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We focus on how to securely outsource computation task to the cloud and propose a secure outsourcing multiparty computation
protocol on lattice-based encrypted data in two-cloud-servers scenario. Our main idea is to transform the outsourced data
respectively encrypted by different users’ public keys to the ones that are encrypted by the same two private keys of the two assisted
servers so that it is feasible to operate on the transformed ciphertexts to compute an encrypted result following the function to be
computed. In order to keep the privacy of the result, the two servers cooperatively produce a custom-made result for each user that
is authorized to get the result so that all authorized users can recover the desired result while other unauthorized ones including
the two servers cannot. Compared with previous research, our protocol is completely noninteractive between any users, and both
of the computation and the communication complexities of each user in our solution are independent of the computing function.

1. Introduction

Secure multiparty computation (SMC) [1–7] is dedicated
to computing a certain function among a set of mutually
distrusted participants on their private inputs without reveal-
ing private information. Informally speaking, assuming that
there are 𝑚 participants, 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
, each of them has

a private number, respectively, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
. They want to

cooperate to compute the function 𝑦 = 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

without revealing 𝑥
𝑖
of 𝑃
𝑖
to other parties 𝑃

𝑗
, 𝑗 ̸= 𝑖, 𝑖, 𝑗 ∈

{1, . . . , 𝑚}, as well as guaranteeing that any unauthorized
ones cannot get the result 𝑦. In the past, researchers mainly
focused on designing the style of secure multiparty com-
putation protocols by which users themselves cooperatively
accomplish the function evaluation through their internal
interactions [1, 3, 8–11].The computation and communication
complexities always depend polynomially on the complexity
of the function to be computed. Therefore, users suffer from
the heavy overload of these protocols.

The emergence of the cloud [12, 13] inspires users to
apply the powerful computing ability of the cloud to help
them to conduct complicated computations, that is, secure

outsourcing computation [14–18] to the cloud. They expect
that the cloud can independently complete any function
computation on their outsourced data although the data has
been encrypted by their own keys for security. Moreover, the
final result should be kept private to the cloud even though it
is the cloud that conducts all of the computations about the
computing function. In this way, users only need to encrypt
their data and decrypt the returnedmessage to get the desired
result. All computations about the computing function are in
the charge of the cloud.There are no interactions between any
users, and the computation and communication complexities
of each user are independent of the computing function.
However, this expectation is proven to be impossible in the
single cloud server setting due to the impossibility of program
obfuscation [19]. Therefore, in this paper, we try to realize it
by introducing one more cloud server to the original model
described above. More precisely, we consider the following
scenario.

There are 𝑚 + 2 distrusted parties including 𝑚 users
and two cloud servers in our system. We assume that all of
them act semihonestly. The 𝑚 users 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
, with each

having a private input, respectively, 𝑥
𝑖
, as well as a pair of
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public-private keys (𝑝𝑘
𝑖
, 𝑠𝑘
𝑖
), 𝑖 = 1, . . . , 𝑚, encrypt their

respective private inputs by their own public keys and then
upload the ciphertexts of the inputs to a cloud server. They
want to obtain the value 𝑦 = 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) even if they

may not be aware of what the computing function 𝑓(⋅) is
by applying two cloud servers to operate on the outsourced
encrypted data without revealing 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
and the result

𝑦.
In this paper, we study the outsourcing computation

problem in multiple users-two-cloud-servers scenario and
propose a two-cloud-servers-assisted secure outsourcing
multiparty computation protocol to compute any function
on lattice-based encrypted data under multiple keys of the
users. Herein, we apply one cloud server called the storing-
cloud (SC) to store the outsourced data encrypted by users
and make a midtransformation to these ciphertexts once
some function begins to be computed. We call the other
cloud server the computing-cloud (CC). It is responsible for
transforming the midtransformed ciphertexts by SC to the
ones that are blinded by the same two private keys of the
two assisted cloud servers so that CC can further compute
𝑦 following the function on the ciphertexts. Finally, in order
to protect the result, the two servers cooperatively produce a
custom-made result for each user. Compared with previous
solutions, our protocol has the following three advantages.

(1) Our protocol is completely noninteractive between
any users.

(2) The cloud is to do all of the computations related
to the computing function, while users would do
nothing except for encrypting their private inputs and
decrypting the returned result.

(3) The computation and communication complexities
of each user in our solution are independent of the
computing function.

