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An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric
layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed
and governing equations are derived by taking the principle of complementary virtual work.The solutions are obtained by solving a
generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions,
but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is
found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the
piezoelectric actuators.

1. Introduction

Laminated composite materials [1] have been increasingly
attracted in the engineering industries, due to their high
stiffness-to-weight ratio, high strength-to-weight ratio, high
corrosion resistance, high chemical stability, and so on.
They have been popularized in the aircraft manufacturing,
vehicle industries, medical fields, and even sport equipment
industries. With the improvement of manufacturing process
and productivity, they have potential in replacing the conven-
tional metal alloys and nonmetal materials massively in the
future. However, it is well known that due to the mismatch
of elastic properties between the adjacent layers, there exist
large undesirable interlaminar peeling stresses. Because of
these highly concentrated peeling stresses, failures such as
delamination or crack may occur near the free edges and
further lead to the damage of structures.

The concentrations of peeling stress often occur within a
short distance from the free edges, known as the free edge
boundary effect [2, 3]. The stresses decrease and vanish in
the interior region of the laminates. Also, even an in-plane
load applied on the laminate will cause 3D state of stress
distributions near the free edge. Thus, some theories are not

capable of predicting the free edge peeling stress distributions
which assume the plane stress condition, such as classical
laminate theory (CLT) [4, 5].

The concentrated free edge peeling stresses are critical
to the fatigues of laminated structures. Some passive control
methods have been developed either by adjusting the stacking
sequence of laminates [6] or by changing the edge shape of
fibers [7] to prevent the onset of delamination. Nevertheless,
due to their passive nature, they cannot work effectively
and other desired goals cannot be achieved. Thus, in this
study, we will investigate the peeling stress reduction by using
piezoelectric actuators. Owing to their electromechanical
coupling nature, piezoelectric actuators have potential to
generate stresses which have opposite signs of those peeling
stresses generated by mechanical loadings and, in return, to
reduce the magnitudes of those peeling stresses.

Since the last decades, a large volume of literature sources
has introduced the modeling of smart composite laminated
plates and beams [8–12]. Chen and Qiao investigated the
electromechanical behavior and fracture of piezoelectric
bilayer beams [13–15].They also investigated the interlaminar
stresses of plated beam with adhesive layers [16]. They found
that the adhesive layers can affect the local deformations
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and in return alleviate the stress concentrations. While
predicting the interlaminar stresses of laminated structures,
most approaches neglect the adhesive layer effect. Numerous
approximate approaches, without considering the adhesive
layer effect, have been developed since there is no method of
obtaining exact 3D elastic solutions. The developed theories
vary from the displacement field based approaches [17] to
stress field based approaches [18, 19]. All of these theories have
their own characteristics and specific applications.

For the displacement field based equivalent single layer
theories, such as classical laminate theory, first order shear
deformation theory [20, 21], and higher order shear deforma-
tion theory [22–26], these theories are efficient in predicting
the global response of laminates in bending, buckling, and
vibration analysis, while they are not capable of predicting
the localized free edge stress concentrations. The stress
components are usually calculated from the constitutive
relation or the equilibrium equations. Thus, the free edge
stress concentration at the layer interface cannot be revealed
accurately. For the stress function based equivalent single
layer theories [27, 28], the localized free edge stress concen-
trations can be accurately predicted, while, on the other hand,
displacement information cannot be achieved. Moreover,
prescribed boundary conditions are mandatory in those
equivalent single layer theories either for the preassumed
displacement trial functions or for the stress trial functions.
The layerwise theories [29] are much more accurate in
analyzing the stress concentration at the ply level. For the dis-
placement based layerwise theories, they allow the in-plane
displacement to vary continuously through the laminate
thickness, while their derivatives with respect to the thickness
coordinate may be discontinuous through the thickness,
thereby allowing for the possibility of continuous transverse
stresses at the ply interfaces. For the stress based layerwise
theories [30, 31], the stress fields are assumed layerwisely and
transverse stress continuity conditions have to be enforced
at the ply interfaces. Both the displacement and stress based
theories can accurately predict the stress concentration at the
free edges. However, the layerwise theories are much more
computationally expensive than the equivalent single layer
theories.

