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We have given a four-step,multipoint iterativemethodwithoutmemory for solving nonlinear equations.Themethod is constructed
by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and
one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with
some other newly developed sixteenth-ordermethods. Interval Newton’s method is also used for finding the enough accurate initial
approximations. Some figures show the enclosure of finitely many zeroes of nonlinear equations in an interval. Basins of attractions
show the effectiveness of the method.

1. Introduction

Let us consider the problem of approximating the simple root
𝑥
∗ of the nonlinear equation involving a nonlinear univariate

function 𝑓:

𝑓 (𝑥) = 0. (1)

Newton’s method and its variants have always remained as
widely used one-point without memory and one-step meth-
ods for solving (1). However, the usage of single point and
one-step methods puts limit on the order of convergence and
computational efficiency is given as

𝐸 = 𝑝
1/𝜃

, (2)

where 𝑝 is the order of convergence of the iterative method
and 𝜃 is the cost of evaluating 𝑓 and its derivatives.

To overcome the drawbacks of one-point, one-stepmeth-
ods, many multipoint multistep higher order convergent
methods have been introduced in the recent past by using
inverse, Hermite, and rational interpolation [1, 2]. In develop-
ing these methods, so far, the conjecture of Kung and Traub
has remained the focus of attention. It states the following.

Conjecture 1. An optimal iterative method without memory
based on n evaluations would achieve an optimal convergence
order of 2

𝑛−1, hence, a computational efficiency of 2
(𝑛−1)/𝑛.

In [3, 4], Petković presented a general optimal 𝑛-point
iterative scheme without memory defined by

𝑥
𝑘+1

= 𝜙
𝑛

(𝑥
𝑘
) = 𝑁

𝑛−1
(𝑁
𝑛−2

(⋅ ⋅ ⋅ (𝑁
2

(𝜓
𝑓

(𝑥
𝑘
))) ⋅ ⋅ ⋅ )) ,

𝑘 = 0, 1, 2, . . . ,

(3)

where 𝑥
𝑘
is the approximation of the root 𝑥

∗ at the 𝑘th iter-
ation and 𝜓

𝑓
(𝑥
𝑘
) = 𝜙
2
(𝑥
𝑘
) is an arbitrary fourth-order, two-

point method requiring three function evaluations:

𝜙
𝑚+1

(𝑥
𝑘
) = 𝑁

𝑚
(𝜙
𝑚

) = 𝜙
𝑚

−

𝑓 (𝜙
𝑚

)

𝑓
󸀠
(𝜙
𝑚

)

, 𝑚 = 2, . . . , 𝑛 − 1

(4)

is Newton’s method. The derivative at 𝑚 + 1-step is approx-
imated through quasi-Hermite interpolatory polynomial of
degree 𝑚 + 1, denoted by ℎ

󸀠

𝑚+1
(𝜙
𝑚

).
Using this approach, Sargolzaei and Soleymani [5] pre-

sented a three-step optimal eighth-order iterative method.
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However, since the authors approximated the derivative at
the fourth step by using Hermite interpolatory polynomials
of degree three, therefore the fourth-step method given by
Sargolzaei and Soleymani has order of convergence fourteen
including five function evaluations, which is not optimal in
the sense of Kung and Traub.

In this paper, we present an optimal four-step four-point
sixteenth-order convergent method by using quasi-Hermite
interpolation from the general class of Petković [3, 4]. The
interpolation is done by using the Newtonian formulation
given by Traub [6]. The numerical comparisons are given
in Section 4 with recent optimal sixteenth-order convergent
methods based on rational interpolants. Since, the first step of
our method is Newton’s method, thus to overcome the draw-
backs of Newton’s method we have calculated, in Section 5,
accurate initial guess required for the convergence of this
method for some oscillatory functions.

2. Construction of Method

We define the following:

𝑦
𝑛

= 𝑥
𝑛

−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑧
𝑛

= 𝜓
𝑓

(𝑥
𝑛
, 𝑦
𝑛
) ,

𝑡
𝑛

= 𝜑
𝑓

(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝑡
𝑛

−

𝑓 (𝑡
𝑛
)

𝑓
󸀠
(𝑡
𝑛
)

,

(5)

where 𝜓
𝑓
(𝑥
𝑛
, 𝑦
𝑛
) and 𝜑

𝑓
(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) are any arbitrary fourth-

and eighth-order,multipointmethods.We, now, approximate
𝑓
󸀠

(𝑡
𝑛
) with a quasi-Hermite interpolatory polynomial of

degree four satisfying

𝑓 (𝑥
𝑛
) = ℎ
4

(𝑥
𝑛
) ,

𝑓
󸀠

(𝑥
𝑛
) = ℎ
󸀠

4
(𝑥
𝑛
) ,

𝑓 (𝑦
𝑛
) = ℎ
4

(𝑦
𝑛
) ,

𝑓 (𝑧
𝑛
) = ℎ
4

(𝑧
𝑛
) ,

𝑓 (𝑡
𝑛
) = ℎ
4

(𝑡
𝑛
) .

(6)

To construct the interpolatory polynomial ℎ
4
(𝑡), satisfying

the above conditions, we apply the Newtonian representation
of the interpolatory polynomial satisfying the conditions

𝑃
(𝑘𝑗)

(𝑥
𝑖−𝑗

) = 𝑓
(𝑘𝑗)

(𝑥
𝑖−𝑗

) , 𝑘
𝑗

= 0, 1, . . . , 𝛾
𝑗

− 1,

𝛾
𝑗

≥ 1, 𝑗 = 0, 1, 2, 3, . . . .

(7)

Traub [6, p. 243] have given this as follows:

ℎ
4

(𝑡) ≡ 𝑃
3,𝛾

(𝑡)

=

3

∑

𝑗=0

𝛾𝑗−1

∑

𝑙=0

𝐶

𝛾𝑗

𝑙,𝑗
(𝑡) 𝑓 [𝑥

𝑖
, 𝛾
0
; 𝑥
𝑖−1

, 𝛾; . . . ; 𝑥
𝑖−𝑗

, 𝑙 + 1] ,

(8)

𝐶

𝛾𝑗

𝑙,𝑗
(𝑡) = (𝑡 − 𝑥

𝑖−𝑗
)

𝑙

𝑗−1

∏

𝑘=0

(𝑡 − 𝑥
𝑖−𝑘

)
𝛾𝑘

,

−1

∏

0

= 1. (9)

The confluent divided differences involved here are defined
as

𝑓 [𝑥
𝑖
, 𝛾
0
; . . . ; 𝑥

𝑖−𝑞
, 𝛾
𝑞
; . . . ; 𝑥

𝑖−𝑟
, 𝛾
𝑟;

. . . ; 𝑥
𝑖−𝑛

, 𝛾
𝑛
]

=

1

(𝑥
𝑖−𝑞

− 𝑥
𝑖−𝑟

)

× (𝑓 [𝑥
𝑖
, 𝛾
0
; . . . ; 𝑥

𝑖−𝑞
, 𝛾
𝑞
; . . . ; 𝑥

𝑖−𝑟
, 𝛾
𝑟

− 1; . . . ; 𝑥
𝑖−𝑛

, 𝛾
𝑛
]

− 𝑓 [𝑥
𝑖
, 𝛾
0
; . . . ; 𝑥

𝑖−𝑞
, 𝛾
𝑞

− 1;

. . . ; 𝑥
𝑖−𝑟

, 𝛾
𝑟
; . . . ; 𝑥

𝑖−𝑛
, 𝛾
𝑛
] ) ,

𝑓 [𝑥
𝑖−𝑗

; 𝑙 + 1] =

𝑓
(𝑙)

(𝑥
𝑖−𝑗

)

𝑙!

