experiments show that TMSCRO outperforms HEFT_B and
HEFT _T and can achieve a higher speedup of task executions
than DMSCRO.

In future work, we plan to extend TMSCRO by apply-
ing synchronous communication strategy to parallelize the
processing of TMSCRO. This kind of design will divide
the molecules into groups and each group of molecules is
handled by a CPU or GPU. So, multiple groups can be
manipulated simultaneously in parallel and molecules can
also be exchanged among the CPUs or GPUs from time to
time in order to reduce the time cost.

Notations

DAG = (V,E): Input directed acyclic graph with

|[V| nodes representing tasks, and

|E| edges representing constrained

relations among the tasks

V. = (v, v,..., Node sequence in which the

Viv)): hypothetical entry node (with no
predecessors) v, and end node (with
N0 Successors) vy, respectively,
represent the beginning and end of
execution

E ={E; | i = 1,2,3, Edge set in which

. |El}: E; = (evg, ev,, ew,,), with

ev, &ev, € {v,v,,..., v}
representing its start and end nodes,
and the value of communication
cost between ev, and ev, denoted as
ewS,E

P ={p;, | i =1,2,3, Set of multiple heterogeneous

..., |Pl}: processors in target system

21

CCP = (CCP,, CCP,, Constrained-critical-path sequence

ey CCP|CCP|): of DAG = (‘/, E)

CCP,; = (cv;,cV;,,..., Constrained critical path in which

CVijcep,)): the set {cv; 1, ¢v;5, ..., €V ccp,} €
v vyt

CCPDAG: Directed acyclic graph with |[CCP|

nodes representing CCPs, two
virtual nodes (i.e., start and end)
representing the beginning and exit
of execution, respectively, and |CE|
edges representing dependencies
among all nodes

CCPS = ((CCPy, sp;), A CCP molecule used in the

(CCP,,sp,)s .. initialization of TMSCRO, in which

(CCPiccp)> SPiccpy)): sP; is the processor assigned to the
constrained-critical-path CCP;

S = ((vy, f1> p1)> (v, A reaction molecule (i.e., solution)

f2’ pZ)’ . .,(Vlvl, fIVI’ in TMSCRO

o))

(vi» fi» Pi): Atom (i.e., tuple) in S

InitCCPS: The first CCP molecule for the
initialization of TMSCRO

InitS: The first molecule in TMSCRO

BelongCCP(w): CCP; that node w belongs to

CCPE(CCPs, CCP,): Edge between CCPs and CCPe

W(): Average computation cost of node v

EC Py(w): Execution cost of a node w using

processor P,

Communication cost from node v
to w, if P, has been assigned to
node v and P, is assigned to node w

CM(w, P,, v, P,.):

STy (w, v): Possible start time of node w which
is assigned the processor P, with
the v node being any predecessor of
w which has already been
scheduled

EFTp (w): Finish time of node w using
processor P,

ATp: Availability time of P,

Pred(w) : Set of predecessors of node w

Succ(w) : Set of successors of node w

CCR: Communication to computation
ratio

g: The parameter to adjust the
heterogeneity level in a
heterogeneous system

PE: Current potential energy of a
molecule

KE: Current kinetic energy of a
molecule

InitialKE: Initial kinetic energy of a molecule

0: Threshold value guiding the choice
of on-wall collision or
decomposition

9: Threshold value guiding the choice
of intermolecule collision or
synthesis

Buffer: Initial energy in the central energy
buffer

22

KELossRate: Loss rate of kinetic energy

MoleColl: Threshold value to determine whether to per-
form a unimolecule reaction or an inter-
molecule reaction

PopSize: Size of the molecules

NumHit: Total collision number of a molecule.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

(1]

(7]

(8]

(10]

J. L. R. L. Graham, E. L. Lawler, and A. R. Kan, “Optimization
and approximation in deterministic sequencing and scheduling:
a survey, Annals of Discrete Mathematics, vol. 5, pp. 287-326,
1979.

C. Papadimitriou and M. Yannakakis, “Towards an
architecture-independent analysis of parallel algorithms,
in Proceedings of the 20th Annual ACM Symposium on Theory
of Computing (STOC '88), pp. 510-513, 1988.

V. Sarkar, Partitioning and Scheduling Parallel Programs for
Multiprocessors, The MIT Press, Cambridge, Mass, USA, 1989.

P. Chrétienne, “Task scheduling with interprocessor communi-
cation delays,” European Journal of Operational Research, vol. 57,
no. 3, pp. 348-354, 1992.

