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The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension
partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a
dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical
techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid
points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount
introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional
Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of
the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the
image denoising is decreased to O(4J+2j) from O(43J), (𝑗 ≪ 𝐽). The experiment results show that the dynamic choice scheme of the
external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with
the classical interval wavelets numerical methods.

1. Introduction

The nonlinear difference equation has been widely used in
various fields in the past few decades such as the option
pricing [1], stochastic analysis [2], hydrodynamics [3], and
image processing [4]. Many powerful and efficient methods
to find analytic solutions of nonlinear equation have drawn
a lot of interest by a diverse group of scientists. These
methods include the tanh-function method, the extended
tanh-function method [5, 6], the sine-cosine method [7], the
variational iteration method [8, 9], the homotopy perturba-
tion method [10, 11], and Exp-function method [12].

As an excellent medical image processing model, the
Perona-Malik model [4] has been widely used in image
denoising in recent years. Perona-Malik model is a non-
linear 2-dimension partial differential equation in itself,
which overcomes the drawback of the scale-space technique
introduced by Witkin which involves generating coarser
resolution images by convolving the original image with

a Gaussian kernel. In this approach, a new definition of
scale-space was suggested, and a class of algorithms was
introduced; then accurately the locations of the “semantically
meaningful” edges at coarse scales using a diffusion process
can be obtained; that is, a high quality edge detector which
successfully exploits global information was obtained with
this new method.

It is very difficult to find the exact analytical solution of
the Perona-Malikmodel as it is a nonlinear partial differential
equation. Conventional methods for numerical solutions of
partial differential equations mostly fall into three classes:
finite difference methods, finite element methods, and spec-
tral methods. Briefly, the finite difference method consists in
defining the different unknowns by their values on a discrete
grid and in replacing differential operators by difference
operators using neighboring points. In the finite element
method, the equations are integrated against a set of linear
independent test functions with small compact support, and
the solution is considered as a linear combination of this

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 417486, 15 pages
http://dx.doi.org/10.1155/2014/417486



2 The Scientific World Journal

set of test functions. In spectral methods, the unknown
functions are developed along a basis of functions having
global support. This development is truncated to a finite
number of terms which satisfy a system of coupled ordinary
differential equations in time. The advantage of using either
of the first two numerical techniques is the simplicity in
adapting to complex geometries, while the main advantage
of spectral methods is the greater accuracy [13, 14].

If the solution of a partial differential equation is regular,
any of the three above-mentioned numerical techniques
can be applied successfully. It is obvious that most of the
images are irregular. This makes the Perona-Malik equation
particularly difficult to resolve numerically using the above-
mentioned methods. Spectral methods are not easily imple-
mented because the irregularity of the solution causes the loss
of high accuracy. Moreover, the global support of the basis
function induces the well-known Gibbs phenomenon, which
appears as the artifacts in images. Wavelet analysis is a new
numerical concept which allows one to represent a function
in terms of a set of basis function, called wavelets, which
are localized both in location and in scale. Up to now, the
finite difference method is the primary numerical algorithm
for Perona-Malik model, which can bring artifact into the
images due to the nonsmoothness of the basis function of
the finite difference method [15, 16] as has been said before.
The multilevel wavelet numerical method for the nonlinear
PDEs has been proposed over ten years, which can take full
advantage of the adaptability of the wavelet analysis [17].
The artifacts in image can be eliminated with the wavelet
numerical algorithm instead of the finite difference method,
as wavelet basis function possesses many excellent properties
such as smoothness and compact support. But the support
range of wavelet function is much wider than the basis
function in the finite difference method [18, 19]. This leads
to a lower computational efficiency of wavelet transform in
solving 2Dnonlinear PDEs. Besides,most of thewavelet algo-
rithms for solving partial differential equations can handle
periodic boundary conditions easily.The treatment of general
boundary conditions is still an open question especially in
solving the nonlinear problems. Construction of the wavelet
defined in the interval (interval wavelet) is another good
choice to handle the boundary conditions [20, 21]. Compared
to the interpolation wavelet, a linear mapping between the
external collocation points and the interval ones was supplied
in the interval wavelet. The choice of the external collocation
points depends on the smoothness and the gradient near each
collocation point of the solution of the PDEs. Besides, the
condition number of the system of equations obtained by the
wavelet collocation method should be taken into account.

To an image with 2𝐽 ∗2𝐽 pixels (𝐽 ∈ 𝑍), the Perona-Malik
equation can be discretized into a system of ODEs with 4𝐽-
dimension by the coupling technique of HPM [22–27] and
the wavelet collocation method [28, 29]. The corresponding
time complexity is about 𝑂(43𝐽) with the variational iterative
method for the system of ODEs [30]. Obviously, it does
not meet the requirement of the larger image processing.
Partitioning technique is the effective measure to improve
the efficiency of this problem. In other words, the image

should be divided into several blocks before denoising to the
images. In each of image blocks, themultiple programs can be
executed simultaneously. This is similar to the finite element
method to some extent. Obviously, if the size of the image
blocks is adaptive to whole image, the algorithm efficiency
can be improved furthermore. Our research focuses on the
general frame of sparse grids and the dynamic choice scheme
of the external grid points, which can be used to decrease the
boundary effect of each image block, and so,we just talk about
the even partitioning in this paper for simplification.

The sparse representation of functions via a linear com-
bination of a small number of basic functions has recently
received a lot of attention in several mathematical fields
such as approximation theory as well as signal and image
processing. The advantage of the sparse grid approach is
that it can be extended to nonsmooth solutions by adaptive
refinement methods; that is, it can capture the steep waves
that appeared in the solution of the PDEs.Themain objective
of the paper is to present a dynamic choice scheme of
the external grid points and a general sparse grid operator
for solving the Perona-Malik equation. In other words, the
dynamic sparse grid approach provides an adaptive choice
scheme on both of the external and the internal grid points.
In the presentation of the method, we try to be as general
as possible, giving only the main philosophy of the method
and leaving some freedom for further exploration of its
applications. Both the boundary condition and the condition
number are addressed in this work. The first is how to
incorporate the dynamic choice scheme on external grid
points with the interpolation wavelet basis to construct an
effective algorithm of solving partial differential equation.
The second is how to construct a stable, accurate, and efficient
numerical algorithm for the image denoising model.