Among the analytical methods, another approximate
method named as the extended Kantorovich method [32, 33]
can be referred to. The extended Kantorovich method is an
iterative method for solving partial differential equations.
Although the initial assumption of admissible functions
influences the convergence time a lot, the solutions can
be improved gradually by repeating solving the governing
equations and applying boundary and continuity conditions
during the iteration processes.The assumed admissible func-
tions with prescribed boundary conditions are of priority
and any types of boundary condition problems can be solved
by using this approach. The interlaminar stresses at the
straight free edges of laminates under extension loads were
investigated by Cho and Yoon [34]. And later Cho and Kim
[35] analyzed the free edge interlaminar stresses of composite
laminates under extension, bending, twisting, and thermal
loads by using the extended Kantorovich method. In their
study, they preferred using the stress trial functions, and

traction-free boundary conditions and free edge boundary
conditions were satisfied automatically during the iterative
processes. Ungbhakorn and Singhatanadgid [36] proposed
an extended Kantorovich method to investigate the buckling
problem of rectangular laminates with various boundary
conditions. The initial trial functions were used arbitrarily
and the principle ofminimum total potential energywas used
to derive governing equations. Andakhshideh and Tahani
[37] investigated the interlaminar stresses near free edges
of finite length general composite laminates subjected to
axial and shearing loads using three-dimensional extended
Kantorovichmethod.They provided convergent 3D elasticity
solutions with four terms of trial functions. Due to their
arbitrary choice of initial trial functions and various bound-
ary conditions, the extended Kantorovich method could be
a good methodology in the interlaminar stress analysis of
laminated composite structures.

In the present study, a stress function based extended
Kantorovich method is proposed to investigate the reduction
of free edge peeling stresses using piezoelectric actuators.
Symmetrically layered laminates will be taken into consid-
eration as symmetric laminates are most commonly used
to avoid coupling of bending and twisting modes. Most
studies start from the initial assumption that the strain or
stress is independent of the longitudinal coordinate, and this
study also adopts this point. The three-dimensional stress
solutions are obtained by iterative processes involving mul-
titerms of initially assumed trial functions. By the extended
Kantorovichmethod, the influence of initial assumptions can
be well eliminated and the accuracy of stress distributions
can be improved a lot. Finally, convergent results are given
as numerical examples and compared with those obtained
by finite element method. It is expected to obtain significant
peeling stress reduction by applying proper electric fields to
piezoelectric actuators.

2. Mathematical Modeling

2.1. Derivation of Governing Equation. For the given geom-
etry of laminated composite plate, as shown in Figure 1,
two piezoelectric actuators are symmetrically surface bonded
on the top and bottom surfaces of the laminates without
considering the adhesive layer affect. This kind of structure
is usually considered to be smart composite laminates [38].
Two piezoelectric layers are used to control the free edge
peeling stresses that are generated by mechanical loadings.
The longitudinal dimension of the laminates is considered
long enough so that the stress fields are independent of the
𝑥-axis. Therefore, generalized plane strain states are assumed
to be in the 𝑥 direction.

The extended Kantorovich method requires iterative cal-
culation methodology. By preassumption of trial functions
and solving a set of ordinary differential equations, the
solution of the first process can be obtained. Due to the
rough initial assumption, it cannot guarantee the accuracy
of solution. Thus, to overcome this weak point, iterative
processes can be conducted to improve the accuracy of
solution. The governing equations can be derived by using
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Figure 1: Geometry of laminated composite plate with surface bonded piezoelectric actuators under combined electromechanical loadings.