.

(10)

In particular, 𝑓[𝑥
𝑖−𝑗

, 1] = 𝑓[𝑥
𝑖−𝑗

] is the usual divided differ-
ence. Here, we take 𝑥

𝑖
= 𝑡
𝑛
, 𝑥
𝑖−1

= 𝑧
𝑛
, 𝑥
𝑖−2

= 𝑦
𝑛
, 𝑥
𝑖−3

= 𝑥
𝑛

and hence, 𝛾
0

= 1, 𝛾
1

= 1, 𝛾
2

= 1, and 𝛾
3

= 2. Expanding (8),
we get

ℎ
4

(𝑡)

= 𝑓 (𝑡
𝑛
) + (𝑡 − 𝑡

𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
]

+ (𝑡 − 𝑡
𝑛
) (𝑡 − 𝑧

𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
]

+ (𝑡 − 𝑡
𝑛
) (𝑡 − 𝑧

𝑛
) (𝑡 − 𝑦

𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
]

+ (𝑡 − 𝑡
𝑛
) (𝑡 − 𝑧

𝑛
) (𝑡 − 𝑦

𝑛
) (𝑡 − 𝑥

𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 2] .

(11)

Differentiating (11) with respect to “𝑡” and substituting 𝑡 = 𝑡
𝑛

in the above equation, we obtain

ℎ
󸀠

4
(𝑡
𝑛
) = 𝑓 [𝑡

𝑛
, 𝑧
𝑛
] + (𝑡
𝑛

− 𝑧
𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
]

+ (𝑡
𝑛

− 𝑧
𝑛
) (𝑡
𝑛

− 𝑦
𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
]

+ (𝑡
𝑛

− 𝑧
𝑛
) (𝑡
𝑛

− 𝑦
𝑛
) (𝑡
𝑛

− 𝑥
𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 2] ,

(12)

where

𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
] =

1

(𝑡
𝑛

− 𝑦
𝑛
)

(𝑓 [𝑡
𝑛
, 𝑧
𝑛
] − 𝑓 [𝑡

𝑛
, 𝑦
𝑛
]) ,

𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
]

=

1

(𝑡
𝑛

− 𝑥
𝑛
) (𝑡
𝑛

− 𝑦
𝑛
)

(𝑓 [𝑡
𝑛
, 𝑧
𝑛
] − 𝑓 [𝑧

𝑛
, 𝑦
𝑛
])

−

1

(𝑡
𝑛

− 𝑥
𝑛
) (𝑧
𝑛

− 𝑥
𝑛
)

(𝑓 [𝑧
𝑛
, 𝑦
𝑛
] − 𝑓 [𝑦

𝑛
, 𝑥
𝑛
]) ,
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𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 2]

=

1

(𝑡
𝑛

− 𝑥
𝑛
)
2

(𝑡
𝑛

− 𝑦
𝑛
)

(𝑓 [𝑡
𝑛
, 𝑧
𝑛
] − 𝑓 [𝑧

𝑛
, 𝑦
𝑛
])

−

1

(𝑡
𝑛

− 𝑥
𝑛
)
2

(𝑧
𝑛

− 𝑥
𝑛
)

(𝑓 [𝑧
𝑛
, 𝑦
𝑛
] − 𝑓 [𝑦

𝑛
, 𝑥
𝑛
])

−

1

(𝑧
𝑛

− 𝑥
𝑛
)
2

(𝑡
𝑛

− 𝑥
𝑛
)

(𝑓 [𝑧
𝑛
, 𝑦
𝑛
] − 𝑓 [𝑦

𝑛
, 𝑥
𝑛
])

+

1

(𝑡
𝑛

− 𝑥
𝑛
) (𝑧
𝑛

− 𝑥
𝑛
) (𝑦
𝑛

− 𝑥
𝑛
)

× (𝑓 [𝑦
𝑛
, 𝑥
𝑛
] − 𝑓
󸀠

(𝑥
𝑛
)) .

(13)

Using representation (12) of ℎ
󸀠

4
(𝑡
𝑛
) in place of 𝑓

󸀠

(𝑡
𝑛
) at the

fourth step, the new four-step iterative method is obtained as

𝑧
𝑛

= 𝜓
𝑓

(𝑥
𝑛
, 𝑦
𝑛
) ,

𝑡
𝑛

= 𝜑
𝑓

(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝑡
𝑛

−

𝑓 (𝑡
𝑛
)

ℎ
󸀠

4
(𝑡
𝑛
)

,

(14)

where 𝜓
𝑓
(𝑥
𝑛
, 𝑦
𝑛
) and 𝜑

𝑓
(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) are any fourth- and

eighth-order convergent methods, respectively, and

ℎ
󸀠

4
(𝑡
𝑛
) = 𝑓 [𝑡

𝑛
, 𝑧
𝑛
] + (𝑡
𝑛

− 𝑧
𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
]

+ (𝑡
𝑛

− 𝑧
𝑛
) (𝑡
𝑛

− 𝑦
𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
]

+ (𝑡
𝑛

− 𝑧
𝑛
) (𝑡
𝑛

− 𝑦
𝑛
) (𝑡
𝑛

− 𝑥
𝑛
) 𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 2] .

(15)

Theorem 2. Let one consider 𝑥
∗ as a root of nonlinear equa-

tion (1) in the domain 𝐷 and assume that 𝑓(𝑥) is sufficiently
differentiable in the neighbourhood of the root. Then the
iterative method defined by (14) is of optimal order sixteen and
has the following error equation:

𝑒
𝑛+1

= 𝑥
𝑛+1

− 𝑥
∗

= −𝑐
2
𝑏
1

(𝑎
1
𝑐
5

− 𝑏
1
) 𝑒
16

𝑛
+ 𝑂 (𝑒

17

𝑛
) , (16)

where 𝑐
𝑖
, for 𝑖 ≥ 2, are defined by

𝑐
𝑖
=

1

𝑖!

(

𝑓
(𝑖)

(𝑥
∗

)

𝑓
󸀠
(𝑥
∗
)

) , 𝑖 = 0, 1, 2, 3, . . . . (17)

Proof. Wewrite the Taylor series expansion of the function 𝑓

about the simple root 𝑥
∗ in 𝑛th iteration. Let 𝑒

𝑛
= 𝑥
𝑛

− 𝑥
∗.

Therefore, we have

𝑓 (𝑥
𝑛
) = 𝑓
󸀠

(𝑥
∗

) [𝑒
𝑛

+ 𝑐
2
𝑒
2

𝑛
+ 𝑐
3
𝑒
3

𝑛
+ 𝑐
4
𝑒
4

𝑛
+ 𝑐
5
𝑒
5

𝑛

+ 𝑐
6
𝑒
6

𝑛
+ 𝑐
7
𝑒
7

𝑛
+ 𝑐
8
𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
)] .

(18)

Also, we obtain

𝑓
󸀠

(𝑥
𝑛
) = 𝑓
󸀠

(𝑥
∗

) [1 + 2𝑐
2
𝑒
𝑛

+ 3𝑐
3
𝑒
2

𝑛
+ 4𝑐
4
𝑒
3

𝑛
+ 5𝑐
5
𝑒
4

𝑛

+ 6𝑐
6
𝑒
5

𝑛
+ 7𝑐
7
𝑒
6

𝑛
+ 8𝑐
8
𝑒
7

𝑛
+ 𝑂 (𝑒

8

𝑛
)] .