2. Construction of Dynamic Sparse
Grid Operator

There are many ways to eliminate the boundary effect from
themultiscale basis. A simple solution is the even 2-periodical
extension𝑓 of function𝑓 : [0, 1] → R, which is usually used
in image analysis. Unfortunately, this extension generally
produces discontinuities at the integers that are indicated by
the large transform coefficients near the endpoints 0 and 1.
Thus the constructed multiscale basis cannot exactly analyze
the boundary behavior of a given function. To solve this
problem, the popular method is using special boundary and
interior scaling functions such as the interval wavelet to
reduce the numerical problem at the boundaries. To the inter-
polation basis function, the common approach is to define
the interpolation basis in the interval with the Lagrange
multiplier. In fact, the Lagrange multiplier can be viewed as
a map operator, which maps the external collocation points
into the definition domain in the multiscale interpolation
method. The choice of the amount of the external points
relates to the smoothness and gradient near the boundary
of the approximated function. In addition, another factor
that we should take into account is the condition number
of the system of ODEs obtained by the multiscale numerical
method.
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Obviously, the amount of the external collocation points
should be different to different boundary conditions such
as the smoothness, gradient near the boundary, and the
condition number. In the partition technique about the image
processing, the boundary conditions of the different image
blocks are obviously different as the randomness of the image.
In the representation, we try to give a dynamic choice scheme
about the external collocation points tomeet the requirement
of the image partition technique, in which all above 3 factors
are taken into account.

In the presentation of the method, we try to be as general
as possible, giving only the main philosophy of the method
and leaving some freedom for further exploration of its
applications. We illustrate the method using two classical
interpolation wavelets: Shannon wavelet and the autocorrela-
tion function of Daubechies scaling functions. But we do not
try to predict what wavelet is the best for our algorithm (it
is simply impossible, due to the fact that some wavelets work
better for some problems and worse for others).

2.1. Basis Functions with Interpolation Property. There are
many wavelet functions which possess the interpolation
property. The familiar interpolation wavelets family includes
Shannon wavelet, Haar wavelet, and Faber-Schauder. Fur-
thermore, it is easy to understand that the autocorrelation
function of the orthogonal wavelet function also has the
interpolation property. So, the autocorrelation function of the
Daubechies scaling function is often employed to construct
the wavelet collocation method.

The representation of Shannon wavelet [31, 32] is based
upon approximating the Dirac delta function as a band-
limited function and is given by

𝜙 (𝑥) =
sin (𝜋𝑥)

𝜋𝑥
. (1)

The Shannon wavelet possesses many excellent numerical
properties such as interpolating, relative sparse, and orthogo-
nal properties. A perceived disadvantage of (1) is that it tends
to zero quite slowly as |𝑥| → ∞. A direct consequence of this
is that there are a large number of grid points will contribute
to the derivatives calculation of approximated function. For
this reason Hoffman et al. [33] have suggested using the
Shannon-Gabor wavelet as follows:

𝑤 (𝑥) =
sin (𝜋𝑥)

𝜋𝑥
exp(− 𝑥2

2𝜎2
) , 𝜎 > 0, (2)

where 𝜎 is the width parameter (or called window size). It
has been proofed that (2) can improve the localized and
asymptotic behavior of the Shannon scaling function. A
consequence of this is that it ensures that derivatives at any
one point are more dependent on the neighboring nodal
values than on the nodal values further away from the
point considered. However, the presence of the Gaussian
window destroys the orthogonal properties possessed by the
Shannon wavelet, effectively worsening the approximation to
a Dirac delta function. In the following, the Shannon wavelet
representation of the Dirac delta function is adopted, and it

is shown that this representation ensures that the approach is
identical to the weighted residual approach.

The autocorrelation functions of compactly supported
scaling functions were first studied in the context of the
Lagrange iterative interpolation scheme in [34]. Let 𝜙(𝑥) be
the autocorrelation function:

𝜙 (𝑥) = ∫
∞

−∞

𝜑 (𝑦) 𝜑 (𝑦 − 𝑥) 𝑑𝑦, (3)

where 𝜑(𝑥) is the scaling function which appears in the
construction of compactly supported wavelet. The function
𝜙(𝑥) is exactly the “fundamental function” of the sym-
metric iterative interpolation scheme introduced in [35].
Thus, there is a simple one-to-one correspondence between
iterative interpolation schemes and compactly supported
wavelet. In particular, the scaling function corresponding to
Daubechies’s wavelet with two vanishing moments yields the
scheme in [36]. In general, the scaling functions correspond-
ing to Daubechies’s wavelets with𝑀 vanishingmoments lead
to the iterative interpolation schemes which use the Lagrange
polynomials of degree 2M. Additional variants of iterative
interpolation schemes may be obtained using compactly
supported wavelets described in [37].