Organization.The rest of this paper is organized as follows. In
Section 2, we briefly give an overview of some recent related
works. Herein, we consider the problems in secure outsourc-
ing computation from the point of view of the users and
the cloud servers, respectively, and then rationally construct
our protocol in the multiple users-two-cloud-servers setting.
In Section 3, we briefly introduce a lattice-based encryption
scheme and the securitymodel and then present our protocol
in Section 4 in detail. In Section 5, we analyze the proposed
protocol in detail and give a strict proof based on real-ideal
simulation paradigm. Finally, we summarize our work of this
paper in the last section.

2. Related Works

According to previous research, there are many problems to
be considered when outsourcing private data for function
computation to the cloud.We discuss the difficulties in secure
outsourcing computation to the cloud from the following two
aspects.

(1) To Users: Privacy of the Inputs and Results. In secure out-
sourcing computation, users have to contribute their private

data as the inputs of the function while not participating in
the computation process.Moreover, all parties of the protocol
including all users and cloud servers are mutually distrusted.
Therefore, users would not like to submit their private data
to the cloud. Allowing for security, a usual solution is to
encrypt the private data before outsourcing them to the cloud.
And there are some basic encryptionmodels according to the
encryption keys that users used.

In 2009, Gentry [20] presented a model where all users
use a joint public key to encrypt their own private inputs
while sharing the private key. Therein, the cloud cannot
obtain the inputs or the result because they are protected by
the encryption scheme, while the cloud does not have the
private key. However, users have to participate in another
interactive protocol to firstly recover the private key and then
achieve the desired result. The processes, producing a joint
public key, sharing the private key, and jointly recovering
the result by their shared private key, bring large number of
additional interactions among users, which is contrary to our
expectation that we want to design a secure protocol with the
least communications. Encrypting private data by the joint
public key is not so satisfactory either. In cloud outsourcing
scenario, it means that there are no interactions among the
users whatsoever and the least two rounds of inevitable inter-
actions between the user and the cloud server, sending out the
inputs and receiving the result. Therefore, we look forward
to a protocol with the least communications as well as low
computations and high security. A recent work by Asharov et
al. [21] proposes a schemewhere users utilize their ownpublic
keys to encrypt their inputs, respectively, and guarantee that
the cloud can succeed in computing the function on their
private inputs by computing on the ciphertexts of the inputs
encrypted under different keys. Although users still have
to interact to obtain the result in the last step, encrypting
respective input by the public key of each user is the best
encryption model so far.

As to the privacy of the result, in 2011, Halevi et al. [22]
proposed a noninteractive protocol to securely realize out-
sourcing computation. Therein, the server is entitled to learn
the result. However, the computing result may be the vital
information to the users in some scenario and so it cannot
be revealed to others. Hence, besides the security of the inputs
discussed above, usersmust consider the security of the result
when constructing protocols. It should guarantee that any
unauthorized users are not able to get the result although
they may contribute their inputs and the cloud servers are
not able to get the result although the result is computed by
them. To this aspect, [20] has already protected the result by
a joint public key of the users. However, this method is still
not satisfactory since each authorized user is also not able to
get it individually.

(2) To Cloud Servers: Feasibility of Operating on Encrypted
Inputs. As discussed above, users would like to upload the
encrypted inputs under their respective public keys to the
cloud server rather than the original inputs. Therefore, the
cloud servers, whose task is to compute a function on users’
private inputs, would only obtain the ciphertexts of the
inputs.Thatmeans that the cloud has to compute the function
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(i) KeyGen(1𝑘): sample a ring element vector 𝑎 ← 𝑅
𝑛

𝑞
and a ring element 𝑠 from the

distribution 𝜒, denoted as 𝑠 ← 𝜒, a ring element vector 𝑥 from the distribution 𝜒𝑛, denoted
as 𝑥 ← 𝜒

𝑛. Then, the private key is 𝑠𝑘 = 𝑠; the public key is 𝑝 = 𝑎𝑠 + 2𝑥 ∈ 𝑅𝑛
𝑞
.

(ii) Enc(𝑝𝑘,𝑚): sample 𝑒 ← 𝜒
𝑛 and compute 𝑐

0
:= ⟨𝑝, 𝑒⟩ + 𝑚 ∈ 𝑅

𝑞
and 𝑐
1
:= ⟨𝑎, 𝑒⟩ ∈ 𝑅

𝑞
. Output

the ciphertext 𝑐 := (𝑐
0
, 𝑐
1
) ∈ 𝑅
2

𝑞
.