either Galerkin’s method or the principle of virtual work. In
this work, the principle of complementary virtual work is
employed.The complementary strain energy of the laminated
composite plate is calculated by the following equation:
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Before substituting strain and stress components into the
complementary strain energy equation, an initially assumed
stress field should be introduced. Instead of using displace-
ment assumption, stress field assumption is preferred. A good
choice for stress field is Lekhnitskii stress functions [39]
which can express the three-dimensional stress state of piezo-
bonded composite laminates. Lekhnitskii stress functions can
automatically satisfy the pointwise equilibrium equations as
follows:
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where 𝜂 = 𝑧/𝐻 and 𝜉 = 𝑦/𝐻 are nondimensionalized
coordinates and𝐻 is the total thickness of the laminates.The
solutions 𝐹 and 𝜓 are series combinations and assumed to be
a combination of in-plane stress functions (𝑓

𝑖
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and out-of-plane stress functions (𝑔
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variables as follows:
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With the initial assumption of stress field, the strain
tensor {𝜀

𝑖
} can be found from the linear elastic constitutive

relation. This relation is assumed for each individual layer
with piezo induced strain term:
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where [𝑆] is the generalized compliance matrix for
orthotropic materials. [𝑑] is the piezoelectric constant
matrix and [𝐸] is the applied electric field.

As the mechanical extension load is applied in the 𝑥

direction, all other strain components can be expressed using
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Substituting (2) and (5) into (1), the complementary strain
energy becomes
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To simplify the above equation, integration by parts and
free edge boundary conditions (𝜎
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0) are applied. Then, the double integration is simplified to
the following equation and the governing equations can be
obtained by using the variational principle. Consider
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2.2. Solutions of Governing Equations and Generalized Eigen-
value Problem. To solve the fourth-order and second-order
coupled ordinary differential equations, the trial functions
𝑔
𝑖
(𝜂) are specified first in (10). Although prescribed bound-

ary conditions are not necessarily satisfied for trial functions
when using the extended Kantorovich method, the mode
shapes of the clamped-clamped beam are used as the initial
out-of-plane trail functions to satisfy the traction-free bound-
ary conditions automatically (𝜎
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where 𝜆
2 are eigenvalues of the above equation. Since the

interlaminar stresses decay in the interior region of piezo-
bonded composite laminates, only negative roots of 𝜆2 are
selected. Equation (13) results in 3𝑛 eigenvalues and eigenvec-
tors, so that the homogeneous solutions consist of 3𝑛 terms
linear combination as follows:
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The final step of solving the governing equations is
to obtain the constants 𝑡
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in the homogeneous solutions.
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conditions (𝜎

2
= 𝜎
4
= 𝜎
6
= 0 at 𝜉 = 0), and this will lead

𝑓
𝑖
, 𝑓I
𝑖
, and 𝑝

𝑖
to be zeros at the free edges. Consider

𝑡
𝑗
V𝑓
𝑖𝑗
𝑒
−𝜆𝑗𝜉






𝜉=0

+ 𝑓
(𝑃)

𝑖
= 0,

−𝑡
𝑗
𝜆
𝑗
V𝑓
𝑖𝑗
𝑒
−𝜆𝑗𝜉






𝜉=0

= 0,

𝑡
𝑗
V𝑝
𝑖𝑗
𝑒
−𝜆𝑗𝜉





𝜉=0

+ 𝑝
(𝑃)

𝑖
= 0.

(16)

After solving the governing equations, all stress com-
ponents can be obtained by substituting the solutions into
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the Lekhnitskii stress functions and they have the following
expressions:
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2.3. Iterative Procedures. The accuracy of the first step largely
depends on the initial assumption of trail functions and the
number of series terms involved in the trail functions. The
results may also be influenced by the choice of trail functions
whichmay cause singularity problem, harmonic distributions
of stresses, and so forth.Thus, it is important to overcome the
weaknesses appeared in the first process. We prefer using the
extended Kantorovich method which is an iterative process.
Through the iterative processes, the influence of the initial
assumption can be eliminated and the convergent results can
be obtained.