2.2. Construction of Dynamic Interpolation Wavelet in Inter-
val. According to the definition of the interval wavelet, the
interval interpolation basis functions can be expressed as

𝑤
𝑗𝑘
(𝑥) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{
{

𝜙(2𝑗𝑥 − 𝑘) +
−1

∑
𝑛=−𝐿+1

𝑎
𝑛𝑘
𝜙 (2𝑗𝑥 − 𝑛) ,

𝑘 = 0, . . . , 𝐿

𝜙 (2𝑗𝑥 − 𝑘) ,

𝑘 = 𝐿 + 1, . . . , 2𝑗 − 𝐿 − 1

𝜙 (2𝑗𝑥 − 𝑘) +
2
𝑗
+𝐿−1

∑

𝑛=2
𝑗
+1

𝑏
𝑛𝑘
𝜙 (2𝑗𝑥 − 𝑛) ,

𝑘 = 2𝑗 − 𝐿, . . . , 2𝑗,

(4)

where
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=
−1
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𝑥
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− 𝑥
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𝑥
𝑗,𝑘

= 𝑘
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2𝑗
, 𝑘 ∈ Z,

(5)

where 𝐿 is the amount of the external collocation points;
the amount of discrete points in the definition domain
is 2𝑗 + 1 (𝑗 ∈ Z); and [𝑥min, 𝑥max] is the definition
domain of the approximated function. Equations (4) and
(5) illustrate that the interval wavelet is derived from the
domain extension. The supplementary discrete points in the
extended domain are called external points. The value of the
approximated function at the external points can be obtained
by Lagrange extrapolationmethod.Using the interval wavelet
to approximate a function, the boundary effect can be left
in the supplementary domain; that is, the boundary effect is
eliminated in the definition domain.
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According to (4) and (5), the interval wavelet approxi-
mant of the function 𝑓(𝑥) 𝑥 ∈ [𝑥min, 𝑥max] can be expressed
as

𝑓
𝑗
(𝑥) = ∑𝑓

𝑗
(𝑥
𝑛
) 𝑤
𝑗
(2
𝑗

𝑥 − 𝑛) ,

𝑥
𝑛
= 𝑥min + 𝑛

𝑥max − 𝑥min
2𝑗

,

(6)

where 𝑓
𝑗
(𝑥
𝑛
) is the given value at the discrete point 𝑥

𝑛
. At the

external points, 𝑓
𝑗
(𝑥
𝑛
) can be obtained by extrapolation; that

is,

𝑓
𝑗
(𝑥
𝑛
) =
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2
𝑗
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𝑗
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(𝑓
𝑗
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𝑘
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2
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(7)

So, the interval wavelet approximant of 𝑓(𝑥) can be rewritten
as

𝑓
𝑗
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(8)

Let
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(9)

Then,

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

𝐿𝑆
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛) +
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑

𝑛=2
𝑗
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𝐿𝐸
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛) ,

(10)

where 𝐿𝑆
𝐿
(𝑥
𝑛
) and 𝐿𝐸

𝐿
(𝑥
𝑛
) correspond to the left and the

right external points, respectively. They are obtained by
Lagrange extrapolation using the internal collocation points

near the boundary. So, the interval wavelet’s influence on the
boundary effect can be attributed to Lagrange extrapolation.
It should be pointed out that we did not care about the
reliability of the extrapolation. The only function of the
extrapolation is enlarging the definition domain of the given
function which can avoid the boundary effect that occurred
in the domain. Therefore, we can discuss the choice of 𝐿 by
means of Lagrange inner- and extrapolation error polynomial
as follows:

𝑅
𝐿
(𝑥) =

𝑓(𝐿+1) (𝜉)

(𝐿 + 1)!

𝐿

∏
𝑖=0

(𝑥 − 𝑥
𝑖
) ,

for some 𝜉 between 𝑥, 𝑥
0
, . . . , 𝑥

𝐿
.

(11)

Equation (11) indicates that the approximation error is related
to both the smoothness and the gradient of the original
function near the boundary. Setting different 𝐿 can satisfy the
error tolerance.

2.3. Adaptive Interval Interpolation Wavelet. The interval
interpolation wavelet is often used to solve the diffusion
PDEs with Neumann boundary conditions. The smoothness
and gradient of the PDE’s solution usually vary with the
time parameter. If the parameter 𝐿 is a constant, we have
to take a bigger value in order to obtain result with higher
calculation precision. But the bigger 𝐿 usually introduces
the famous Gibbs phenomenon into the numerical solution,
which usually makes the algorithm become invalid. In
addition, the bigger 𝐿 will bring much more calculation. To
keep higher numerical precision and save calculation, the best
way is to design a procedure that 𝐿 can vary with the curve’s
smoothness and gradient dynamically.

In this dynamic procedure, the error estimation equation
(11) can be taken as the criterion about 𝐿. But in most cases,
we cannot know the smoothness and the derivative’s order
of the original function. This can be solved by substituting
the difference coefficient for the derivative.This is coincident
with the Newton interpolation equation which is equiva-
lent with Lagrange interpolation equation. In addition, the
Lagrange interpolation algorithm has no inheritance which
is the key feature of Newton interpolation. So, the basis
function has to be calculated repeatedly as interpolation
points are added into the calculation, which increases the
computation complexity greatly. In contrast to the Lagrange
method, the advantage of Newton interpolation method is
that the basis function need not be recalculated as one point
is added except only one more term which is needed to be
added, which reduces the number of computed operations,
especially the multiplication. So, it is convenient using the
Newton interpolation method to construct the dynamic
procedure.

2.3.1. Newton Interpolation. The expression of Newton inter-
polation can be written as

𝑁
𝑛
(𝑥) = 𝑓 (𝑥

0
) + (𝑥 − 𝑥

0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
) + ⋅ ⋅ ⋅
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+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) .

(12)

Substitute the Newton interpolation instead of the Lagrange
interpolation into (29), which can be rewritten as

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

(𝑁𝑆
𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗

𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛)
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2
𝑗
+𝐿

∑

𝑛=2
𝑗
+1
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𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗

𝑥 − 𝑛) ,

(13)

where
𝑁𝑆
𝐿
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𝑛
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0
) + (𝑥

𝑛
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0
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0
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1
)
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0
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𝑛
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1
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0
, 𝑥
1
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2
) + ⋅ ⋅ ⋅
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𝑛
− 𝑥
0
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𝑛
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1
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)
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0
, 𝑥
1
, . . . , 𝑥

𝐿
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(14)

2.3.2. Relation between the Newton Interpolation Error and the
Choice of 𝐿. It is well known that the Newton interpolation is
equivalent to the Lagrange interpolation. The corresponding
error estimation can be expressed as

𝑅
𝑛
(𝑥) = (𝑥 − 𝑥

0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
) 𝑓 (𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) .