(iii) Dec(𝑠𝑘, 𝑐): compute 𝜇 = 𝑐
0
− 𝑐
1
𝑠 ∈ 𝑅
𝑞
and output𝑚 := 𝜇(mod2).

Algorithm 1

on users’ private inputs through performing corresponding
computations on the ciphertexts of the inputs encrypted by
different public keys of users. As we know, fully homomor-
phic encryption (FHE) [20, 23] can operate on the ciphertexts
of the inputs to compute the desired result produced by the
inputs. But the usual FHE schemes are single-key schemes
in the sense that they only can perform computations on
ciphertexts encrypted under the same key. It is not feasible
to conduct computations on the ciphertexts encrypted under
different keys. In order to solve this problem, López-Alt et al.
[24] propose a new FHE called multikey fully homomorphic
encryption (MFHE) which has applied the techniques of
bootstrapping, modulus reduction, and relinearization to
operate on the ciphertexts of the inputs encrypted by mul-
tiple, unrelated keys. When outsourcing private data to the
cloud, user can firstly encrypt it by its own key by applying
MFHE. It is indeed the optimal solution from the point of
view of the feasibility of ciphertexts and the privacy of inputs.
However, as we mentioned before, it is still not satisfactory
because users need to evaluate the decryption key and then
use it to recover the result interactively by participating in
another SMC protocol.

In fact, according to [19], it is proved that it is indeed
impossible to construct a completely noninteractive protocol
in the single server setting due to the impossibility of program
obfuscation. Hence, if we want to obtain a secure protocol
with complete noninteraction of users in outsourcing com-
putation, we need at least two cloud servers.

In brief, allowing for the privacy of inputs and results
from the perspective of users as well as the feasibility of oper-
ating on the outsourced encrypted data from the perspective
of the cloud servers, if we want to construct a completely
noninteractive secure outsourcing multiparty computation
protocol where the computation and communication com-
plexities of each user are independent of the computing
function, we have the following conclusions.

(1) All private data should be encrypted by the owners
themselves using their respective public keys before
outsourcing to the cloud servers.

(2) The returned messages for each user should be dif-
ferent so that all authorized users can recover the
final result by their respective private key but the
unauthorized ones cannot.

(3) It is reasonable to consider it in two-cloud-servers
scenario.

3. Preliminaries

3.1. Lattice-Based Encryption. Since the privacy of the inputs
and the computation complexity of each user depend on
the encryption algorithm that the user used, an encryption
schemeoutstanding in both security and efficiency is the right
one that users want to adopt. Hence, lattice-based encryption,
which is against quantum attacks and is much more efficient
than RSA and even the elliptic curve cryptosystem, becomes
the first choice of rational users. Herein, we will show how the
two cloud servers deal with the outsourced data encrypted by
the lattice-based public key encryption scheme proposed in
[24, 25] (denoted as LE scheme in this paper). Specifically, we
recall it as follows.

Notations. Let 𝑘 be the security parameter. Then, the LE
scheme is parameterized by a prime 𝑞 = 𝑞(𝑘), a degree 𝑛
polynomial 𝑓(𝑥) ∈ Z[𝑥], and an error distribution 𝜒 over
the ring𝑅

𝑞
= Z
𝑞
[𝑥]/⟨𝑓(𝑥)⟩.The parameters 𝑛,𝑓, 𝑞, and𝜒 are

public. It assumes that, given the security parameter 𝑘, there
are polynomial-time algorithms that output 𝑓 and 𝑞 and a
sample from the error distribution 𝜒.

The LE encryption scheme consists of the following three
algorithms: KeyGen(⋅), Enc(⋅), and Dec(⋅) (Algorithm 1).

In [24], they apply the techniques of bootstrapping, mod-
ulus reduction, and relinearization to realize and to operate
on the ciphertexts of the inputs encrypted by multiple, unre-
lated keys. Therein, they have obtained a secure outsourcing
multiparty computation protocol on lattice-based encrypted
data under multiple keys of users in one server scenario.
However, it is not satisfactory because the interaction in the
decryption stage is still inevitable.

In this paper, based on this encryption scheme, we con-
sider the outsourcing problem in two-cloud-servers scenario
and succeed to construct a secure noninteractive outsourcing
protocol that achieves the least computation and communi-
cation complexities for users.

