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Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm.
In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position
distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based
on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony
position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained
optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed
to verify the correctness and effectiveness of the proposed algorithm.

1. Introduction

Optimization is a kind of application technology using
mathematical method to study how to search for the optimal
solution for the problem in numerous solutions, as an impor-
tant branch of science, which has been a widespread concern,
and the rapid popularization and application in industrial
production, economic and other fields. In the 1940s, with
the increasingly widespread application of high-speed digital
computers, optimization theory and algorithms developed
rapidly and formed a new discipline. In recent years, swarm
intelligence optimization theory has gradually developed
into a new research direction of optimization techniques,
typical algorithms with genetic algorithm [1], particle swarm
optimization [2], ant colony optimization algorithm [3],
artificial bee colony algorithm [4], firefly algorithm [5], and
bat algorithm [6].

Inspired by the real ant colony foraging behavior in
nature, early in the 1990s, the Italian scholars Dorigo et
al. proposed ant colony optimization algorithm [3]. The
algorithm adopts the distributed control, self-organizing, and
positive feedback, and the optimization process does not
depend on rigorous mathematical properties of optimization

problem in itself and has the potential parallelism. Research
on ant colony algorithm has shown that superiority of
the algorithm for solving complex optimization problems.
Because the ant colony optimization algorithm is essentially
a kind of discrete optimization ideas, so the study of the
optimization algorithm is mainly aimed at the problems of
discrete domain optimization. But in real life, there are many
optimization problems that are usually expressed as opti-
mization problems of continuous domains. Therefore, how
essentially discrete ant colony optimization algorithm would
be applied to solve the optimization problems of continuous
domains has become a new direction for research on ant
colony optimization algorithm. In recent years, the studies of
ant colony optimization algorithm for continuous domains
have obtained some achievements and many scholars have
proposed a variety of ant colony optimization algorithms
for continuous domain [7–17]. Bilchev and Parmee first
proposed a continuous ant colony optimization algorithm
CACO [7], the algorithm for solving problems using genetic
algorithms for global search of the solution space firstly and
then using the ant colony optimization algorithm for local
optimization to all the results. Dréo and Siarry proposed con-
tinuous interactive ant colony optimization algorithm CIAC
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Figure 1: Process of ant colony foraging.

[8], the algorithm modify the way of pheromone update and
rules of path-searching, and use two ways of pheromone
communication to guide ant optimization. Monmarché et
al. proposed API algorithm [9]; All the ants set out from
the same starting point, and each ant uses a complementary
strategy that carried out optimization independently. Socha
and Dorigo, who proposed continuous domain ant colony
optimization algorithm ACOR [10], used a Gaussian kernel
probability density function express as distribution model of
pheromone and gave ACOR metaheuristic framework.

This paper proposes position distribution model of ant
colony foraging and designs ant colony optimization algo-
rithm for continuous domains based on the model to solve
the standard test functions to verify the correctness and
effectiveness of the algorithm. This paper is organized as
follows. The relationship between the position distribution
and food source in the process of ant colony foraging is
analyzed in Section 2, and the position distribution model
of ant colony foraging is given. To solve the unconstrained
optimization problems and constrained optimization prob-
lems for ant colony optimization algorithm of continuous
domains is designed in Section 3.The algorithmperformance
test trials and comparative analysis are given in Section 4.The
conclusion is given in Section 5.

2. Position Distribution Model of
Ant Colony Foraging

In the process of real-world ant colony foraging, people find
that ant colony have a built-in optimization capability: they
always can find the shortest path from nest to food. By
studying this phenomenon, people propose the ant colony
optimization algorithm.

We can see the process of ant colony foraging from
another perspective. As shown in Figure 1, an individual ant

has no guidance of pheromone in the initial of foraging and
searches for food sources blindly in the whole space; at this
point, ant colony is distributed uniformly in the continuous
space. As the process for feeding food, ants aggregated around
the source will be increased, and the density of pheromone
will increase in the vicinity, thus raising more ants to the
food source. Also, the higher quality of the food source will
attract a greater number of ants. Thus, in the process of ant
colony foraging, the position distribution of ant colony and
food source and quality is the same.