(15)

And the simplest criterion to terminate the dynamic choice
on 𝐿 is |𝑅

𝑛
(𝑥)| ≤ 𝑇

𝑎
(𝑇
𝑎
is the absolute error tolerance).

Obviously, it is difficult to define 𝑇
𝑎
which should meet the

precision requirement of all approximated curves. In fact, the
difference coefficient 𝑓(𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) can be used directly as

the criterion; that is,
𝑓 (𝑥, 𝑥

0
, . . . , 𝑥

𝑛
)
 < 𝜀. (16)

As mentioned above, once the curves with lower order
smoothness are approximated by higher order polynomial
expression, the errors will become bigger on the contrary.
In fact, even if the 𝐿 is infinite, the computational precision
cannot be satisfied except increasing computational complex-
ity. To avoid this, we design the termination procedure of
dynamic choice about 𝐿 as follows:

if 𝑓(𝑥
0
, 𝑥
1
) < 𝑇
𝑎
, then 𝐿 = 1,

else, if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
) < 𝑇
𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
) < 𝑓(𝑥

0
, 𝑥
1
),

then 𝐿 = 2,

else, if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) < 𝑇

𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) <

𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
), then 𝐿 = 3,

2.3.3. L and the Condition Number of the System of Algebraic
Equations. In the field of numerical analysis, the condition
number of a function with respect to an argument measures
how much the output value of the function can change for a
small change in the input argument. This is used to measure
how sensitive a function is to changes or errors in the input
and how many errors in the output result from an error in
the input. There is no doubt that the choice of 𝐿 can change
the condition number of the system of algebraic equations
discretized by the wavelet interpolation operator or the finite
difference method. Therefore, the choice of 𝐿 should take
the condition number into account. In fact, if the condition
number cond(𝐴) = 10𝑘, then you may lose up to 𝑘 digits
of accuracy on top of what would be lost to the numerical
method due to loss of precision from arithmetic methods
[34]. According to the general rule of thumb, the choice
should follow the rule as follows:

Cond (𝐴
𝐿+1

)

Cond (𝐴
𝐿
)

< 10. (17)

2.3.4. Relation between 𝐿 and Computation Complexity. The
computational complexity of interpolation calculation is not
proportional to the increasing points. The former is mainly
up to the computation amount of (𝑥 − 𝑥

0
)(𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
)

and the derivative operations. Obviously, according to (2),
the increase in computational complexity is 𝑂(𝐿3) when the
number of extension points𝐿 increases by 1. But the computa-
tional complexity of adaptively increasing collocation points
is related to the different wavelet functions. For the wavelet
with compact support property such as Daubechies wavelet
and Shannon wavelet, the value of 𝐿 is impossible to be
infinite. For Haar wavelet which has no smoothness property,
L can be taken as 0 at most since it need not be extended.
For Faber-Schauder wavelet, L can be taken as 1 at most.
For Daubechies wavelet, L can be taken as different values
according to the order of vanishing moments, but it must
be finite. For the wavelets without compact support property,
L can take value dynamically, such as Shannon wavelet. The
computational complexity of increasing points is mainly up
to the wavelet function of itself.

3. Construction of the Multilevel Interpolation
Operator Based on the Interval Wavelet

Let the definition domain of the image be (𝑥min, 𝑥max) ×
(𝑦min, 𝑦max); the discretization points can be defined as
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(𝑥
𝑗

𝑘1
, 𝑦
𝑗

𝑘2
), where 𝑗 is a scale parameter and 𝑘

1
and 𝑘

2
are

position parameters. So,

𝑥
𝑗

𝑘1
= 𝑥min + 𝑘

1

𝑥max − 𝑥min
2𝑗

,

𝑦
𝑗

𝑘1
= 𝑦min + 𝑘

2

𝑦max − 𝑦min
2𝑗

,

𝑗, 𝑘
1
, 𝑘
2
∈ Z.

(18)

In addition, 𝑤𝑗(𝑚,𝑛)
𝑘1 ,𝑘2

(𝑥, 𝑦) denotes the multiscale wavelet
function and the corresponding 𝑚th and 𝑛th derivatives
with respect to 𝑥 and 𝑦, respectively. The level set function
𝜙(𝑥, 𝑦, 𝑡) and the corresponding derivative function can be
discretized as follows:

𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦, 𝑡)

=
1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0(𝑚,𝑛)

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=0

2
𝑗
−1

∑
𝑘11=0

2
𝑗
−1

∑
𝑘12=0

[𝛼
1

𝑗,𝑘11 ,𝑘12
(𝑡) 𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12
(𝑥, 𝑦)

+ 𝛼
2

𝑗,𝑘11 ,𝑘12
(𝑡) 𝑤
𝑗+1(𝑚,𝑛)

2𝑘11 ,2𝑘12+1
(𝑥, 𝑦)

+ 𝛼
3

𝑗,𝑘11 ,𝑘12
(𝑡)

× 𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12+1
(𝑥, 𝑦) ] ,

(19)

where 𝑗 and 𝐽 are constants, which denote the wavelet scale
number and the maximum of the scale number, respectively.
𝛼1
𝑗,𝑘11 ,𝑘12

, 𝛼2
𝑗,𝑘11 ,𝑘12

, and 𝛼3
𝑗,𝑘11 ,𝑘12

are the wavelet coefficients at
the points (𝑥𝑗

𝑘1
, 𝑦
𝑗

𝑘2
). According to the interpolation wavelet

transform theory, the wavelet coefficients can be written as

𝛼
1

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1,2𝑘1+1
, 𝑦
𝑗+1,2𝑘2

) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1,2𝑘1+1

, 𝑦
𝑗+1,2𝑘2

) ,

𝛼
2

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1,2𝑘1
, 𝑦
𝑗+1,2𝑘2+1

) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1,2𝑘1

, 𝑦
𝑗+1,2𝑘2+1

) ,

𝛼
3

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1,2𝑘1+1
, 𝑦
𝑗+1,2𝑘2+1

)

− 𝐼
𝑗
𝜙 (𝑥
𝑗+1,2𝑘1+1

, 𝑦
𝑗+1,2𝑘2+1

) ,

(20)

where 𝐼
𝑗
denotes the multilevel interpolation operator.