3.2. SecurityModel. In this paper, wewill discuss our protocol
in the semihonest model and analyze its security using the
real-ideal paradigm [5].

Firstly, in the ideal world, the computation of the func-
tionality F on users’ private inputs is conducted by an
additional trusted party that receives 𝑥

𝑖
from user 𝑃

𝑖
, 𝑖 =

1, 2, . . . , 𝑚, and returns the result 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) to the

authorized users 𝑃
𝑡
, while other unauthorized parties do not

get any output. Hence, in the ideal world, all users’ private
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Figure 1: Framework of our construction.

inputs are well protected, and only authorized users are able
to learn about the result. However, there is no trusted party
in the real world, and so all parties have to run a protocol
Π to get the desired result. During executing the protocol Π,
all parties act semihonestly following the protocol but make
effort to gain more information about other parties’ inputs,
intermediate results, or overall outputs by the transcripts of
the protocol. An adversary can corrupt a party to receive all
messages directed to it and control the messages to be sent
out from it.

Herein, we denote the joint output of the ideal world
adversary S and the outputs of the remaining parties in
an ideal execution for computing the functionality F with
inputs �⃗� = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) as IDEALF,S(�⃗�), the joint

output of the real world adversary A, and the outputs of
the remaining parties in an execution of protocol Π with
inputs �⃗� = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) as REAL

Π,A(�⃗�). Then, we say
that protocol Π securely realizes functionalityF if, for every
real adversary A corrupting any parties and possibly the
cloud servers, there exists an ideal world adversary S with
black-box access to A such that, for all input vectors �⃗�,
IDEALF,S(�⃗�)

𝑐

≈ REAL
Π,A(�⃗�).

4. Our Result

We consider the secure outsourcing computation problem
in the multiple users-two-cloud-servers scenario described
as follows. There are 𝑚 + 2 parties including 𝑚 users and 2
noncolluding cloud servers: one is called the storing-cloud
(SC), and the other is called the computing-cloud (CC). Each
user 𝑃

𝑖
has a private input denoted as 𝑥

𝑖
and a pair of public-

private keys (𝑝𝑘
𝑖
, 𝑠𝑘
𝑖
) while sharing a private random 𝑟

𝑖
with

SC that has a private number 𝑘sc. CC has a private number
𝑘cc. Users want to outsource the task of computing function
𝑓(⋅) on users’ private inputs to the two cloud servers. They
only provide the ciphertexts of the private data encrypted by
a lattice-based encryption schemeunder their different public
keys and require the cloud servers to give the authorized
users the result while keeping the security of the inputs.
What is more, users wish that the cloud servers take charge
of all of the computations related to the function 𝑓(⋅) and
that there is noninteraction of users whatsoever so that the
computation and communication complexities of each user
are independent of the function to be computed. Herein, we
deem that the two rounds of inevitable communications and
a request from a user to the cloud servers for computing
function 𝑓(⋅) are the three basic rounds of communication in
this paper. Then, for each user, they expect that there are no
other interactions at all between any user-to-user or user-to-
server except the three basic rounds of communication. Fur-
thermore, the computation complexity of each user depends
on the encryption scheme it has used. The framework of our
construction can be illustrated in Figure 1.

In this following section, we formally propose our solu-
tion denoted as protocol Π for convenience in detail and
then analyze its security using the real-ideal paradigm in the
semihonest model.

Without loss of generality, we represent the function 𝑓(⋅)
to be computed by means of arithmetic circuitC

𝑓
consisting

of any number of addition gates and 𝑙 multiplication gates
where each gate has two input wires and one output wire.
Then, any functionality can be reduced to the two basic
operations, addition andmultiplication, over two inputs. Our
construction can be summarized in Algorithm 2.
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Protocol 𝜋: Two cloud servers-assisted secure outsourcing computation protocol
Setup.
For 𝑖 = 1, 2, . . . , 𝑚, sample a ring element vector 𝑎

𝑖
← 𝑅
𝑛

𝑞
, a ring element 𝑠

𝑖
← 𝜒, and a ring

element vector 𝑥
𝑖
← 𝜒
𝑛. Then, the private key of 𝑃

𝑖
is 𝑠𝑘
𝑖
:= 𝑠
𝑖
; the public key of 𝑃

𝑖
is

𝑝
𝑖
:= 𝑎
𝑖
𝑠
𝑖
+ 2𝑥
𝑖
∈ 𝑅
𝑛

𝑞
. And then, 𝑃

𝑖
shares a private random 𝑟

𝑖
with SC that has a private

number 𝑘sc. CC has a private number 𝑘cc. As a preparation, user 𝑃𝑖 firstly sends 𝑟𝑖 ⋅ 𝑠𝑖 to CC;
CC computes 𝑘cc ⋅ 𝑟𝑖 ⋅ 𝑠𝑖 and then sends it back to SC. Then, SC can obtain 𝑘cc ⋅ 𝑠𝑖 by
removing 𝑟

𝑖
.