(19)

Now, we find the Taylor expansion of 𝑦
𝑛
, the first step, by

using the above two expressions (18) and (19). Hence, we have

𝑦
𝑛

= 𝑐
2
𝑒
2

𝑛
+ (2𝑐
3

− 2𝑐
2

2
) 𝑒
3

𝑛
+ (3𝑐
4

− 7𝑐
2
𝑐
3

+ 4𝑐
3

2
) 𝑒
4

𝑛

+ (4𝑐
5

− 10𝑐
2
𝑐
4

− 6𝑐
2

3
+ 20𝑐
3
𝑐
2

2
− 8𝑐
4

2
) 𝑒
5

𝑛
+ 𝑂 (𝑒

6

𝑛
) .

(20)

Also, we need the Taylor expansion of 𝑓(𝑦
𝑛
); that is

𝑓 (𝑦
𝑛
)

= 𝑓
󸀠

(𝑥
∗

)

× [𝑐
2
𝑒
2

𝑛
− 2 (𝑐

2

2
− 𝑐
3
) 𝑒
3

𝑛
+ (3𝑐
4

− 7𝑐
2
𝑐
3

+ 5𝑐
3

2
) 𝑒
4

𝑛

− 2 (−2𝑐
5

+ 5𝑐
2
𝑐
4

+ 3𝑐
3

3
− 12𝑐
3
𝑐
2

2
+ 6𝑐
4

2
) 𝑒
5

𝑛
+ 𝑂 (𝑒

6

𝑛
)] .

(21)

In second step, we take a general fourth-order convergent
method as

𝑧
𝑛

= 𝑎
1
𝑒
4

𝑛
+ 𝑎
2
𝑒
5

𝑛
+ 𝑎
3
𝑒
6

𝑛
+ 𝑎
4
𝑒
7

𝑛
+ 𝑎
5
𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) ,

𝑓 (𝑧
𝑛
) = 𝑓
󸀠

(𝑥
∗

) [𝑎
1
𝑒
4

𝑛
+ 𝑎
2
𝑒
5

𝑛
+ 𝑎
3
𝑒
6

𝑛

+ 𝑎
4
𝑒
7

𝑛
+ (𝑐
2
𝑎
2

1
+ 𝑎
5
) 𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
)] .

(22)

Now, we find the Taylor expansion of each divided difference
used at the third step. We thus obtain

𝑓 [𝑥
𝑛
, 𝑦
𝑛
]

= 𝑓
󸀠

(𝑥
∗

) [1 + 𝑐
2
𝑒
𝑛

+ (𝑐
3

+ 𝑐
2

2
) 𝑒
2

𝑛

+ (𝑐
4

+ 3𝑐
2
𝑐
3

− 2𝑐
3

2
) 𝑒
3

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑛
)] ,

𝑓 [𝑥
𝑛
, 𝑧
𝑛
]

= 𝑓
󸀠

(𝑥
∗

) [1 + 𝑐
2
𝑒
𝑛

+ 𝑐
3
𝑒
2

𝑛
+ 𝑐
4
𝑒
3

𝑛

+ (𝑐
5

+ 𝑐
2
𝑎
1
) 𝑒
4

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑛
)] ,

𝑓 [𝑦
𝑛
, 𝑧
𝑛
]

= 𝑓
󸀠

(𝑥
∗

) [1 + 𝑐
2

2
𝑒
2

𝑛
− 2𝑐
2

(−𝑐
3

+ 𝑐
2

2
) 𝑒
3

𝑛

+ 𝑐
2

(3𝑐
4

− 6𝑐
2
𝑐
3

+ 4𝑐
3

2
+ 𝑎
1
) 𝑒
4

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑛
)] ,

𝑓 [𝑦
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
]

= 𝑓
󸀠

(𝑥
∗

) [𝑐
2

+ 2𝑐
3
𝑒
𝑛

+ (3𝑐
4

+ 𝑐
2
𝑐
3
)
2

𝑒
2

𝑛

+ (2𝑐
2
𝑐
4

− 2𝑐
3
𝑐
2

2
+ 4𝑐
5

+ 2𝑐
2

3
) 𝑒
3

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑛
)].

(23)

In the third step, we take a general eighth-order convergent
method as follows:

𝑡
𝑛

= 𝑏
1
𝑒
8

𝑛
+ 𝑏
2
𝑒
9

𝑛
+ 𝑏
3
𝑒
10

𝑛
+ 𝑏
4
𝑒
11

𝑛
+ 𝑏
5
𝑒
12

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

17

𝑛
) ,

(24)
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and the Taylor expansion for 𝑓(𝑡
𝑛
) is

𝑓 (𝑡
𝑛
)

= 𝑓
󸀠

(𝑥
∗

)

× [𝑏
1
𝑒
8

𝑛
+ 𝑏
2
𝑒
9

𝑛
+ 𝑏
3
𝑒
10

𝑛
+ 𝑏
4
𝑒
11

𝑛
+ 𝑏
5
𝑒
12

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

17

𝑛
)] .

(25)

Now,we find the Taylor expansion of divided differences used
at the last step. We, thus, obtain

𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
]

= 𝑓
󸀠

(𝑥
∗

) [𝑐
2

+ 𝑐
2
𝑐
3
𝑒
2

𝑛
− 2𝑐
3

(−𝑐
3

+ 𝑐
2

2
) 𝑒
3

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

17

𝑛
)] ,

𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
]

= 𝑓
󸀠

(𝑥
∗

) [𝑐
3

+ 𝑐
4
𝑒
𝑛

+ (𝑐
2
𝑐
4

+ 𝑐
5
) 𝑒
2

𝑛

+ (2𝑐
3
𝑐
4

− 𝑐
2

2
𝑐
4

+ 𝑐
6

+ 𝑐
2
𝑐
5
) 𝑒
3

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

17

𝑛
)] ,

𝑓 [𝑡
𝑛
, 𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 2]

= 𝑓
󸀠

(𝑥
∗

) [𝑐
4

+ 2𝑐
5
𝑒
𝑛

+ (3𝑐
6

+ 𝑐
2
𝑐
5
) 𝑒
2

𝑛

+ (2𝑐
2
𝑐
6

+ 4𝑐
7

+ 2𝑐
3
𝑐
5

− 2𝑐
2

2
𝑐
5
) 𝑒
3

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

17

𝑛
)].

(26)

Hence, our fourth step defined in (14) becomes

𝑥
𝑛+1

= −𝑐
2
𝑏
1

(𝑎
1
𝑐
5

− 𝑏
1
) 𝑒
16

𝑛
+ 𝑂 (𝑒

17

𝑛
) , (27)

which manifests that (14) is a four-step iterative method
of optimal order of convergence of sixteen consuming four
function evaluations and one derivative evaluation.

Remark 3. It is concluded from Theorem 2 that the new
sixteenth-order convergent iterative method (14) for solv-
ing nonlinear equations satisfies the conjecture of Kung
and Traub that a multipoint method without memory with
four evaluations of functions and a derivative evaluation can
achieve an optimal sixteenth order of convergence (2

4

= 16)

and an efficiency index of 2
4/5

= 1.741.

3. Some Particular Methods

In this section, we consider some particular methods from
the newly developed family of the sixteenth-order convergent
iterative methods.