In the second step, the solutions of the first step (𝑓
𝑖
(𝜉)

and 𝑝
𝑖
(𝜉)) are considered to be the known functions and

the principle of complementary virtual work is used again to
derive governing equations. Here, the unknown out-of-plane
stress functions (𝑔

𝑖
(𝜂)) are assumed to be layer dependent and

the continuity conditions are enforced at the layer interface.
Thus, from the principle of complementary virtual work in
(7) and integration by parts, the governing equation for the
out-of-plane stress functions can be obtained as follows:

∫ [𝑚
(4)(𝑘)

𝑖𝑗
𝑔
(𝑘)(IV)
𝑗

+ 𝑚
(2)(𝑘)

𝑖𝑗
𝑔
(𝑘)(II)
𝑗

+ 𝑚
(0)(𝑘)

𝑖𝑗
𝑔
(𝑘)

𝑗
+ 𝑥
(𝑘)

𝑖
]

× 𝛿𝑔
(𝑘)

𝑗
𝑑𝜂 + Λ = 0 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) ,

(𝑘 = 1, 2, . . . , 𝑁) ,

(18)

where Λ represents the boundary terms induced by integra-
tion by parts and the superscript (𝑘) refers to the 𝑘th ply. The
layerwise coefficients are listed as follows:

𝑚
(4)(𝑘)

𝑖𝑗
= ∫ [

̂S(𝑘)
22

𝑓
𝑖
𝑓
𝑗
+ 𝑆
(𝑘)

26
(𝑓
𝑖
𝑝
𝑗
+ 𝑝
𝑖
𝑓
𝑗
) + 𝑆
(𝑘)

66
𝑝
𝑖
𝑝
𝑗
] 𝑑𝜉,

𝑚
(2)(𝑘)

𝑖𝑗
= ∫ [

̂S(𝑘)
23

(𝑓
𝑖
𝑓
II
𝑗

+ 𝑓
II
𝑖
𝑓
𝑗
) +

̂S(𝑘)
36

(𝑓
II
𝑖
𝑝
𝑗
+ 𝑝
𝑖
𝑓
II
𝑗
)

−
̂S(𝑘)
44

𝑓
I
𝑖
𝑓
I
𝑗
−
̂S(𝑘)
45

(𝑓
I
𝑖
𝑝
I
𝑗
+ 𝑝

I
𝑖
𝑓
I
𝑗
) −

̂S(𝑘)
55

𝑝
I
𝑖
𝑝
I
𝑗
] 𝑑𝜉,

𝑚
(0)(𝑘)

𝑖𝑗
= ∫ 𝑆
(𝑘)

33
𝑓
II
𝑖
𝑓
II
𝑗
𝑑𝜉,

𝑥
(𝑘)

𝑖
= ∫(

S(𝑘)
13

S(𝑘)
11

𝜀
1
+

̂
𝑑
33
𝐸
3
)𝑓

II
𝑖
𝑑𝜉.

(19)

The solution procedure is the same as in the first step.
A generalized eigenvalue problem is solved and the general
solution is calculated by adding the homogeneous solutions
𝑔
(𝑘)(H)
𝑖

and the particular solutions 𝑔(𝑘)(𝑃)
𝑖

:

𝑔
(𝑘)

𝑖
= 𝑏
(𝑘)

𝑗
V𝑔(𝑘)
𝑖

𝑒
𝜇
(𝑘)
𝜂

+ 𝑔
(𝑘)(𝑃)

𝑖
,

(𝑘 = 1, 2, . . . , 𝑁) , (𝑖 = 1, 2, . . . , 𝑛) ,

(20)

where 𝜇
(𝑘) are the roots of eigenvalues and V𝑔(𝑘)

𝑖
are the

eigenvectors.
The constants 𝑏(𝑘)

𝑗
in the homogeneous solutions can be

determined from the traction-free boundary conditions on
the top and bottom surfaces (𝜎

𝑖
= 0 at 𝜂 = ±1/2, 𝑖 = 3, 4, 5),

interlaminar stress continuity conditions at the ply interfaces
(𝜎+
𝑖
(𝑘) = 𝜎

−

𝑖
(𝑘 + 1), 𝑖 = 3, 4, 5), and boundary terms Λ set to

be zero. These conditions lead to the following equations:

𝑔
(𝑘)

𝑖
= 𝑏
(𝑘)

𝑗
V𝑔(𝑘)
𝑖

𝑒
𝜇
(𝑘)
𝜂





𝜂=±1/2

+ 𝑔
(𝑘)(𝑃)

𝑖
= 0, (𝑘 = 1,𝑁) ,

𝑔
(𝑘)

I

𝑖
= 𝑏
(𝑘)

𝑗
𝜇
(𝑘)V𝑔(𝑘)
𝑖

𝑒
𝜇
(𝑘)
𝜂





𝜂=±1/2

= 0, (𝑘 = 1,𝑁) ,

𝑏
(𝑘)

𝑗
V𝑔(𝑘)
𝑖

𝑒
𝜇
(𝑘)
𝜂





𝜂=𝜂
+
𝑘

+𝑔
(𝑘)(𝑃)

𝑖
= 𝑏
(𝑘+1)

𝑗
V𝑔(𝑘+1)
𝑖

𝑒
𝜇
(𝑘+1)
𝜂





𝜂=𝜂
−
𝑘+1

+𝑔
(𝑘+1)(𝑃)

𝑖
, (𝑘=1, 2, . . . , 𝑁−1) ,

𝑏
(𝑘)

𝑗
𝜇
(𝑘)V𝑔(𝑘)
𝑖

𝑒
𝜇
(𝑘)
𝜂





𝜂=𝜂
+
𝑘

= 𝑏
(𝑘+1)

𝑗
𝜇
(𝑘+1)V𝑔(𝑘+1)
𝑖

𝑒
𝜇
(𝑘+1)
𝜂





𝜂=𝜂
−
𝑘+1

,

(𝑘 = 1, 2, . . . , 𝑁 − 1) .

(21)

Thus, after obtaining the solutions of governing equation, all
stress components can be obtained and are listed as follows:

𝜎
2
=

𝑛

∑

𝑖=1

4𝑛

∑

𝑗=1

𝑓
𝑖
(𝜉) [𝜇

(𝑘)

𝑗

2

V𝑔(𝑘)
𝑖𝑗

𝑏
(𝑘)

𝑗
𝑒
𝜇
(𝑘)
𝑗
𝜂

] ,

𝜎
3
=

𝑛

∑

𝑖=1

4𝑛

∑

𝑗=1

𝑓
II
𝑖
(𝜉) [V𝑔(𝑘)
𝑖𝑗

𝑏
(𝑘)

𝑗
𝑒
𝜇
(𝑘)
𝑗
𝜂

+ 𝑔
(𝑘)(𝑃)

𝑖
] ,

𝜎
4
=

𝑛

∑

𝑖=1

4𝑛

∑

𝑗=1

− 𝑓
I
𝑖
(𝜉) [𝜇

(𝑘)

𝑗
]𝑔(𝑘)
𝑖𝑗

𝑏
(𝑘)

𝑗
𝑒
𝜇
(𝑘)
𝑗
𝜂

] ,

𝜎
5
=

𝑛

∑

𝑖=1

4𝑛

∑

𝑗=1

− 𝑝
I
𝑖
(𝜉) [𝜇

(𝑘)

𝑗
]𝑔(𝑘)
𝑖𝑗

𝑏
(𝑘)

𝑗
𝑒
𝜇
(𝑘)
𝑗 𝜂

] ,

𝜎
6
=

𝑛

∑

𝑖=1

4𝑛

∑

𝑗=1

𝑝
𝑖
(𝜉) [𝜇

(𝑘)

𝑗

2

]𝑔(𝑘)
𝑖𝑗

𝑏
(𝑘)

𝑗
𝑒
𝜇
(𝑘)
𝑗
𝜂

] .

(22)
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After conducting the second step, if the results are still not
convergent, more processes can be conducted. The iterative
algorithm can be concluded as follows.

(1) Assume an initial set of out-of-plane stress functions
(𝑔
𝑖
(𝜂)) and then take the principle of complementary

virtual work to solve the in-plane stress functions
(𝑓
𝑖
(𝜉) and 𝑝

𝑖
(𝜉)).