We can give such a model through the above process
of analysis and expansion: assuming the food source is
everywhere throughout in the continuous space, the quality
of food source is different. At the initial moment, ants of
ant colony distribute uniformly in the continuous space
and release pheromones according to food sources of their
position. The higher the quality of the food source, the more
the pheromone ants released. The pheromone is distributed
throughout the continuous space in a certain dispersed
model, and ants perceive spatial concentration of pheromone
intensity, moving to the position of a higher concentration
of pheromone in a certain way and achieve the exploration
of unknown regions during the move. The movement of the
single antwill cause the change of thewhole position distribu-
tion of ant colony, so that all the ants keep aggregating to the
higher quality of food source and search the highest quality
of food source in the continuous space eventually.Thismodel
is called position distribution model of ant colony foraging.

3. Ant Colony Algorithm of
Continuous Domains Design

Below, we discuss the design process of ant colony
optimization algorithm of continuous domain for solving
unconstrained optimization problems and constrained
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optimization problems based on position distribution model
of ant colony foraging.

3.1. Design of Algorithm for Solving Unconstrained
Optimization Problem

3.1.1. Expression of Solution. Assuming the whole ant colony
consists of 𝑚 groups of substructure, each group contains 𝑛
of ants. As shown in the following equation:
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of the optimization problem.

3.1.2. Distribution Model of Pheromones. In the position
distribution model of ant colony foraging, each ant releases
pheromone according to the quality of a food source of
their position; pheromones are dispersed in the entire space,
with increasing distance of the source and the concentration
decreasing.Therefore, we need to choose a probability density
function as distributionmodel of ant pheromone in optimiza-
tion algorithm of continuous domains. Gaussian function is
a common probability density function; we assume ants of
the ant colony release pheromone externally on the function.
At this point, 𝑗 ant in any subcolony ant 𝑖 corresponding to
pheromone distribution model 𝜏
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where 𝜇
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is the position ant
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of ant 𝑗 in the subcolony of

ants 𝑖, namely, the distribution center, 𝜎
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optimization problem, 𝜓 (𝜓 > 0) is a parameter, and 𝜎
𝑗
is

used to adjust size.

3.1.3. Updating Position of Ant Colony. Before updating the
position of ant colony, we need to choose a group as a parent
fromm subcolony. First, we use formula (3) to calculate each
group of subcolony corresponding to the assessed value of
solution. Consider the following:

eval
𝑖
=

1

(1 + 𝑒
𝑓(ant𝑖1 ,ant𝑖2 ,...,ant𝑖𝑛)/𝑇)

, (3)

where 𝑓(ant
𝑖1
, ant
𝑖2
, . . . , ant

𝑖n) is the assessment value of the
subcolony ant 𝑖; 𝑇 (𝑇 > 0) is the adjustment coefficient used
to adjust the pressure of selection.

After assessment value for each group of subcolony is
obtained, we calculate the selected probability for each group
of subcolony according to

𝑝
𝑖
=
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∑
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. (4)

Finally, we select parent colony 𝑐 according to formula (5)
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where 𝑞
0
(0 ≤ 𝑞

0
≤ 1) is a given parameter, 𝑞 is a random

variable which distributed in [0, 1] uniformly. 𝐶 is a random
variable which is generated according to formula (4).

After getting the parent ant colony c, the ant pheromone
distribution model function 𝜏

𝑐𝑗
(𝑥) in the ant colony corre-

sponding to random number generator for sampling, the 𝑘
groups of children colony are generated. Then, according to
the size of assessment value for each group of subcolony, we
select the large assessment value of 𝑚 group from (𝑚 + 𝑘)

group of subcolony in order to achieve position of ant colony
update.

3.2. Algorithm of Solving Constrained Optimization Problem.
First, we define a solution 𝑥 of measure constrained opti-
mization problem violatemeasure for the degree of constraint
condition:
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where ℎ
𝑗Min is a small positive number. viol(𝑥) is equal to zero

represent 𝑥 is feasible solution. viol(𝑥) which is greater than
0 represent 𝑥 is infeasible solution.

When using this algorithm for solving constrained opti-
mization problems, we allow infeasible solutions with proba-
bility 𝑝Max (0 ≤ 𝑝Max ≤ 1) existing. Algorithm calculation
process is consistent with Section 3.1, and we only adjust the
update process of the position of ant colony to the following
process.