Upload.
For 𝑖 = 1, 2, . . . , 𝑚, each user 𝑃

𝑖
encrypts its own private input 𝑥

𝑖
by the LE scheme. Firstly, 𝑃

𝑖

samples 𝑒
𝑖
← 𝜒
𝑛 and computes 𝑐𝑖

0
:= ⟨𝑝
𝑖
, 𝑒
𝑖
⟩ + 𝑥
𝑖
∈ 𝑅
𝑞
and 𝑐𝑖
1
:= ⟨𝑎
𝑖
, 𝑒
𝑖
⟩ ∈ 𝑅

𝑞
. Then, it

outputs the ciphertext 𝑐
𝑖
:= (𝑐
𝑖

0
, 𝑐
𝑖

1
) ∈ 𝑅

2

𝑞
.

Outsourcing Computation.
After receiving all ciphertexts of the private inputs from users, SC stores all ciphertexts and
executes a midtransformation to the outsourced data when computing some function 𝑓(⋅).
After that, CC further transforms the midtransformed ciphertexts and then computes the
function 𝑓(⋅) following the circuitC

𝑓
that consisted of addition gates and multiplication gates.

(1) Midtransforming.
Firstly, SC midtransforms the ciphertexts encrypted by users’ own keys as 𝑐

𝑖
→ 𝑐
𝑖

, where
𝑐
𝑖


= (𝑐
𝑖

0



, 𝑐
𝑖

1



) = (𝑘sc ⋅ 𝑐
𝑖

0
, 𝑘sc ⋅ (𝑘cc ⋅ 𝑠𝑖) ⋅ 𝑐

𝑖

1
), and sends 𝑐

𝑖

 to CC.

(2) Computing.
After receiving 𝑐

𝑖

, CC further transforms 𝑐
𝑖

 to 𝑐
𝑖


= (𝑘cc ⋅ 𝑘sc ⋅ 𝑐

𝑖

0
, 𝑘sc ⋅ (𝑘cc ⋅ 𝑠𝑖) ⋅ 𝑐

𝑖

1
).

Denote 𝑘 = 𝑘sc ⋅ 𝑘cc; then, 𝑐𝑖

= (𝑐
𝑖

0



, 𝑐
𝑖

1



) = (𝑘 ⋅ 𝑐
𝑖

0
, 𝑘 ⋅ 𝑠
𝑖
⋅ 𝑐
𝑖

1
). CC then computes the

ciphertext of the result by the transformed ciphertexts of users’ private inputs.
Add. For each addition gate, 𝑐

𝑖


⊕ 𝑐
𝑗


= (𝑐
𝑖

1



− 𝑐
𝑖

0



) ⊕ (𝑐
𝑗

1



− 𝑐
𝑗

0



) = 𝑘 ⋅ (𝑥
𝑖
+ 𝑥
𝑗
).

Mul. For each multiplication gate, 𝑐
𝑖


⊗ 𝑐
𝑗


= (𝑐
𝑖

1



− 𝑐
𝑖

0



) ⊗ (𝑐
𝑗

1



− 𝑐
𝑗

0



) = 𝑘
2
⋅ (𝑥
𝑖
× 𝑥
𝑗
).

(3) Producing Custom-Made Result.
After computing gate by gate following the circuitC

𝑓
, CC obtains the intermediate result

encrypted by the private numbers of the two assisted cloud servers SC and CC; that is,
𝑦

= 𝑘
𝑙+1

⋅ 𝑦 = 𝑘sc
𝑙+1

⋅ 𝑘cc
𝑙+1

⋅ 𝑦, where 𝑦 = 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) and 𝑙 is the number of the

multiplication gates ofC
𝑓
. To produce a custom-made result for each user, CC firstly sends

𝑦
 to SC. SC removes 𝑘𝑙+1sc and adds 𝑟

𝑡
to compute 𝑦

𝑡


= 𝑟
𝑡
⋅ 𝑘
𝑙+1

cc ⋅ 𝑦 and then sends 𝑦
𝑡

 back
to CC. CC finally removes 𝑘𝑙+1cc to produce the custom-made ciphertext 𝑦

𝑡
= 𝑟
𝑡
⋅ 𝑦 and sends

it to the authorized party 𝑃
𝑡
, 𝑡 ∈ {1, 2, . . . , 𝑚}.