M. A. Khan, “Scheduling for heterogeneous systems using
constrained critical paths,” Parallel Computing, vol. 38, no. 4-5,
pp. 175-193, 2012.

J. Xu, Y. S. Albert Lam, and O. K. Victor Li, “Stock portfolio
selection using chemical reaction optimization,” in Proceedings
of the International Conference on Operations Research and
Financial Engineering (ICORFE ’11), pp. 458-463, 2011.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for
allocating directed task graphs to multiprocessors,” ACM Com-
puting Surveys, vol. 31, no. 4, pp. 406-471,1999.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol.
13, no. 3, pp. 260-274, 2002.

A. Amini, T. Y. Wah, M. R. Saybani, and S. R. A. S. Yazdi,
“A study of density-grid based clustering algorithms on data
streams,” in Proceedings of the 8th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD '11), pp. 1652—
1656, Shanghai, China, July 2011.

H. Cheng, “A high efficient task scheduling algorithm based on
heterogeneous multi-core processor,” in Proceedings of the 2nd
International Workshop on Database Technology and Applica-
tions (DBTA '10), pp. 1-14, Wuhan, China, November 2010.

T. Tsuchiya, T. Osada, and T. Kikuno, “A new heuristic algo-
rithm based on gas for multiprocessor scheduling with task
duplication,” in Proceedings of the 3rd International Conference
on Algorithms and Architectures for Parallel Processing (ICAPP
'97), pp- 295-308, Melbourne, Australia, December 1997.

R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a
heterogeneous environment,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 2, pp. 107-118, 2004.

(13]

(16]

(18]

(20]

(21]

[24]

(25]

(26]

[27]

(28]

The Scientific World Journal

H.-W. Ge, L. Sun, Y.-C. Liang, and F. Qian, “An effective PSO and
AlS-based hybrid intelligent algorithm for job-shop schedul-
ing, IEEE Transactions on Systems, Man, and Cybernetics A:
Systems and Humans, vol. 38, no. 2, pp. 358-368, 2008.

N. B. Ho and J. C. Tay, “Solving multiple-objective flexible
job shop problems by evolution and local search,” IEEE Trans-
actions on Systems, Man and Cybernetics C: Applications and
Reviews, vol. 38, no. 5, pp. 674-685, 2008.

E. S. H. Hou, N. Ansari, and H. Ren, “Genetic algorithm for
multiprocessor scheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 2, pp. 113-120, 1994.

J.-J. Hwang, Y.-C. Chow, E. D. Anger, and C.-Y. Lee, “Scheduling
precedence graphs in systems with interprocessor communica-
tion times,” SIAM Journal on Computing, vol. 18, no. 2, pp. 244
257,1989.

M. Iverson, E Ozgiiner, and G. Follen, “Parallelizing existing
applications in a distributed heterogeneous environment,” in
Proceedings of the IEEE International Conference on Heteroge-
neous Computing Workshop (HCW ’95), pp. 93-100, 1995.

M. H. Kashani and M. Jahanshahi, “Using simulated annealing
for task scheduling in distributed systems,” in Proceedings
of the International Conference on Computational Intelligence,
Modelling, and Simulation (CSSim '09), pp. 265-269, Brno,
Czech Republic, September 2009.

S. Kim and J. Browne, “A general approach to mapping of
parallel computation upon multiprocessor architectures,” in
Proceedings of the International Conference on Parallel Process-
ing, vol. 3, pp. 1-8, 1988.

A.Y.S.Lamand V. O. K. Li, “Chemical-reaction-inspired meta-
heuristic for optimization,” IEEE Transactions on Evolutionary
Computation, vol. 14, no. 3, pp. 381-399, 2010.

H. Li, L. Wang, and J. Liu, “Task scheduling of computational
grid based on particle swarm algorithm,” in Proceedings of the
3rd International Joint Conference on Computational Sciences
and Optimization (CSO ’10), vol. 2, pp. 332-336, Huangshan,
China, May 2010.

M.-Y. Wu and D. D. Gajski, “Hypertool: a programming aid
for message-passing systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 1, no. 3, pp. 330-343, 1990.

G. C. Sih and E. A. Lee, “Compile-time scheduling heuris-
tic for interconnection-constrained heterogeneous processor
architectures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 2, pp. 175-187,1993.

H. El-Rewini and T. G. Lewis, “Scheduling parallel program
tasks onto arbitrary target machines,” Journal of Parallel and
Distributed Computing, vol. 9, no. 2, pp. 138-153, 1990.