(1) Calculate the number 𝑒Num = (𝑚+𝑘)×𝑝Max of the
maximum expected infeasible solutions in the group
(𝑚 + 𝑘) of subcolony.

(2) Calculate the number 𝑟Num of real infeasible solu-
tions based on the value viol(𝑥) in the group (𝑚 + 𝑘)
of ant colony.

(3) If 𝑟Num is less than 𝑒Num, then reserve the max-
imum of the assessment for group 𝑚 of ant colony
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Figure 2: Curves of minimum function.

directly. If 𝑟Num is greater than 𝑒Num, the infeasible
solutions are ranked by the value of viol(𝑥), the
greater number (𝑟Num − 𝑒Num) of assessment value
for the infeasible solutions from the value viol(𝑥) is
set to 0, and then reserve 𝑚 group of the maximum
fitness for (𝑚 + 𝑘) group of ant colony according to
the assessment value.

4. Testing and Analysis of
Algorithm Performance

4.1. Solution of Unconstrained Optimization Problems. In
the process of solving unconstrained optimization problems
algorithm performance testing, we refer to [10] method; the
entire test is divided into three groups; the use of this algo-
rithm with a kind of probabilistic learning methods, a kind
of continuous domains ant colony algorithm, and a kind of
metaheuristic methods is compared. The operating parame-
ters of the algorithmdesign in this paper are shown in Table 1.

4.1.1. Compare with a Kind of Learning of Probability Method.
In this experiment, we use the algorithm in this paper to
compare with [10, 21–24] which used a kind of probabilistic
learning method for performance. In order to ensure the
fairness of the results of comparison, the entire test method
according to [10, 21] is given.The baseline function of this set
of tests is given in Table 2.The stop condition of the algorithm
is satisfied in

󵄨
󵄨
󵄨
󵄨
𝑓 − 𝑓

∗󵄨
󵄨
󵄨
󵄨
< 𝜀min, (8)

where 𝑓 is the optimal solution for algorithm, 𝑓∗ is the
known optimal solution, and 𝜀min needs to satisfy the accu-
racy, taken as 10−10.

The comparative test results are shown in Table 3, where
the results of other methods for solving are provided by
[10, 21]. In the data of Table 3, the “1.0” represents the best
algorithm for solving the extreme value of the basis functions.
The actual median number of function evaluations is given in
parentheses.Other algorithms corresponding evaluation data
are the ratio of the evaluation number of the function and the
best algorithms function when the stop condition is satisfied.
“∞” represents the use of the algorithm that can not seek to
satisfy the stop condition. The results marked “∗” represent
the use of the algorithm to get the corresponding extreme
value of the basis functions, not to satisfy stop condition
results are found every time.

By the test results, it can be found that the algorithm has
better searching capability and faster speed of convergence.
In the process of solving seven of the basis functions, four
functions of solution have results significantly better than
other probability learning algorithms.

4.1.2. Compare with a Kind of Ant Colony Algorithm of Con-
tinuousDomains. In this experiment, we use the algorithm in
this paper and a kind of ant colony of continuous domains in
[10] for performance comparison.Themethod of test is given
according to [10]. The basis functions of this test are given in
Table 4. The stop condition of algorithm is satisfied in

󵄨
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𝑓 − 𝑓
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1
⋅ 𝑓 + 𝜀

2
, (9)

where 𝜀
1
is relative error, the value is 10−4, 𝜀

2
is the absolute

error, and the value is 10−4.
The results of comparative tests are shown in Table 5,

where the percentage in brackets represents the minimum
value of the independent use of the method for solving the
corresponding basis functions 100 times, and ultimately the
number of the stop conditions satisfied as a percentage of
the total number of the algorithms is obtained. The symbol
“—”represents that the algorithm is not used for solving the
corresponding minimum of basis function; there is no data
available for reference.

The results of this test prove that algorithm of this paper
has better searching capability and faster speed of conver-
gence. But we also find that the stability of the algorithm
in this paper is relatively worse. In the process of solving
the minimum of six basis functions, there are five solving
functions which cannot guarantee that each stop solution
condition satisfied the required accuracy.