3.1. IterativeMethodM1. Here, we take𝜓
𝑓
(𝑥
𝑛
, 𝑦
𝑛
) as two-step

fourth-order convergent method defined by Geum and Kim
[7] and the third-step 𝜑

𝑓
(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) is replaced by the third

step of eighth-order convergent method given by [5] using

Hermite interpolation. Hence, our four-step method
becomes

𝑦
𝑛

= 𝑥
𝑛

−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑧
𝑛

= 𝑦
𝑛

− (1 +

𝑓(𝑦
𝑛
)

𝑓(𝑥
𝑛
)

)

2

𝑓 (𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑡
𝑛

= 𝑧
𝑛

− 𝑓 (𝑧
𝑛
)

× (2𝑓 [𝑥
𝑛
, 𝑧
𝑛
] + 𝑓 [𝑦

𝑛
, 𝑧
𝑛
] − 2𝑓 [𝑥

𝑛
, 𝑦
𝑛
]

+ (𝑦
𝑛

− 𝑧
𝑛
) 𝑓 [𝑦

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
])
−1

,

𝑥
𝑛+1

= 𝑡
𝑛

−

𝑓 (𝑡
𝑛
)

ℎ
󸀠

4
(𝑡
𝑛
)

,

(28)

where ℎ
󸀠

4
(𝑡
𝑛
) is given by (15).

3.2. IterativeMethodM2. Here, we define𝜓
𝑓
(𝑥
𝑛
, 𝑦
𝑛
) as King’s

two-step fourth-order convergent method [8] with 𝛽 = 0, as

𝑦
𝑛

= 𝑥
𝑛

−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑧
𝑛

= 𝑦
𝑛

−

𝑓 (𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)

.

(29)

Hence, our four-step iterative method becomes

𝑦
𝑛

= 𝑥
𝑛

−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑧
𝑛

= 𝑦
𝑛

−

𝑓 (𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)

,

𝑡
𝑛

= 𝑧
𝑛

− 𝑓 (𝑧
𝑛
)

× (2𝑓 [𝑥
𝑛
, 𝑧
𝑛
] + 𝑓 [𝑦

𝑛
, 𝑧
𝑛
] − 2𝑓 [𝑥

𝑛
, 𝑦
𝑛
]

+ (𝑦
𝑛

− 𝑧
𝑛
)𝑓[𝑦
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
])
−1

,

𝑥
𝑛+1

= 𝑡
𝑛

−

𝑓 (𝑡
𝑛
)

ℎ
󸀠

4
(𝑡
𝑛
)

,

(30)

where ℎ
󸀠

4
(𝑡
𝑛
) is given by (15).

4. Numerical Results and Computational Cost

In this section, we compare our newly constructed family
of iterative methods of optimal sixteenth-order M1 and M2
defined in (28) and (30), respectively, with some famous
equation solvers. For the sake of comparison, we consider
the fourteenth-order convergent method (PF) given by Sar-
golzaei and Soleymani [5] and the optimal sixteenth-order
convergent methods (JRP) and (FSH) given by Sharma et al.
[1] and Soleymani et al. [2], respectively. All the computations
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Table 1: Numerical examples.

Numerical example Exact zero

𝑓
1

(𝑥) = sin (𝑥) −

𝑥

100

𝑥
∗

= 0.0000000000000000

𝑓
2

(𝑥) = 𝑒
sin(𝑥)

− 1 −

𝑥

5

𝑥
∗

= 0.0000000000000000

𝑓
3

(𝑥) = 𝑒
−𝑥

+ cos (𝑥) 𝑥
∗

= 1.7461395304080130

𝑓
4

(𝑥) = 𝑥
3

+ 4𝑥
2

− 15 𝑥
∗

= 1.6319808055660635

𝑓
5

(𝑥) = 10𝑥𝑒
−𝑥
2

− 1 𝑥
∗

= 1.6796306104284499

𝑓
6

(𝑥) = √𝑥
2
+2𝑥+5−2 sin (𝑥)−𝑥

2

+3 𝑥
∗

= 2.3319676558839640

Table 2: Comparison table for 𝑓
1
(𝑥).

𝑓
1
(𝑥), 𝑥

0
= −0.9 𝑛 |𝑓

1
(𝑥
1
)| |𝑓

1
(𝑥
2
)| |𝑓

1
(𝑥
3
)|

PF 3 0.602 10
−5

0.244 10
−105

0.907 10
−2013

JRP 3 0.234 10
−5

0.205 10
−124

0.133 10
−2624

FSH 3 0.149 10
−5

0.286 10
−129

0.248 10
−2727

M1 3 0.138 10
−5

0.561 10
−130

0.349 10
−2742

M2 3 0.419 10
−7

0.737 10
−162

0.107 10
−3411

Table 3: Comparison table for 𝑓
2
(𝑥).

𝑓
2
(𝑥), 𝑥

0
= 1.0 𝑛 |𝑓

2
(𝑥
1
)| |𝑓

2
(𝑥
2
)| |𝑓

2
(𝑥
3
)|

PF 3 0.178 10
−6

0.455 10
−94

0.227 10
−1320

JRP 3 0.815 10
−9

0.143 10
−146

0.124 10
−2350

FSH 3 0.375 10
−8

0.299 10
−126

0.139 10
−1899

M1 3 0.239 10
−8

0.610 10
−137

0.192 10
−2194

M2 3 0.202 10
−8

0.631 10
−141

0.510 10
−2261

Table 4: Comparison table for 𝑓
3
(𝑥).

𝑓
3
(𝑥), 𝑥

0
= 0.5 𝑛 |𝑓

3
(𝑥
1
)| |𝑓

3
(𝑥
2
)| |𝑓

3
(𝑥
3
)|

PF 3 0.628 10
−7

0.899 10
−116

0.197 10
−1748

JRP 3 0.992 10
−9

0.111 10
−152

0.734 10
−2456

FSH 3 0.335 10
−8

0.701 10
−145

0.942 10
−2332

M1 3 0.143 10
−8

0.850 10
−151

0.204 10
−2426

M2 3 0.103 10
−8

0.197 10
−153

0.655 10
−2469

are done using software Maple 13 with tolerance 𝜀 = 10
−1000

and 4000 digits precision. The stopping criterion is
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

< 𝜀. (31)

Here, 𝑥
∗ is the exact zero of the function and 𝑥

0
is the initial

guess. In Tables 1–9, columns show the number of iterations
𝑛, in which the method converges to 𝑥

∗, the absolute value
of function |𝑓(𝑥

𝑛
)| at 𝑛th step, for 𝑛 = 1, 2, 3. The numerical

examples are taken from [1, 2].
We now give the numerical results of our new schemes

in comparison with Newton’s method for three oscillatory
nonlinear functions, 𝑓

7
(𝑥) = − cos(2 − 𝑥

2

) + log(𝑥/7) +

(1/10) in the domain [1, 15] having 69 zeroes, 𝑓
8
(𝑥) = (𝑥

2

−

4) sin (100𝑥) on the interval [0, 10] having 320 zeroes, and
𝑓
9
(𝑥) = 𝑒

sin (log(𝑥) cos (20𝑥))
− 2 in the domain [2, 10] having 51

zeroes using the same precision, stopping criterion, and tol-
erance as given above.The first two functions𝑓

7
(𝑥) and𝑓

8
(𝑥)

Table 5: Comparison table for 𝑓
4
(𝑥).

𝑓
4
(𝑥), 𝑥

0
= 3.0 𝑛 |𝑓

4
(𝑥
1
)| |𝑓

4
(𝑥
2
)| |𝑓

4
(𝑥
3
)|

PF 3 0.00023181 0.471 10
−81

0.410 10
−1324

JRP 3 0.00001307 0.455 10
−103

0.214 10
−1678

FSH 3 0.00023181 0.471 10
−81

0.410 10
−1324

M1 3 0.00023181 0.471 10
−81

0.410 10
−1324

M2 3 0.890 10
−5

0.159 10
−106

0.180 10
−1734

Table 6: Comparison table for 𝑓
5
(𝑥).