In order to obtain the multilevel interpolation opera-
tor, it is necessary to express the wavelet coefficients
𝛼1
𝑗,𝑘1 ,𝑘2

, 𝛼2
𝑗,𝑘1 ,𝑘2

, and 𝛼3
𝑗,𝑘1 ,𝑘2

as a weighted sum of 𝑢 in all of the
collocation points in the J level.Therefore, we should give the
definition of the restriction operator as follows:

𝑅
𝑙,𝑙,𝑗,𝑗

𝑘1 ,𝑘2 ,𝑚1 ,𝑚2
= {

1, 𝑥𝑙
𝑘1
= 𝑥𝑗
𝑚1
, 𝑦𝑙
𝑘2
= 𝑦𝑗
𝑚2

0, otherwise.
(21)

Using the restriction operator, 𝑢(𝑥𝑗+1
2𝑘1+1

, 𝑦
𝑗+1

2𝑘2
), 𝑢(𝑥

𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
),

and 𝑢(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
) can be rewritten as

𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) =
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2 ,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) ,

𝜙 (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
) =
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1 ,2𝑘2+1,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) ,

𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
) =
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2+1,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) .

(22)

Introducing the extension operators C1, C2, and C3, and
substituting (22) into (20), the wavelet coefficients can be
rewritten as

𝛼
1

𝑗,𝑘1 ,𝑘2

=
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2 ,𝑛1,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

− [

[

2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

2
𝑗0

∑
𝑘01=0

2
𝑗0

∑
𝑘02=0

𝑅
𝑗0,𝑗0 ,𝐽,𝐽

𝑘01 ,𝑘02 ,𝑛1 ,𝑛2

× 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)𝑤
𝑗0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑
𝑗1=𝑗0

2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝐶1
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1 ,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶2
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1 ,𝑛2
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝑢 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶3
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1 ,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

× 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
))]

]

=
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝐶1
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) .

(23)

𝛼2
𝑗,𝑘1 ,𝑘2

and 𝛼3
𝑗,𝑘1 ,𝑘2

are similar with 𝛼1
𝑗,𝑘1 ,𝑘2

. From above equa-
tion, the extension operator can be obtained as

𝐶1
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2

= 𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2 ,𝑛1 ,𝑛2
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− [

[

2
𝑗0

∑
𝑘01=0

2
𝑗0

∑
𝑘02=0

𝑅
𝑗0 ,𝑗0,𝐽,𝐽

𝑘01 ,𝑘02 ,𝑛1,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)𝑤
𝑗0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑
𝑗1=𝑗0

2
𝐽

∑
𝑛2=0

2
𝑗1

∑
𝑘11=0

(𝐶1
𝑗1,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

× 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶2
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1,𝑛2
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶3
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
))]

]

.

(24)

𝐶2 and𝐶3 can be obtained with the samemethod.Therefore,
the calculation time complexity of the wavelet transform
coefficients 𝛼1

𝑗,𝑘11 ,𝑘12
, 𝛼2
𝑗,𝑘11 ,𝑘12

, and 𝛼3
𝑗,𝑘11 ,𝑘12

is 𝑂((1/3)42𝐽−1).
Substituting 𝛼1

𝑗,𝑘11 ,𝑘12
, 𝛼2
𝑗,𝑘11 ,𝑘12

, and 𝛼3
𝑗,𝑘11 ,𝑘12

and C1, C2,
and C3 into (2), the multilevel wavelet interpolation operator
can be obtained as

𝐼
𝑛1,𝑛2

(𝑥, 𝑦)

=
2
𝑗0

∑
𝑘01=0

2
𝑗0

∑
𝑘02=0

𝑅
𝑗0,𝑗0 ,𝐽,𝐽

𝑘01 ,𝑘02 ,𝑛1 ,𝑛2
𝑤
𝑗0

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=𝑗0

2
𝑗

∑
𝑘1=0

2
𝑗

∑
𝑘2=0

(𝐶1
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2
𝑤
𝑗+1

2𝑘1+1,2𝑘2
(𝑥, 𝑦) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶2
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2
𝑤
𝑗+1

2𝑘1 ,2𝑘2+1

× (𝑥, 𝑦) 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶3
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2
𝑤
𝑗+1

2𝑘1+1,2𝑘2+1

× (𝑥, 𝑦) 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)) .

(25)

Then, (10) can be rewritten as

𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦, 𝑡) =
2
𝐽

∑
𝑛1

2
𝐽

∑
𝑛2

𝐼
𝑛1 ,𝑛2

(𝑥, 𝑦) 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) . (26)

Substituting (26) into (13), the multilevel wavelet discretiza-
tion scheme of Perona-Malik model can be obtained.

The purpose of constructing the multilevel sparse grid
approach is to decrease the amount of the collocation points
and then improve the efficiency of the algorithm. But the
efficiency will be eliminated if the computation complexity of
the multilevel wavelet interpolation operator is too high. It is

easy to understand that the interpolationwavelet coefficient is
the error between the interpolation result and the exact result
at the same collocation point. And so, the wavelet coefficient
must be the function of the parameter 𝑡. In other words, the
wavelet coefficient should vary with the time parameter 𝑡.
Then, the interpolation operator can be viewed as a nonlinear
problem. HPM is an efficient and effective tool to solve
nonlinear problem. Aiming to improve the efficiency of the
multilevel wavelet interpolation operators, HPM would be
employed to construct a novel interpolation operator in this
section.