4.1.3. Compare with a Kind of Metaheuristic Method. In this
experiment, we use the algorithm in this paper and a kind of
metaheuristic method in [10] for performance comparison.
The test is carried out according to methods given in [10].
The basis functions of this set of tests are shown in Table 6.
In this experiment, except for the three basis functions given
in Table 6, the function also uses B

2
function, GP function,

and R
2
and R

5
functions given in Table 4.

The results of comparative tests are shown in Table 7. We
can find that algorithm of this paper has better searching
capability and faster speed of convergence. But it also expose
the instability of the algorithm.
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Table 2: Basis functions of test 1 [10].

Function Formula (𝑛 = 10) Range Optimum 𝑓(𝑥)
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Table 3: Results of test 1.

Function This paper (1 + 1) ES CSA-ES CMA-ES IDEA
PL 1.0 (15) 52.5 84 75.5 ∞

DP 1.0 (58) 14.4 21.7 18.8 ∞

SP 1.0 (199) 6.9 11 8.9 34.4
EL 3.2 66 110 1.0 (4450) 1.6
CG 60.1 610 80 1.0 (3840) 4.6
TB 1.0 (550) 214.7 303.4 7.9 13.5
Rn 4.7∗ 51∗ 180 1.0 (7190) 210∗

Table 4: Basis functions of test 2 [10].

Function Formula Range Optimum
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Table 5: Results of test 2.

Function This paper ACOR CACO API CIAC
𝑅
2

1.0 [95%] (62) 13.2 109.8 158.7 185.2
SM 1.0 (69) 11.3 316.9 147.1 724.4
GP 1.0 [97%] (54) 7.1 99.6 — 433.8 [56%]
MG 1.0 [99%] (53) 6.5 32.5 — 221.3 [20%]
𝐵
2

1.0 [95%] (80) 6.8 — — 149.6
𝑅
5

1.4 [78%] 1.0 [97%] (2487) — — 16 [90%]
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Figure 3: Change of the distribution of ant colony.

Table 6: Basis functions of test 3 [10].

Function Formula Range Optimum 𝑓(𝑥)

Easom 𝑓ES(𝑥⃗) = − cos(𝑥1) cos(𝑥2)𝑒
−((𝑥1−𝜋)

2
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2
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4
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𝑛
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0

When solving the minimum of the basis function Easom,
stop condition to satisfy the accuracy requirements of the
solution is found in the process of the algorithm indepen-
dently running 100 times in only 43.

The algorithm for solving the convergence curve of the
minimum of B

2
function is shown in Figure 2. After the 158th

iteration in the algorithm of this paper, the values of function
have been less than 10−10; then the optimal solution has been
found in the algorithm.

In the process of solving the function B
2
in Figure 3,

each group of ant colony corresponding to the solution
with the change of the distribution of algorithm iteration
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Table 7: Results of test 3.

Function This paper CGA ECTS ESA DE
𝐵
2

1.0 [95%] (80) 5.4 — — —
Easom 1.0 (75) [43%] 19.6 — — —
GP 1.0 [97%] (54) 7.7 4.3 14.5 —
𝑅
2

1.0 [95%] (62) 15.5 7.7 13.2 10.1
𝑍
2

1.0 [98%] (48) 13 4.1 329.1 —
DJ 1.0 (56) 13.3 — — 7
𝑅
5

1.7 [78%] 1.9 1.0 (2142) 2.5 —
𝑍
5

1.0 (81) 17 27.8 861.6 —

Table 8: Parameter value.

Parameter 𝑚 𝑘 𝑞
0

𝜓 pMax
Value 100 50 0.1 4 0.2

is shown. Where the initial distribution of ant colony is
shown in Figure 3(a), all initial ant colony corresponding
positions are distributed in [−100, 100]. With the operation
of the algorithm, each group of ant colony rapidly approaches
the optimal solution; in the 50th iteration, each ant of
all the ant colony has been distributed in [−1, 1]. In the
158th step, the results of the algorithm for solving have
satisfied stop conditions; then each ant colony is distributed
in [−10−5, 10−5], and there are two groups of ant colony of
overlapping position.

4.2. Solution of Constrained Optimization Problems. In this
set of test experiments, we use this algorithm for solving the
basis function G01∼G12 of constrained conditions, and [18–
20] are compared. In order to guarantee the fairness of the test
results, the method of test is consistent with the methods of
[18–20] adopted.Using the algorithm for solving various basis
functions 50 times independently, best results are compared.
In the process of running each algorithm, if the optimal value
function obtained by consecutive 150 times does not change,
the running algorithm exits. Otherwise, the algorithm exited
after iteration 30,000 times.