𝑓
5
(𝑥), 𝑥

0
= 0.0 𝑛 |𝑓

5
(𝑥
1
)| |𝑓

5
(𝑥
2
)| |𝑓

5
(𝑥
3
)|

PF 3 0.322 10
−17

0.430 10
−260

0.247 10
−3660

JRP 3 0.186 10
−19

0.128 10
−332 0

FSH 3 0.101 10
−19

0.230 10
−337 0

M1 3 0.955 10
−20

0.884 10
−338 0

M2 3 0.860 10
−20

0.511 10
−339 0

Table 7: Comparison table for 𝑓
6
(𝑥).

𝑓
6
(𝑥), 𝑥

0
= 2.0 𝑛 |𝑓

6
(𝑥
1
)| |𝑓

6
(𝑥
2
)| |𝑓

6
(𝑥
3
)|

PF 3 0.125 10
−15

0.336 10
−236

0.354 10
−3324

JRP 3 0.263 10
−18

0.273 10
−313 0

FSH 3 0.346 10
−18

0.549 10
−311

0.2 10
−3998

M1 3 0.138 10
−18

0.119 10
−317 0

M2 3 0.156 10
−18

0.165 10
−316 0

Table 8: Comparison table for 𝑓
7
(𝑥), 𝑓

8
(𝑥), and 𝑓

9
(𝑥).

𝑓(𝑥) NM M1 M2
𝑓
7

(𝑥) 𝑛 10 3 3

𝑥
0

= 3.2

󵄨
󵄨
󵄨
󵄨
𝑓
7

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

0.118 10
−1013

0.135 10
−3415

0.243 10
−3666

𝑥
∗ 3.253180973 3.253180973 3.253180973

𝑓
7

(𝑥) 𝑛 13 4 4

𝑥
0

= 3.0

󵄨
󵄨
󵄨
󵄨
𝑓
7

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

0.126 10
−1768

0.10 10
−3998

0.10 10
−3998

𝑥
∗ 3.253180973 3.253180973 3.253180973

𝑓
7

(𝑥) 𝑛 — — —

𝑥
0

= 0.9

󵄨
󵄨
󵄨
󵄨
𝑓
7

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

— — —
𝑥
∗ D D D

𝑓
8

(𝑥) 𝑛 10 3 3

𝑥
0

= 2.8

󵄨
󵄨
󵄨
󵄨
𝑓
8

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

0.126 10
−1765

0.115 10
−3996

0.115 10
−3996

𝑥
∗ 2.796017462 2.796017462 2.796017462

𝑓
8

(𝑥) 𝑛 11 4 3

𝑥
0

= 2.4

󵄨
󵄨
󵄨
󵄨
𝑓
8

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

0.221 10
−1921

0.726 10
−3997

0.706 10
−1061

𝑥
∗ 2.481858196 2.481858196 2.387610416

𝑓
8

(𝑥) 𝑛 12 4 3

𝑥
0

= 14.0

󵄨
󵄨
󵄨
󵄨
𝑓
8

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

0.587 10
−1226

0.594 10
−3994

0.580 10
−1410

𝑥
∗ 14.01150324 14.01150324 14.01150324

𝑓
9

(𝑥) 𝑛 11 3 3

𝑥
0

= 2.18

󵄨
󵄨
󵄨
󵄨
𝑓
9

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

0.170 10
−1209

0.175 10
−2003

0.156 10
−2402

𝑥
∗ 2.188557091 2.188557091 2.188557091

𝑓
9

(𝑥) 𝑛 12 4 4

𝑥
0

= 2.15

󵄨
󵄨
󵄨
󵄨
𝑓
9

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

0.120 10
−1044

0.10 10
−3998

0.10 10
−3998

𝑥
∗ 2.188557091 2.188557091 2.188557091

𝑓
9

(𝑥) 𝑛 — — —

𝑥
0

= −1.5

󵄨
󵄨
󵄨
󵄨
𝑓
9

(𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

— — —
𝑥
∗ D D D

∗

D stands for divergence.
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Table 9: Comparison of computational costs.

Order Addition/subtraction Multiplication/division Total
PF 14 27 21 48
JR 16 30 41 71
FS 16 69 66 135
M1 16 32 35 67
M2 16 31 34 65

are taken from [9] and 𝑓
9
(𝑥) is taken from [2]. Table 8 shows

the importance of accurate initial guesses for the convergence
of Newton’s method (NM) for these types of highly fluctuat-
ing functions. The results include the number of iterations 𝑛,
the absolute value of each function at the 𝑛th iterate |𝑓(𝑥

𝑛
)|,

and the root 𝑥
∗ to which the methods converge.

Table 9 shows the cost of executing eachmethod for solv-
ing a nonlinear equation.The table clearly depicts that except
that of the fourteenth-order convergent method given by
Sargolzaei and Soleymani (PF) [5] all other methods of res-
pective domain require more computational effort compared
to our methods M1 and M2.

5. Newton’s Method and Zeroes of Functions

The new sixteenth-order iterative method developed in this
paper includes Newton’s method as the first step. Although
Newton’smethod is one of themostwidely usedmethods, still
it hasmany drawbacks; that is, proper initial guess plays a cru-
cial role in the convergence of this method; an initial guess,
which is not close enough to the root of the function, may

lead to divergence as shown in Table 8. Moreover, another
drawback is the involvement of derivative which may not
exist at some points of the domain. To overcome these two
main drawbacks of Newton’s method, Moore et al. in 1966
([10], Chapter 9) gave a method called interval Newton’s
method which can generate the safe initial guesses to ensure
the convergence of Newton’s method in vicinity of the root.
However, interval Newton’s method for handling nonlinear
equations has a restriction that if the interval extension of
initial guess 𝑋

(0) contains a zero of the function 𝑓
󸀠

(𝑥), then
every 𝑘th iteration 𝑋

(𝑘) contains the zero of 𝑓
󸀠

(𝑥) for
all 𝑘 = 0, 1, 2, 3, . . ., which thus leads to failure of this
method. Thus, 𝑋(𝑘) forms a nested sequence converging to 𝑥

only if 0 ∉ 𝐹
󸀠

(𝑋
(0)

). To remove this restriction and to allow
the range of values of the derivative 𝑓

󸀠

(𝑥) to contain zero,
Moore et al. ([10], Chapter 5) gave an extension of thismethod
by splitting the quotient 𝑓(𝑥)/𝑓

󸀠

(𝑋) occurring in interval
Newton’s method into two subintervals, where each subin-
terval though contains a zero of the function but excludes
the zero of the derivative of 𝑓(𝑥). This method is known
as extended interval Newton’s method. We, herein, find the
intervals enclosing all the zeroes of the function by using
extended interval Newton’s method defined in [10]. The end-
points of these subintervals are approximated up to 10 dec-
imal places which may serve as initial guesses, good enough
to show convergence for all the zeroes of oscillatory nonlinear
functions.