Output
For each authorized party 𝑃

𝑡
, 𝑡 ∈ {1, 2, . . . , 𝑚}, it obtains the result 𝑦 by removing 𝑟

𝑡
.

Algorithm 2

In setup, each user 𝑃
𝑖
invokes KeyGen(1𝑘) to compute its

public-private keys (𝑝𝑘
𝑖
, 𝑠𝑘
𝑖
). At the same time, each𝑃

𝑖
selects

a random 𝑟
𝑖
and sends it to SC via secure channels, while

SC and CC, respectively, choose private numbers 𝑘sc and 𝑘cc.
Assuming that all users’ private data 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are

the real inputs of function𝑓(⋅), then each 𝑃
𝑖
sends 𝑟

𝑖
⋅ 𝑠
𝑖
to CC.

CC further computes 𝑘cc ⋅ 𝑟𝑖 ⋅ 𝑠𝑖 and sends it to SC. After that,
𝑃
𝑖
submits the ciphertext 𝑐

𝑖
of the private input 𝑥

𝑖
encrypted

by its own public key 𝑝
𝑖
to SC in the upload process.

In computation process, SCfirstlymidtransforms the out-
sourced data which are encrypted by different keys of users,
and CC further transforms the midtransformed ciphertexts
to the ones that are blinded by the same private numbers of
the two servers so that CC can operate on the ciphertexts to

compute 𝑓(⋅). Specifically, for addition/multiplication gate,
CC can easily get the result by (𝑐𝑖

1
− 𝑐
𝑖

0
) ⊕ (𝑐

𝑗

1
− 𝑐
𝑗

0
) =

𝑘 ⋅ (𝑥
𝑖
+ 𝑥
𝑗
) and (𝑐𝑖

1
− 𝑐
𝑖

0
) ⊗ (𝑐

𝑗

1
− 𝑐
𝑗

0
) = 𝑘

2
⋅ (𝑥
𝑖
× 𝑥
𝑗
).

Computing gate by gate following the circuit C
𝑓
, CC can

obtain the intermediate result 𝑦 = 𝑘𝑙+1 ⋅ 𝑦 = 𝑘𝑙+1sc ⋅ 𝑘
𝑙+1

cc ⋅ 𝑦.
In order to guarantee that only the authorized user can get

the final result, SC and CC cooperatively produce a custom-
made result for each authorized user as follows. (Herein, we
assume that 𝑃

𝑡
, 𝑡 ∈ {1, 2, . . . , 𝑚}, is authorized to get the

result.) Firstly, CC sends 𝑦 to SC. SC removes 𝑘𝑙+1sc and adds
𝑟
𝑡
to compute 𝑦

𝑡
= 𝑟
𝑡
⋅ 𝑘
𝑙+1

cc ⋅ 𝑦 and then sends 𝑦
𝑡
back to CC.

CCfinally removes 𝑘𝑙+1cc to obtain the custom-made ciphertext
𝑦
𝑡
= 𝑟
𝑡
⋅ 𝑦 and sends it to 𝑃

𝑡
.
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In the last process, the authorized user 𝑃
𝑡
obtains the

result 𝑦 by removing 𝑟
𝑡
from 𝑦

𝑡
.

5. Analysis

From the protocol described above, the correctness is obvious
due to the homomorphic properties of the transformed
ciphertexts. We will have a detailed discussion on its secu-
rity. Note that, before the actual computations which are
performed by SC and CC, there are setup and upload
processes.We will individually illustrate their security at first.
Afterwards, we will prove the security of the core of our
protocol, that is, the outsourcing computation process, in the
real-ideal framework. Finally, from the composition theorem
[5], we can conclude that our protocol is secure.

Theorem 1. Protocol Π is secure as long as the LE scheme is
secure and SC and CC are noncolluding.

Proof. Firstly, we look at the setup and upload processes
individually.