During solving the basis test function of constrained
conditions, the parameter values of the algorithm in this
paper are shown in Table 8.

The results of comparative tests are shown in Table 9.
We can see from the test results that effect of the algo-

rithms in this paper for solving functions G01 and G02 was
poor and solving the extreme values of function G03∼G06,
G08, G09, G11, and G12 gets minimum. It is evident that the
algorithm in this paper for solving constrained optimization
problems is effective. The algorithm in this paper for solving
the maximum convergence curve of function G08 is shown
in Figure 4.

In the process of solving, the feasible solution is found
in the 17th iteration; after the 19th iteration, each group of
subcolony corresponding solution is a feasible solution; the
maximum value 0.095825 is founded by algorithm in the
157th iteration; all 10 groups of ant colony have found the
maximum value in the 210th iteration.

0 50 100 150 200 250
−0.02

0

0.02

0.04

0.06

0.08

0.1

Iteration

Fu
nc

tio
n 

va
lu

e

Figure 4: Maximum value curve of function.

The process of the algorithm in this paper for solving
function G08 shown in Figure 5. Distribution changes of
each group of ant colony corresponding to the solution
with algorithm iteration are shown. The initial distribution
of ant colony is shown in Figure 5(a); position of all ant
colony does not satisfy all constraint conditions. There have
been 7 groups of ant colony corresponding to the position
that satisfied the constraint condition in the 25th iteration
(Figure 5(b)); all 10 groups of ant colony corresponding to
the position are distributed in 𝑥

1
∈ [1.227968, 1.227973],

𝑥
2
∈ [4.245396, 4.245377], and there is a group of ant colony

that had found the optimal solution in the 157th iteration
(Figure 5(d)).

5. Conclusion

In this paper, in the process of position distribution rela-
tionship between food sources of ant colony foraging for
analysis, a new position distribution model by ant foraging
is proposed. Any point in the solution space could be
seen as a food source in the model, using multiple groups
of subcolony for optimization; each group of subcolony
represented a solution of the problem. In every iteration step,
a group of ant colony was chosen from all subcolonies as the
parent ant colony firstly and then sampled from pheromone
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Table 9: Results of test functions for solving constrained optimization problems [18–20].

Function Known optimal This paper ESSR KM DP PEPS S
G01 −15.000 −13.934798 −15.000 −14.7864 −15.000 −15.000
G02 −0.803619 −0.781996 −0.803515 −0.79953 −0.803587 −0.803540
G03 −1.000 −1.000 −1.000 −0.9997 −0.583 −1.000
G04 −30665.539 −30665.539 −30665.539 −30664.5 −30365.488 −30665.538
G05 5126.498 5126.498 5126.497 — — 5126.508
G06 −6961.814 −6961.814 −6961.814 −6952.1 −6911.247 −6961.814
G07 24.306 24.329 24.307 24.620 24.309 24.308
G08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
G09 680.630 680.630 680.630 680.91 680.632 680.631
G10 7049.331 7078.146 7054.316 7147.9 — 7081.068
G11 0.750 0.750 0.750 0.750 0.750 0.750
G12 −1.000000 −1.000000 −1.000000 −0.999999857 −1.000000 −1.000000
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(a) Distribution of initial ant colony
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(d) Distribution of the 157th iteration ant colony

Figure 5: Distribution changes of ant colony.
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density function of the group, generated children colony, and
finally updated position of ant colony, so that each group of
subcolony continued moving towards the solution space of
the higher fitness value, converging to the optimal solution
eventually. By simulating the above process, we designed ant
colony optimization algorithm of continuous domains; a set
of test functions for unconstrained optimization problems
and a set of test functions optimization comparison test
were compared and gave the solving process of the B

2
test

function and test function G08. Test results show that, in
solving unconstrained optimization problems, the proposed
algorithm has better searching capability and faster speed of
convergence, but the stability of the algorithm is poor; when
solving constrained optimization problems, the proposed
algorithm has the basic optimization capability consistent
with other algorithms.
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