For convenience, 𝜙 and its derivative in (5) should be
rewritten as

𝜕𝜙

𝜕𝑡
= 𝐹(𝑡, 𝑥, 𝑦, 𝜙,

𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
,
𝜕2𝜙

𝜕𝑥2
,
𝜕2𝜙

𝜕𝑥𝜕𝑦
,
𝜕2𝜙

𝜕𝑦2
)

(𝑡 > 0)

𝜙 (𝑥, 𝑦, 0) = 𝜙
0
(𝑥, 𝑦) ,

(27)

𝑑𝜙𝐽 (𝑥, 𝑦, 𝑡)

𝑑𝑡

= 𝐹 [𝑡, 𝑥, 𝑦, 𝜙
𝐽

(𝑥, 𝑦, 𝑡) ,

𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡) , 𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡) ,

𝜙
𝐽(2,0)

(𝑥, 𝑦, 𝑡) , 𝜙
𝐽(1,1)

(𝑥, 𝑦, 𝑡) , 𝜙
𝐽(0,2)

(𝑥, 𝑦, 𝑡)] ,

(28)

respectively, where

𝜙
𝐽

(𝑥, 𝑦, 𝑡)

=
1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=0

2
𝑗
−1

∑
𝑘11=0

2
𝑗
−1

∑
𝑘12=0

[𝛼
1

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1

2𝑘11+1,2𝑘12
(𝑥, 𝑦)

+ 𝛼
2

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1

2𝑘11 ,2𝑘12+1
(𝑥, 𝑦)

+ 𝛼
3

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1

2𝑘11+1,2𝑘12+1
(𝑥, 𝑦)] .

(29)

The value of 𝜙𝐽(𝑥, 𝑦, 𝑡
𝑛
) at 𝑡
𝑛
is denoted by 𝜙

𝑛
, and

𝐹 [𝑡
𝑛
, 𝑥, 𝑦, 𝜙

𝐽

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(2,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(1,1)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(0,2)

(𝑥, 𝑦, 𝑡
𝑛
)]

(30)

is denoted by 𝐹
𝑛
. And then, a linear homotopy function can

be constructed as

𝜙
𝐽

(𝑥, 𝑦, 𝑡) = (1 − 𝜀) 𝐹
𝑛
+ 𝜀𝐹
𝑛+1

. (31)
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It is easy to identify the homotopy parameter as

𝜀 (𝑡) =
𝑡 − 𝑡
𝑛

𝑡
𝑛+1

− 𝑡
𝑛

𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] ∴ 𝜀 ∈ [0, 1] . (32)

According to the perturbation theory, the solution of (31) can
be expressed as the power series expansion of 𝜀:

𝜙
𝐽

= 𝜙
𝐽

0
+ 𝜀𝜙
𝐽

1
+ 𝜀
2

𝜙
𝐽

2
+ ⋅ ⋅ ⋅ . (33)

Substituting (29) into (27) and rearranging based on powers
of 𝜀-terms, we have

𝜀
0: 𝜙
𝐽

0
= 𝐹
𝑛

𝜀
1: 𝜙
𝐽

1
= 𝐹
𝑛+1

−𝐹
𝑛

...

(34)

According to HPM, we obtain the wavelet coefficients
𝛼1
𝑗,𝑘1 ,𝑘2

(𝑡
𝑛+1

), 𝛼2
𝑗,𝑘1 ,𝑘2

(𝑡
𝑛+1

), and 𝛼3
𝑗,𝑘1 ,𝑘2

(𝑡
𝑛+1

) at 𝑡
𝑛
as follows:

𝛼
1

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

= 𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

− [

[

1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑
𝑗1=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝛼
1

𝑗1,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
2

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
3

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
))]

]

,

𝛼
2

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

= 𝜙 (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

− [

[

1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑
𝑗1=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝛼
1

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
))]

]

,

𝛼
3

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

= 𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

− [

[

1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑
𝑗1=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝛼
1

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
))]

]

.

(35)

Obviously, the calculation time complexity of the wavelet
transform coefficients 𝛼1

𝑗,𝑘1 ,𝑘2
, 𝛼2
𝑗,𝑘1 ,𝑘2

, and 𝛼3
𝑗,𝑘1 ,𝑘2

is 𝑂(4𝐽),
which is decreased greatly than in (11) which is𝑂((1/3)42𝐽−1).

Substituting the wavelet transform coefficient (35) into
(29), we obtain

𝜙
𝐽

(𝑥, 𝑦, 𝑡
𝑛+1

)

= 𝜙
𝐽

(𝑥, 𝑦, 𝑡
𝑛
)

+
𝑡

2
[𝐹 (𝑡
𝑛
, 𝑥, 𝑦, 𝜙

𝐽

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(2,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(1,1)

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(0,2)

(𝑥, 𝑦, 𝑡
𝑛
))

+ 𝐹 (𝑡
𝑛+1

, 𝑥, 𝑦, 𝜙
𝐽

0
(𝑥, 𝑦, 𝑡

𝑛+1
) ,

𝜙
𝐽(1,0)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) , 𝜙
𝐽(0,1)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) ,
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𝜙
𝐽(2,0)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) , 𝜙
𝐽(1,1)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) ,

𝜙
𝐽(0,2)

0
(𝑥, 𝑦, 𝑡

𝑛+1
))] .

(36)

And the derivative function
𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦)

=
1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0(𝑚,𝑛)

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=0

2
𝑗
−1

∑
𝑘11=0

2
𝑗
−1

∑
𝑘12=0

[𝛼
1

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12
(𝑥, 𝑦)

+ 𝛼
2

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1(𝑚,𝑛)

2𝑘11 ,2𝑘12+1
(𝑥, 𝑦)

+ 𝛼
3

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12+1
(𝑥, 𝑦)] .

(37)

Obviously, the computation complexity is decreased greatly
comparing with (26).