By using Maple, we find the subintervals for 𝑓
7
(𝑥),

𝑓
8
(𝑥), and 𝑓

9
(𝑥) defined above in Section 4. For 𝑓

7
(𝑥), 69

subintervals are calculated as follows:

[14.91409469, 14.91907799] , [14.87618033, 14.87882406] , [14.70253913, 14.70832763] ,

[14.66422750, 14.66485977] , [14.48793933, 14.49176427] , [14.44786835, 14.44826560] ,

[14.26995241, 14.27656721] , [14.22604037, 14.23066461] , [14.04552680, 14.05497489] ,

[14.00282091, 14.00616288] , [13.81848674, 13.82996307] , [13.77545098, 13.77899594] ,

[13.59080017, 13.60161684] , [13.54513440, 13.54762734] , [13.36096809, 13.36958249] ,

[13.31111271, 13.31195699] , [13.12910597, 13.13311931] , [13.06857536, 13.07318658] ,

[12.88867541, 12.89225623] , [12.82502646, 12.82959150] , [12.64414769, 12.64629550] ,

[12.57794309, 12.58168834] , [12.39221606, 12.39604347] , [12.32427994, 12.33155620] ,

[12.13933578, 12.14152125] , [12.06589114, 12.06949432] , [11.87681567, 11.88836316] ,

[11.80257913, 11.80785022] , [11.61017387, 11.61417336] , [11.52580093, 11.53582338] ,

[11.33855318, 11.34565854] , [11.25371239, 11.25707075] , [11.05782638, 11.06375050] ,

[10.97106243, 10.97617210] , [10.77402365, 10.77570682] , [10.67229899, 10.68264897] ,

[10.48006360, 10.48312670] , [10.37979979, 10.38123836] , [10.17800639, 10.17943511] ,

[10.07090553, 10.07387957] , [9.866768415, 9.868206263] , [9.752713256, 9.754776613] ,

[9.542656144, 9.546467439] , [9.423111972, 9.425145592] , [9.209671918, 9.212909453] ,
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[9.081311827, 9.085205858] , [8.866105341, 8.868806136] , [8.723516543, 8.727512993] ,

[8.507376755, 8.509833917] , [8.355789454, 8.356573732] , [8.133209509, 8.133391926] ,

[7.967541337, 7.968419812] , [7.740477001, 7.741246284] , [7.560115543, 7.560177140] ,

[7.327235639, 7.327826668] , [7.128324205, 7.128337654] , [6.889745558, 6.889772255] ,

[6.667942072, 6.668081225] , [6.422938778, 6.423097661] , [6.172706697, 6.173230855] ,

[5.917397368, 5.920842381] , [5.632674465, 5.632904614] , [5.372683988, 5.375017239] ,

[5.031577748, 5.033245710] , [4.765041785, 4.765502794] , [4.346558913, 4.346610460] ,

[4.073130785, 4.073647556] , [3.516479084, 3.516796449] , [3.253019201, 3.253316980] .

(32)

Likewise, for the nonlinear function𝑓
8
(𝑥), the interval [0, 10]

is subdivided into 320 subintervals given as

[9.990184044, 10] , [9.955946724, 9.959695063] , [9.921726460, 9.927528356] ,

[9.895991269, 9.901813845] , [9.860932807, 9.867395738] , [9.833013483, 9.842299773] ,

[9.798356795, 9.802371500] , [9.764625542, 9.770416585] , [9.738902076, 9.744714230] ,

[9.703232575, 9.709925323] , [9.675902793, 9.685025935] , [9.641179727, 9.645245491] ,

[9.607542832, 9.613332772] , [9.581821638, 9.587633073] , [9.546128339, 9.552831077] ,

[9.518599577, 9.527156111] , [9.483395827, 9.487943109] , [9.450441211, 9.456225830] ,

[9.424726523, 9.430533040] , [9.388258511, 9.395312094] , [9.361797477, 9.362112523] ,

[9.327254150, 9.331188503] , [9.293391113, 9.299187867] , [9.267665764, 9.273484771] ,

[9.232219640, 9.238827421] , [9.204564556, 9.213401510] , [9.169580781, 9.173885974] ,

[9.136290459, 9.142079783] , [9.110573681, 9.116385739] , [9.074453010, 9.081345324] ,

[9.047440909, 9.056141780] , [9.012398012, 9.016770408] , [8.979207819, 8.984996872] ,

[8.953492707, 8.959304932] , [8.917330060, 8.924242464] , [8.890031492, 8.898238370] ,

[8.854549244, 8.859511211] , [8.822106558, 8.827894687] , [8.796393961, 8.802205670] ,

[8.759426649, 8.766743202] , [8.733620068, 8.737367181] , [8.700194918, 8.703778580] ,

[8.665140340, 8.670997704] , [8.639361807, 8.645242888] , [8.605076793, 8.611338461] ,

[8.576524492, 8.576819799] , [8.542723242, 8.546366963] , [8.508031342, 8.513867105] ,

[8.482275207, 8.488135298] , [8.447441739, 8.453855727] , [8.419442565, 8.419733454] ,

[8.385642791, 8.389273297] , [8.350952363, 8.356789480] , [8.325196573, 8.331058521] ,

[8.290472928, 8.296852876] , [8.262306529, 8.262599657] , [8.227975566, 8.231819589] ,

[8.193839383, 8.199655788] , [8.168105345, 8.173947253] , [8.132631531, 8.139267983] ,

[8.105301657, 8.108754352] , [8.071887350, 8.075485577] , [8.036821970, 8.042687844] ,

[8.011041930, 8.016933569] , [7.976738061, 7.983014238] , [7.948206312, 7.948506710] ,
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[7.914414622, 7.918069963] , [7.879712050, 7.885556070] , [7.853954900, 7.859825409] ,

[7.819100301, 7.825530412] , [7.791127469, 7.791426462] , [7.757383380, 7.761016594] ,

[7.722636327, 7.728484673] , [7.696876988, 7.702752410] , [7.662184799, 7.668566032] ,

[7.633999479, 7.634293225] , [7.599741530, 7.603562482] , [7.565522523, 7.571349577] ,

[7.539785779, 7.545640712] , [7.504367753, 7.510993040] , [7.473598085, 7.477903415] ,

[7.445535699, 7.445741224] , [7.409526765, 7.415709324] , [7.376633149, 7.382748116] ,

[7.350628015, 7.356769948] , [7.316205621, 7.320727946] , [7.288433978, 7.288634901] ,

[7.252187667, 7.258500302] , [7.219382270, 7.225665666] , [7.193227785, 7.199537852] ,

[7.159100616, 7.163628382] , [7.131354615, 7.131554070] , [7.095214411, 7.101441457] ,

[7.062406422, 7.068587545] , [7.036345992, 7.042555094] , [7.001343483, 7.006374052] ,

[6.974208505, 6.974430846] , [6.937739087, 6.944121686] , [6.911502119, 6.917912067] ,

[6.878629934, 6.885058820] , [6.845557212, 6.849712217] , [6.817229629, 6.817372349] ,

[6.781328958, 6.787520738] , [6.748326672, 6.754431355] , [6.722341155, 6.728475853] ,

[6.688217195, 6.692543011] , [6.660135374, 6.660349224] , [6.624020054, 6.630322401] ,

[6.591095561, 6.597348936] , [6.564978649, 6.571261929] , [6.531350276, 6.535539635] ,

[6.503067732, 6.503242835] , [6.467150640, 6.473357071] , [6.434150065, 6.440272246] ,

[6.408154615, 6.414308468] , [6.373988633, 6.378364826] , [6.345971330, 6.346185408] ,

[6.314591592, 6.314801811] , [6.283130684, 6.283189482] , [6.251439225, 6.251792397] ,

[6.219732001, 6.223771957] , [6.188797959, 6.189152266] , [6.157480535, 6.157523164] ,

[6.120271452, 6.126143816] , [6.094516232, 6.100424165] , [6.062632401, 6.066666282] ,