In setup, each user, respectively, encrypts its private input
by its own public key which is produced by invoking a
semantically secure LE scheme. The security of this process
is obvious. Afterwards, 𝑃

𝑖
sends 𝑟

𝑖
⋅ 𝑠
𝑖
to CC and CC sends

𝑘cc ⋅ 𝑟𝑖 ⋅ 𝑠𝑖 to SC. Herein, 𝑃𝑖’s private key 𝑠𝑖 is protected by the
blinding factors: 𝑟

𝑖
which is private to𝑃

𝑖
and SC and 𝑘cc which

is private to CC. Therefore, the private keys of users will not
be revealed in this process.

In upload, users outsource the encrypted data to SC. Since
the LE scheme is semantically secure, given two ciphertexts
𝑐
𝑖
(𝑚
1
), 𝑐
𝑖
(𝑚
2
) of the two plaintexts 𝑚

1
, 𝑚
2
uploaded by 𝑃

𝑖
,

it is computationally infeasible for SC to distinguish the two
ciphertexts. Hence, users can store their encrypted data in SC
securely.

In outsourcing computation process, SC firstly midtrans-
forms 𝑐

𝑖
to 𝑐


𝑖
and sends 𝑐

𝑖
to CC. It is obvious that it is

secure since SC blinds the midtransformed ciphertext 𝑐
𝑖
by

the private number 𝑘sc, which is secret to CC. As to the core
of the computation process, we will discuss the security in
the real-ideal framework. From the security definition, we
say that protocol Π is secure if all adversarial behavior in the
real world can be simulated in the ideal model where there
exists an additional trusted party to perform all computations
related to the function 𝑓(⋅) to be computed. We assume that
there is a simulator S in the ideal world and then prove that
it can simulate the semihonest adversaryA that exists in the
real execution. Since CC is able to independently complete
addition andmultiplication operations, we only need to prove
thatAdd andMul are secure against the semihonest adversary
A corrupting CC. We prove this as follows.

Simulator S. RunA on input{𝑐S(𝑚1), 𝑐S(𝑚2)}.
Firstly, S computes

𝑐S (𝑚1) = Enc (𝑝𝑘S, 1) ;

𝑐S (𝑚2) = Enc (𝑝𝑘S, 1)
(1)

and sends 𝑐S(𝑚1), 𝑐S(𝑚2) toA.

Secondly, A sends two ciphertexts 𝑐S(𝑚
∗

1
), 𝑐S(𝑚

∗

2
) to S.

Then, S computes

𝑐S (𝑚
∗

1
+ 𝑚
∗

2
) = 𝑐S (𝑚

∗

1
) ⊕ 𝑐S (𝑚

∗

2
) ;

𝑐S (𝑚
∗

1
× 𝑚
∗

2
) = 𝑐S (𝑚

∗

1
) ⊗ 𝑐S (𝑚

∗

2
)

(2)

and returns 𝑐S(𝑚
∗

1
+ 𝑚
∗

2
), 𝑐S(𝑚

∗

1
× 𝑚
∗

2
) toA.

Finally, S outputs whatA outputs.
Now, we can prove the security of Add and Mul algo-

rithms by contradiction. Firstly, we assume that the view of
the adversary A in the real world is distinguishable from
the view simulated by the simulator S. Then, we could find
an algorithm to distinguish the ciphertexts encrypted by the
LE encryption scheme, which is contrary to our assumption
that the LE is semantically secure. Hence, the view of the
adversary A in the real world is indistinguishable from the
view simulated by the simulator S. That is,

IDEALF,S (𝑐S (𝑚𝑖))
𝑐

≈ REAL
Π,A (𝑐S (𝑚𝑖)) , 𝑖 = 1, 2. (3)

Therefore, the two algorithms Add and Mul are secure.
Furthermore, from the composition theorem [5], we can
conclude that our protocol is secure as long as the LE scheme
is secure and SC and CC are noncolluding in semihonest
scenario.

6. Conclusion

Only contributing the encrypted forms of their private inputs
under their own public keys to gain the desired result of
some function on the private inputs via powerful cloud with
minimal computations and communications is the optimal
method especially when users want to compute some com-
plex function. In this paper, we introduce two noncolluding
cloud servers to construct a secure outsourcing multiparty
computation protocol on lattice-based encrypted cloud data
under multiple keys in semihonest scenario. All computa-
tions related to the computing function are in the charge of
the two cloud servers.Therefore, the computation complexity
of each user only depends on the encryption scheme it has
used. What is more, the communication complexity of each
user is also independent of the function to be computed and
there is no interaction of users whatsoever any more.
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