E-T. Lin, “Fuzzy job-shop scheduling based on ranking level
(lambda, 1) interval-valued fuzzy numbers,” IEEE Transactions
on Fuzzy Systems, vol. 10, no. 4, pp. 510-522, 2002.

B. Liu, L. Wang, and Y.-H. Jin, “An effective PSO-based memetic
algorithm for flow shop scheduling,” IEEE Transactions on
Systems, Man, and Cybernetics B: Cybernetics, vol. 37, no. 1, pp.
18-27, 2007.

E Pop, C. Dobre, and V. Cristea, “Genetic algorithm for DAG
scheduling in Grid environments,” in Proceedings of the IEEE
5th International Conference on Intelligent Computer Commu-
nication and Processing (ICCP °09), pp. 299-305, Cluj-Napoca,
Romania, August 2009.

R. Shanmugapriya, S. Padmavathi, and S. M. Shalinie, “Con-
tention awareness in task scheduling using tabu search,” in
Proceedings of the IEEE International Advance Computing Con-
ference (IACC °09), pp. 272-277, Patiala, India, March 2009.

The Scientific World Journal

(29]

(30]

(31]

(35]

(36]

(37]

(38]

(39]

[40]

L. Shi and Y. Pan, “An efficient search method for job-shop
scheduling problems,” IEEE Transactions on Automation Sci-
ence and Engineering, vol. 2, no. 1, pp. 73-77, 2005.

P. Choudhury, R. Kumar, and P. P. Chakrabarti, “Hybrid
scheduling of dynamic task graphs with selective duplication
for multiprocessors under memory and time constraints,” IEEE
Transactions on Parallel and Distributed Systems, vol. 19, no. 7,
pp. 967-980, 2008.

S. Song, K. Hwang, and Y.-K. Kwok, “Risk-resilient heuristics
and genetic algorithms for security-assured grid job schedul-
ing,” IEEE Transactions on Computers, vol. 55, no. 6, pp. 703-719,
2006.

D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd,
“Performance-aware workflow management for grid comput-
ing,” The Computer Journal, vol. 48, no. 3, pp. 347-357, 2005.

K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task
scheduling on heterogeneous computing systems,” IEEE Trans-
actions on Parallel and Distributed Systems, 2014.

J. Wang, Q. Duan, Y. Jiang, and X. Zhu, “A new algorithm for
grid independent task schedule: genetic simulated annealing,”
in Proceedings of the World Automation Congress (WAC ’10), pp.
165-171, Kobe, Japan, September 2010.

L. He, D. Zou, Z. Zhang, C. Chen, H. Jin, and S. Jarvis, “Devel-
oping resource consolidation frameworks for moldable virtual
machines in clouds;” Future Generation Computer Systems, vol.
32, pp. 69-81, 2012.

Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for
task scheduling on heterogeneous computing systems using
multiple priority queues,” Information Sciences, vol. 270, pp.
255-287, 2014.

Y. Xu, K. Li, L. He, and T. K. Truonga, “A DAG scheduling
scheme on heterogeneous computing systems using double
molecular structure-based chemical reaction optimization,”
Journal of Parallel and Distributed Computing, vol. 73, no. 9, pp.
1306-1322, 2013.

J. Xu, A. Lam, and V. Li, “Chemical reaction optimization
for the grid scheduling problem,” in Proceedings of the IEEE
International Conference on Communications (ICC ’10), pp. 1-5,
Cape Town, South Africa, May 2010.

B. Varghese, G. Mckee, and V. Alexandrov, “Can agent intel-
ligence be used to achieve fault tolerant parallel computing
systems?” Parallel Processing Letters, vol. 21, no. 4, pp. 379-396,
2011.

J. Xu, A. Lam, and V. Li, “Chemical reaction optimization
for task scheduling in grid computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 10, pp. 1624-1631,
2011.

T. K. Truong, K. Li, and Y. Xu, “Chemical reaction optimization
with greedy strategy for the 0-1 knapsack problem,” Applied Soft
Computing Journal, vol. 13, no. 4, pp. 1774-1780, 2013.

V. A. F. Almeida, I. M. M. Vasconcelos, J. N. C. Arabe, and D. A.
Menasce, “Using random task graphs to investigate the potential
benefits of heterogeneity in parallel systems,” in Proceedings of
the ACM/IEEE Conference on Supercomputing (Supercomputing
’92), pp. 683-691, IEEE Computer Society Press, Los Alamitos,
Calif, USA, 1992.

23

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

Seniim—- .

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