[6.031713707, 6.032062120] , [6.000404602, 6.000443419] , [5.963159907, 5.969063625] ,

[5.937378306, 5.937652790] , [5.905762388, 5.910128802] , [5.874676316, 5.875173796] ,

[5.843267432, 5.843366441] , [5.811903897, 5.811997045] , [5.780439491, 5.780578109] ,

[5.748846678, 5.753534709] , [5.717642569, 5.718446131] , [5.686026171, 5.686297214] ,

[5.649589507, 5.654965745] , [5.623410417, 5.623560314] , [5.591995021, 5.592085462] ,

[5.560617933, 5.560647031] , [5.529050201, 5.529379409] , [5.494655569, 5.498548325] ,

[5.466333793, 5.466594000] , [5.434917226, 5.435007765] , [5.403538504, 5.403560842] ,

[5.371986243, 5.372310224] , [5.337627395, 5.341510491] , [5.309259066, 5.309710904] ,

[5.277842856, 5.277931374] , [5.246459480, 5.246465096] , [5.214949689, 5.215260016] ,

[5.180745879, 5.184567812] , [5.152175433, 5.152483750] , [5.120757973, 5.120850212] ,

[5.089379473, 5.089393976] , [5.057853016, 5.058169633] , [5.023599984, 5.027444216] ,

[4.995089639, 4.995134322] , [4.963669800, 4.963761292] , [4.931962692, 4.932342959] ,

[4.898577516, 4.902594687] , [4.869459724, 4.871816598] , [4.838049762, 4.838119448] ,

[4.806585813, 4.806656799] , [4.774807982, 4.775256312] , [4.740143422, 4.744730700] ,

[4.712320646, 4.712554905] , [4.680971224, 4.681013199] , [4.649505766, 4.649581859] ,
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[4.617729602, 4.618176851] , [4.586717450, 4.586839669] , [4.555222666, 4.555463069] ,

[4.523886327, 4.524034761] , [4.492422625, 4.492489967] , [4.460687549, 4.461092742] ,

[4.429626928, 4.429896951] , [4.398061805, 4.398325942] , [4.366778548, 4.366815736] ,

[4.335349171, 4.335447559] , [4.303567341, 4.304025136] , [4.269958287, 4.274126308] ,

[4.241130124, 4.241188163] , [4.209730675, 4.209803528] , [4.178264652, 4.178341647] ,

[4.146497230, 4.146938490] , [4.115477159, 4.115614121] , [4.083976127, 4.084225147] ,

[4.052653043, 4.052680415] , [4.021185210, 4.021271957] , [3.989407736, 3.989860744] ,

[3.958398563, 3.958520073] , [3.926898618, 3.927159520] , [3.895568291, 3.895695440] ,

[3.864101345, 3.864176810] , [3.832368110, 3.832776502] , [3.801307500, 3.801582245] ,

[3.769733594, 3.770018057] , [3.737666515, 3.738555787] , [3.707036303, 3.707258802] ,

[3.675589856, 3.675724815] , [3.644022999, 3.644272546] , [3.612664809, 3.613201841] ,

[3.581242406, 3.581427897] , [3.549951324, 3.550099814] , [3.518316545, 3.518639229] ,

[3.487139359, 3.487171164] , [3.455421928, 3.455797823] , [3.424086427, 3.424354779] ,

[3.392871166, 3.393040380] , [3.361225117, 3.361561856] , [3.330058543, 3.330091857] ,

[3.298317177, 3.298716019] , [3.267222476, 3.267259278] , [3.235785801, 3.235916398] ,

[3.203947909, 3.204476592] , [3.173007152, 3.173020607] , [3.141578336, 3.143519185] ,

[3.109138236, 3.110261707] , [3.078714790, 3.079011324] , [3.047231464, 3.047417939] ,

[3.015713510, 3.015956944] , [2.984302733, 2.984850517] , [2.952829764, 2.953121570] ,

[2.921627101, 2.921839766] , [2.889886911, 2.890332100] , [2.858821551, 2.858853753] ,

[2.827044564, 2.827488073] , [2.795383138, 2.796077943] , [2.764547903, 2.764847380] ,

[2.732879774, 2.733264371] , [2.701691670, 2.701782470] , [2.670004074, 2.670487492] ,

[2.638703303, 2.638964768] , [2.607457669, 2.607717839] , [2.575554284, 2.576183720] ,

[2.544682213, 2.544691854] , [2.513257101, 2.513304406] , [2.481645703, 2.482108351] ,

[2.450259771, 2.450475846] , [2.418980937, 2.419491975] , [2.387353600, 2.387757870] ,

[2.356161477, 2.356486619] , [2.324746316, 2.325055200] , [2.293356484, 2.293386906] ,

[2.261862260, 2.262729261] , [2.229815864, 2.230705785] , [2.198955277, 2.200863128] ,

[2.167010175, 2.167980140] , [2.136137801, 2.136331276] , [2.104659623, 2.106463624] ,

[2.073438362, 2.073482179] , [2.041868337, 2.042183784] , [2.009607591, 2.011490024] ,

[1.999321992, 2.000867238] , [1.979075768, 1.979403681] , [1.947483742, 1.948823227] ,

[1.915715167, 1.916831748] , [1.884748724, 1.885972930] , [1.853395782, 1.854072910] ,

[1.821703180, 1.822445009] , [1.790679838, 1.790831120] , [1.759031149, 1.759348389] ,

[1.727645494, 1.727906376] , [1.696406397, 1.696726589] , [1.664770896, 1.665247435] ,

[1.633595310, 1.633854746] , [1.602189721, 1.602326032] , [1.570689948, 1.570808034] ,

[1.539356239, 1.539522903] , [1.507823837, 1.508168009] , [1.476527951, 1.476727588] ,

[1.445011590, 1.445147118] , [1.413454259, 1.413736717] , [1.382250070, 1.382713354] ,
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[1.350528569, 1.350962287] , [1.319436348, 1.319792183] , [1.288006269, 1.288122893] ,

[1.256626812, 1.256637997] , [1.225208939, 1.225321263] , [1.193725250, 1.193981936] ,

[1.162375566, 1.162556404] , [1.130894263, 1.130987988] , [1.099210832, 1.099581028] ,

[1.068130784, 1.068242783] , [1.036648438, 1.036884688] , [1.005295008, 1.005511280] ,

[0.9738188397, 0.9739004934] , [0.9421678445, 0.9424969036] , [0.9110567268, 0.9111176941] ,

[0.8796104016, 0.8797644727] , [0.8482209514, 0.8483759597] , [0.8167520110, 0.8168256101] ,

[0.7850137932, 0.7854241593] , [0.7539774035, 0.7540419814] , [0.7225301690, 0.7227499657] ,

[0.6911404930, 0.6913237876] , [0.6596741127, 0.6597407949] , [0.6279686776, 0.6283402978] ,

[0.5969009283, 0.5969287896] , [0.5654760243, 0.5654943094] , [0.5340653229, 0.5341890824] ,

[0.5026034884, 0.5026633333] , [0.4708183984, 0.4712683612] , [0.4398218509, 0.4398447467] ,

[0.4084003236, 0.4084110725] , [0.3769864778, 0.3771074902] , [0.3455273844, 0.3455812080] ,

[0.3141592392, 0.3141593917] , [0.2827428736, 0.2827564026] , [0.2513252985, 0.2513279205] ,

[0.2199082241, 0.2200133160] , [0.1884516594, 0.1884996544] , [0.1570796264, 0.1570796692] ,

[0.1256635747, 0.1256707687] , [0.09424771546, 0.09424778634] ,

[0.06283185165, 0.06283185330] , [0.03141592644, 0.03141592674] , [0., 0.00003862611601] .