4. Numerical Experiences and Discussion

In this section, we take some images as examples to illustrate
the efficiency of the dynamic interval wavelet interpolation
operator based on HPM in partitioning technique on the
image processing. In fact, the partitioning technique is a
scheme to divide the image into several subimages in themul-
tiscale wavelet numerical method to improve the efficiency.
The dynamic interval wavelet provides an adaptive choice
scheme for the external collocation points to eliminate the
boundary effect of the subimages. Perona-Malik equation is
employed as the denoising model, which is an anisotropic
diffusion image denoising model that was proposed by
Perona and Malik. It has been widely used in various image
processing fields. It can be represented as the nonlinear
partial differential equations:

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div (𝑐 (|∇𝑢|) ∇𝑢) ,

𝑢 (𝑥, 𝑦, 0) = 𝑓 (𝑥, 𝑦) ,

(38)

where (𝑥, 𝑦) denotes pixel position, 𝑡 is the time parameter,
𝑓(𝑥, 𝑦) is the 2D image being processed,𝑢(𝑥, 𝑦, 𝑡) is the image
after diffusion processing, and 𝑢(𝑥, 𝑦, 0) is the initial value.
div denotes the divergence operator, ∇𝑢 denotes the gradient
operator, and 𝑐(|∇𝑢|) denotes the diffusion coefficient, which
is nonnegative decreasing function of the image gradient
modulus. It is usually taken as

𝑐 (|∇𝑢|) =
1

1 + (∇𝑢/𝑘)
2

(39)

or

𝑐 (|∇𝑢|) = exp [−(∇𝑢
𝑘
)
2

] , (40)

where 𝑘 is a constant.

Twodifferentmedical images are taken as examples to test
the characteristic of different interpolation wavelets, which
is showed in Figure 1. One is the human brain (Figure 1(a)),
which has so clear contour that that image cannot be repre-
sented as a continuous function near the contour. The Gibbs
phenomenon is possible to be introduced into the image near
the boundary. So, this can be used to test the advantages
of the multiscale wavelet approximation comparing with the
difference operator. Another one is the image of the locust
coelom, which has many microgrooves without clear bound-
ary. This image is used to test the characteristic of different
interpolation wavelets, which is showed in Figure 1(b).

4.1. Comparison between the Sparse Grid Approach and the
Finite Different Method. It has been mentioned above that
the brain image is used to test the difference between the
sparse grid approach and the finite difference method and
the difference between different wavelet functions which are
taken as the basis functions in the sparse grid approach. In
this experiment, all the results are obtained by solving the
Perona-Malik equation with different methods, which have
been showed in Figure 2.

Two interpolationwavelet scaling functions are employed
to test the dynamic sparse grid approach for image denoising
proposed in this paper. The Shannon wavelet possesses the
smoothness andor the orthogonality but has no compact sup-
port property. Daubechies scaling function possess almost
all the excellent properties in numerical algorithm such as
smoothness, orthogonality, and compact support property.
But what we utilized in this research is the autocorrelative
function of the Daubechies scaling function, which keeps
the better edge preserving property although it loses the
orthogonality. It can be easily observed from Figure 2(c) that
the evident artifacts appeared in the denoised image obtained
by the Shannon sparse grid approach. That is, the Gibbs
phenomenon has appeared in the Shannon scaling function
representation of the image near the boundary. In contrast
to the Shannon wavelet, the denoised image (Figure 2(b))
obtained by the Daubechies wavelet sparse grid approach has
clear boundary. It is easy to understand that the compact
support property of the wavelet scaling function is helpful
to eliminate the Gibbs phenomenon and so to improve the
numerical performances of the wavelet numerical methods.

Comparing with the sparse grid approaches, the finite
difference method utilizes the difference operator to approx-
imate the derivative in Perona-Malik equation, which
decreases the value of the derivative to some extent. There-
fore, the edge of the brain contour is smoothed in denoised
images; this is showed in Figure 2(d). It should be noticed
that the edge of the denoised image obtained by the Shannon
wavelet sparse grid approach is more clear than that obtained
by the finite difference method, in despite of the appearing
artifacts.

4.2. Comparison between the Dynamic Interval Wavelet and
the Static Interval Wavelet. For convenience of comparison,
we call the interval interpolation wavelet constructed by the
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(a) Image of human brain (b) Image of locust coelom

Figure 1: Original images.

(a) Original image (b) Autocorrelation function of Daubechies scaling
function

(c) Shannon scaling function (d) Finite difference method

Figure 2: Comparison between different numerical methods for image denoising (time step 𝜏 = 0.00001, terminal time 𝑡 = 0.00005).
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Table 1: Condition number of each image block at different times.

Block number Condition number
𝑡 = 0.00001 𝑡 = 0.00002 𝑡 = 0.00003 𝑡 = 0.00004 𝑡 = 0.00005

1 9.6829 7.7193 6.7935 6.8257 5.9730
2 13.7539 12.8756 11.8760 11.8703 11.3319
3 9.2841 8.8832 8.1376 7.8737 6.8713
4 9.6829 7.7193 6.7935 6.8257 5.9730
5 1.6816 1.6931 1.7153 1.7378 1.8923
6 13.9357 12.9657 11.8891 11.8757 10.3356
7 13.7543 12.8757 11.8765 10.8701 9.3318
8 13.7556 12.8781 11.8776 11.8734 11.3329
9 43.9354 32.9663 31.8882 28.8749 21.3346
10 3.2389 2.9137 2.2917 1.9365 1.2919
11 8.5692 6.9416 6.6971 5.2875 4.3907
12 31.9823 29.3266 28.8330 25.6736 20.1976
13 15.1617 14.7818 13.8967 12.5738 12.3428
14 12.9614 12.1973 10.9887 10.1725 9.3189
15 4.6593 3.7938 2.5476 2.3789 1.9916
16 14.6835 13.9864 13.1838 12.8897 11.3156
17 12.8113 12.1031 10.1763 9.5627 8.2474
18 14.9834 13.6523 12.7719 12.1658 11.7829
19 13.6689 12.1791 11.1782 10.5977 8.9664
20 125.4782 110.3379 98.9073 89.7761 80.2749
21 1.6816 1.6931 1.7153 1.7378 1.8923
22 2.4589 2.6623 3.7662 3.8955 4.5811
23 43.2983 39.6744 36.7943 32.1079 28.6179
24 211.5877 198.7219 180.7089 86.9125 81.8510
25 185.7428 170.5897 160.0987 52.1757 83.0421