(2) Use the in-plane stress functions (𝑓
𝑖
(𝜉) and 𝑝

𝑖
(𝜉))

obtained from the first step as the known functions
and repeat taking the principle of complementary
virtual work to solve the out-of-plane stress functions
(𝑔
𝑖
(𝜂)).

(3) Use the out-of-plane stress functions (𝑔
𝑖
(𝜂)) obtained

from the second step as the known functions and
repeat taking the principle of complementary virtual
work to solve the in-plane stress functions (𝑓

𝑖
(𝜉) and

𝑝
𝑖
(𝜉)).

Three steps are narrated in the above algorithm and
more processes can be conducted, if required. However, one
essential difference should be emphasized. In the first step,
the initially assumed out-of-plane stress functions represent
the global state of stress distributions which implies that
the first step is a stress based equivalent single layer theory,
while from the second step, the out-of-plane stress functions
are assumed layerwisely and continuity conditions should
be enforced at the layer interfaces. All stress components
satisfy the boundary conditions automatically when using the
extended Kantorovich method.

3. Numerical Results

Based on the theoretical formulations discussed in the
previous section, numerical examples are investigated. The
laminated composite structures are subjected to uniaxial
extension and electric load. The material properties of
graphite/epoxy composite laminates [40] and piezoelectric
actuator (PZT-5H) are given in Table 1. The lamina thickness
is 0.125mm, which is almost one-fourth of the PZT thickness
(0.5mm). For convenience, 4 laminae, which have the same
fiber orientations, are considered one lamina, so that each
lamina thickness is then the same as the PZT thickness.
The width of the laminate 𝑏 is equal to four times the total
thickness𝐻.

3.1. Convergence Study. The laminates are subjected to uni-
axial tension only in this part. To investigate the convergence
of the proposed method, different terms of initially assumed
stress functions are used and several iterative processes are
conducted. To validate the proposed modeling, 3D finite
element analysis is also conducted using commercial software
ANSYS.The Solid 64 element is used for composite laminates
and Solid 5 is used for PZTs. To obtain accurate interlaminar
stress distributions, fine mesh is required and it should be
refined at the layer interface.Thus, we used 20 elements along
the thickness direction for a single layer. The total degree of
freedom is 640,281 that is much larger than our proposed
method.The three-dimensional solid laminate has a relatively

Table 1: Material properties of composite lamina and PZT-5H
actuator.

Composite Actuator
𝐸
1
= 138GPa 𝐸

1
= 𝐸
2
= 62GPa

𝐸
2
= 𝐸
3
= 14.5GPa 𝐸

3
= 48GPa

𝐺
12

= 𝐺
13

= 𝐺
23

= 5.9GPa 𝐺
12

= 23.5GPa,
𝐺
13

= 𝐺
23

= 23.5GPa
]
12

= ]
23

= ]
21

= 0.21 ]
12

= ]
23

= ]
21

= 0.29

𝑑
31

= 𝑑
32

= 274 × 10
−12m/V

𝑑
33

= −593 × 10
−12m/V,

𝑑
15

= −741 × 10
−12m/V

long length, compared with the width and height, to express
the generalized plane strain state effectively.

Figure 2 shows interlaminar normal stress (𝜎
3
) distri-

bution through the thickness direction at the free edge of
[PZT/0

4
/90
4
]s laminate under 0.1% uniaxial strain obtained

from the first process. The result is compared with the FEM
result, and the influence of term number used in the first
process is investigated. It is found that the accuracy of the
stress distribution largely depends on the number of terms
in the first process. With 8 terms of initially assumed stress
functions, the result cannot converge well and undesired
oscillation appears due to the initial assumption of harmonic
functions. Moreover, the stress concentration at the layer
interfaces also cannot be predicted accurately. Aswe expected
the peak values should be exactly located at the PZT/0 layer
interface (𝑧/𝐻 = 1/3) and 0/90 layer interface (𝑧/𝐻 =