(33)

Similarly, we find out that the function𝑓
9
(𝑥) has 51 zeroes

in subintervals

[9.989560628, 9.992137465] , [9.800306886, 9.800592868] , [9.676233039, 9.681699494] ,

[9.479678599, 9.487508694] , [9.361916677, 9.366649388] , [9.167915476, 9.172598808] ,

[9.047316788, 9.053357092] , [8.855747880, 8.857383666] , [8.732241020, 8.737239224] ,

[8.539956314, 8.543464735] , [8.421410405, 8.426221913] , [8.224527618, 8.230816552] ,

[8.106288875, 8.111000572] , [7.909883981, 7.914797928] , [7.790388775, 7.796772894] ,

[7.596487817, 7.599819788] , [7.478101387, 7.482505409] , [7.280935917, 7.286251169] ,

[7.165355153, 7.170463555] , [6.966512553, 6.972261500] , [6.851637227, 6.855738225] ,

[6.651964539, 6.657088997] , [6.536662954, 6.542243912] , [6.340108479, 6.340747429] ,

[6.223746207, 6.227585293] , [6.024753773, 6.026603725] , [5.910192772, 5.914790060] ,

[5.708719363, 5.714342230] , [5.596962948, 5.601063643] , [5.394445916, 5.397139080] ,

[5.285123399, 5.287582209] , [5.078257731, 5.082630331] , [4.970931153, 4.974798339] ,

[4.765173416, 4.765494072] , [4.658574438, 4.662674653] , [4.449250236, 4.451201750] ,

[4.346033601, 4.348540346] , [4.133210243, 4.136240815] , [4.033004562, 4.035802815] ,

[3.817884685, 3.818161353] , [3.722030098, 3.724036626] , [3.501280126, 3.501552691] ,

[3.409742652, 3.412729435] , [3.182864306, 3.185008382] , [3.100066834, 3.100836733] ,

[2.864997815, 2.865471627] , [2.789473642, 2.791666167] , [2.543047934, 2.545369212] ,

[2.484628981, 2.484810607] , [2.212216544, 2.212720982] , [2.188542314, 2.188577325] .

(34)
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Figure 1: Graph of first and tenth iteration of extended interval Newton’s method for 𝑓
7
(𝑥).
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Figure 2: Graph of first and tenth iteration of extended interval Newton’s method for 𝑓
8
(𝑥).

The graphs of the first and tenth iteration of extended interval
Newton’s method for each function obtained by using Maple
are shown in Figures 1, 2, and 3, representing the enclosure of
exact zeroes at each interval.

6. Basins of Attraction

We consider complex polynomials 𝑝
𝑛
(𝑥), 𝑛 ≥ 1, 𝑥 ∈ C. To

generate basins of attraction, we use two different techniques.
In the first technique, we take a square box of [−2, 2] ×

[−2, 2] ∈ C. Now for every initial guess 𝑥
0
, we assign a colour

according to the root to which an iterativemethod converges.
For divergence, we assign the colour dark blue. The stopping
criteria for convergence are |𝑓(𝑥

𝑘
)| < 10

−5, and the maxi-
mum number of iterations is 30. In the second technique, we
take the same scale, but we assign a colour for each initial
guess depending upon the number of iterations in which
the iterative method converges to any of the roots of the

given function. The maximum number of iterations taken
here is 25; stopping criterion is same as given earlier. If an
iterative method does not converge in the maximum number
of iterations, we consider the method as divergent for that
initial guess and the method thus is represented by black
colour.

To obtain basins of attraction, we take four test examples
which are given as 𝑝

3
(𝑥) = 𝑥

3

− 1, 𝑝
4
(𝑥) = 𝑥

4

− 10𝑥
2

+ 9,
𝑝
5
(𝑥) = 𝑥

5

− 1, and 𝑝
7
(𝑥) = 𝑥

7

− 1. The roots of 𝑝
3
(𝑥) are

1.0, −0.5000+0.86605𝐼, −0.5000−0.86605𝐼; roots of 𝑝
4
(𝑥) are

−3, 3, −1, 1, and for 𝑝
5
(𝑥) roots are 1.0, 0.3090 + 0.95105𝐼,

−0.8090 + 0.58778𝐼, −0.8090 − 0.58778𝐼, 0.30902 − 0.95105𝐼.
And roots of 𝑝

7
(𝑥) are 1.0, 0.6234 + 0.78183𝐼, −0.2225 +

0.97492𝐼, −0.9009 + 0.43388𝐼, −0.9009 − 0.43388𝐼, −0.2225 −

0.974927𝐼, 0.6234 − 0.781831𝐼.
We compare the results of our newly constructedmethod

M1 with those of well-known sixteenth-order convergent
methods PF [5], JR [1], and FS [2] (see Figures 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19).
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Figure 3: Graph of first and tenth iteration of extended interval Newton’s method for 𝑓
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Figure 4: Basins of attraction of method (28) for 𝑝
3
(𝑥).
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Figure 5: Basins of attraction of method PF for 𝑝
3
(𝑥).
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Figure 6: Basins of attraction of method JRP for 𝑝
3
(𝑥).
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Figure 7: Basins of attraction of method FSH for 𝑝
3
(𝑥).
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Figure 8: Basins of attraction of method (28) for 𝑝
4
(𝑥).
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Figure 9: Basins of attraction of method PF for 𝑝
4
(𝑥).
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Figure 10: Basins of attraction of method JRP for 𝑝
4
(𝑥).
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Figure 11: Basins of attraction of method FSH for 𝑝
4
(𝑥).
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Figure 12: Basins of attraction of method (28) for 𝑝
5
(𝑥).
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Figure 13: Basins of attraction of method PF for 𝑝
5
(𝑥).
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Figure 14: Basins of attraction of method JRP for 𝑝
5
(𝑥).
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Figure 15: Basins of attraction of method FSH for 𝑝
5
(𝑥).

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
21.510.50−0.5−1−1.5−2

5

6

7

4

3

2

1

0

(a)

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
21.510.50−0.5−1−1.5−2

25

20

15

10

5

0

(b)

Figure 16: Basins of attraction of method (28) for 𝑝
7
(𝑥).
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Figure 17: Basins of attraction of method PF for 𝑝
7
(𝑥).
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Figure 18: Basins of attraction of method JRP for 𝑝
7
(𝑥).
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Figure 19: Basins of attraction of method FSH for 𝑝
7
(𝑥).

7. Conclusions

A general four-step four-point iterative method without
memory has been given for solving nonlinear equations.This
iterativemethod has been obtained by approximating the first
derivative of the function at the fourth step by using quasi-
Hermite interpolation. An analytic proof for the order of con-
vergence of this method was given which demonstrates that
the method has an optimal order of sixteen. For this method
the number of function evaluations is five per full step,
so the efficiency index of themethod is 1.741. Numerical com-
parisons in the form of Tables 2, 3, 4, 5, 6, and 7 with the
methods based on rational interpolation, that is, methods
with comparably more arithmetic cost as shown in Table 9,
reveal the robust performance of this method compared to
existingmethods of this domain.Moreover, extended interval
Newton’s method is also introduced which is very effective in
finding enough accurate initial guesses for solving nonlinear
functions having finitely many zeroes in an interval. The
basins of attraction show that our new method requires less
number of iterations to converge to a root compared to the
methods of [2, 5].
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