Lagrange interpolator as static interval wavelet and the inter-
val interpolation wavelet based on the Newton interpolator
as the dynamic interval wavelet. The difference between two
interval wavelets above is the choice of the parameter 𝐿. The
value of 𝐿 is constant to the static interval wavelet, and it
varies with both of the boundary condition and the condition
number of the system ODEs obtained from the sparse grid
approach.

The purpose of constructing of the interval wavelet is to
eliminate the boundary effect in the partitioning technique
on the image denoising process. In this section, the image
of locust coelom (300 ∗ 300 pixels) is taken as example
to compare the difference between the dynamic and static
interval wavelets. According to the partitioning technique,
the image is divided evenly into 25 parts for simplification.
So, the size of each image block is 60 ∗ 60 pixels (Figure 3).
According to the sparse grid approach based on HPM, the
calculation amount decreases from (300 ∗ 300)3 to 25 ∗
(60 ∗ 60)3. It has been mentioned that there are many
ways to eliminate the boundary effect such as the extension
method and the interval wavelet method. There is no doubt
that the interval wavelet method is more efficient than the
extension method. According to the interval interpolation
wavelet based on the Lagrange interpolator, the amount of the
external collocation points 𝐿 is a constant.With increase of 𝐿,
the calculation amount will increase correspondingly.

L is taken as 1, 2, and 3, respectively, in the experiments.
It is easy to be observed from Figures 3(a)–3(c) that there

are more collocation points near the boundary of each of
block images in all 3 cases. In fact, the adaptive increase
of the collocation points can also eliminate the boundary
effect. Therefore, there are no artifacts appearing in the
denoised images in the first two cases. But the increase of
the collocation points can increase the calculation amount
greatly. According to the definition of the interval interpo-
lation wavelet based on the Lagrange operator, the increase
of 𝐿 can improve the smoothness and the precision of the
approximated function near the boundary. This is helpful to
decrease the boundary effect in theory. In contrast to the
theory, the collocation points in the whole image domain
increased so much that the artifacts appeared in the denoised
subimages when 𝐿 = 3 comparing to other two cases
(Figure 3(c)). As amatter of fact, this is caused by the increase
of the condition number of the system of ODEs obtained by
the sparse grid approach. That is, the increase of the value
of 𝐿 can induce the condition number change greatly; this is
showed in Table 1. It has been pointed out in Section 2 that
if the condition number cond(𝐴) = 10𝑘, then you may lose
up to 𝑘 digits of accuracy on top of what would be lost to the
numerical method due to loss of precision from arithmetic
methods. This also illustrates that the condition number
must be taken into account in the dynamic interval wavelet.
Figure 3(d) is the result obtained by the dynamic interval
sparse grid approach. The distribution of the collocation
points in Figure 3(d) is just correlative with the image content
itself and is not correlativewith the partitioning scheme of the
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Figure 3: Comparison between the dynamic interval wavelet and the static interval wavelet.
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Figure 4: Adaptability of the multiscale sparse grid approach in image denoising (time step 𝜏 = 0.00001).

image anymore.The amount of the wavelet collocation points
also decreased accordingly.

4.3. Adaptability of the Wavelet Collocation Points. In this
research, the dynamic interpolation operator was viewed as a
nonlinear problem, and so HPM is employed in construction
of the dynamic interpolation wavelet defined in interval.This
is helpful to improve the efficiency of the multilevel wavelet
interpolation operators. In this section, the autocorrelation
function of the Daubechies scaling function is employed
to construct the dynamic interval wavelet. The brain image
is taken as example to test the precision and efficiency of
the HPM-based dynamic interval wavelet proposed in this
research. The experiment results were showed in Figure 4. It
is easy to be observed that the noise pixels of the brain images
were smoothed completely and the edges of the brain contour
were preserved perfectly. With the increase of the iteration
times, more and more trivial objects such as the noise pixels
are being smoothed, and more areas in the brain image are
becoming smoother. Accordingly, the amount of the wavelet
collocation points should be smaller and smaller. This has
been illustrated in Figures 4(a) and 4(b). In this experiment,
the time step 𝜏 = 0.00001; the definition domain of the
parameter 𝑡 is [0, 0.001]. The experiment results show that
the amount of the wavelet collocation points decreases from
23488 to 19413 with the parameter 𝑡 increasing from 0.0005 to
0.001. According to the finite difference method, the amount
of the collocation points should be 90000, which is greater

than the sparse grid approach, evidently. This illustrates that
the dynamic interval sparse grid approach proposed in this
paper is more efficient than the finite difference method.

5. Conclusions

The dynamic interval wavelet and the corresponding numer-
ical method proposed in this paper are intrinsically an
adaptive choice scheme on the external collocation points.
In partitioning technique about the image processing, the
dynamic sparse grid approach can be used to eliminate the
boundary effect and improve the algorithm efficiency. In this
method, the wavelet interpolation operator is constructed
based on the homotopy perturbation method, which can
decrease the calculation amount greatly. In addition, compar-
ing with the finite difference method, the dynamic interval
sparse grid approach can preserve the object edge more
clear, especially in the case that the edge is sharper. For
simplification, the image is divided evenly into several parts
according to the partitioning scheme in the experiments. It is
obvious that the partitioning scheme can be adaptive, which
can improve the efficiency furthermore.
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