1/6), while it cannot be recovered by using 8 terms. Only
by increasing the number of terms, the locations can be
predicted more precisely. Until using 40 terms of initially
assumed stress functions, the stress concentrations can be
found exactly located at the layer interfaces, but undesired
oscillations still exist. The proposed result can be verified
by the FEM result. Both of them show the same tendency
and magnitude, whereas the result obtained by finite element
method shows difficulties in predicting the stress concentra-
tions at the layer interfaces even using fine mesh. A proper
choice of the term number not only guarantees the accuracy
of results, but also improves the computational ability. It is
to be noted that the computational time using 40 terms for
solving the first process only costs seconds, while FEM takes
10–20 minutes to run a single case.

The results of iterative process for [PZT/0
4
/90
4
]s lam-

inates under 0.1% uniaxial strain are given in Figures 3–
5. These results are obtained by only 8 terms and different
iterative processes. Figure 3 shows the interlaminar normal
stress (𝜎

3
) distribution through the thickness direction at

the free edge. From the graph, it is found that the iterative
processes can significantly improve the accuracy of the stress
prediction. The locations of stress concentration can be
exactly predicted at the layer interfaces and the oscillations
appeared in the first iteration disappeared since the third
iteration. Figures 4 and 5 show interlaminar normal stress
distribution (𝜎

3
) and interlaminar shear stress distribution
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Figure 2: 𝜎
3
distribution of [PZT/0

4
/90
4
]s laminate at the free edge, using different terms, under 0.1% uniaxial strain.
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Figure 3: 𝜎
3
distribution of [PZT/0

4
/90
4
]s laminate at the free edge from different iterations, under 0.1% uniaxial strain.

(𝜎
4
) through the in-plane direction, respectively. First iter-

ation with 8 terms of initially assumed stress functions
cannot guarantee the convergence of the stresses, while the
third and fifth iterations provide almost converged stresses.
The stresses obtained by FEM show great coincidence with
those obtained by the proposed method but finite element
analysis underestimates stress concentrations at the free edge.
Interlaminar shear stress (𝜎

4
) also cannot satisfy the free

edge boundary condition exactly in finite element analysis.
It is concluded that the iterative processes can provide the
converged stresses with small number of terms. Not only the
influence of initial assumption can be eliminated, but also
the stress concentration locations can be predicted accurately
by the iterative processes. In the following work, the results
of the fifth iteration with 8 terms of initially assumed that

the stress functions are considered to investigate the reduc-
tion of peeling stresses by piezoelectric excitation.

3.2. Reduction of Peeling Stresses Using Piezoelectric Exci-
tations. The existence of peeling stresses generated by the
mechanical loadings can be reduced by applying proper
electric fields to the actuators. Due to the electromechanical
coupling phenomenon, the induced strain or stress generated
by the electric loadings has the possibility of compensating
the strain or stress generated by the mechanical loadings, in
turn, to reduce the peeling stresses and to expand the service
life of laminated structures. To investigate the feasibility of
peeling stress reduction using piezoelectric actuators, two
general lay-ups are considered and numerical examples are
discussed in this part.
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distribution of [PZT/0

4
/90
4
]s laminate at the interface of 𝑧/𝐻 = 1/6 from different iterations, under 0.1% uniaxial strain.
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4
distribution of [PZT/0

4
/90
4
]s laminate at the interface of 𝑧/𝐻 = 1/6 from different iterations, under 0.1% uniaxial strain.

The first example is given by cross ply composite lam-
inate ([PZT/0

4
/90
4
]s) which is subjected to 0.1% uniaxial

strain. Moreover, different electric voltages are applied to
the actuators that are expected to reduce the free edge
peeling stresses. Figure 6 shows interlaminar normal stress
(𝜎
3
) distribution through the thickness direction at the free

edge. It can be clearly found that the peeling magnitude
of 𝜎
3
is significantly reduced at the 0/90 layer interface by

applying a positive electric voltage to the actuators. Without
electric potential, the concentrated peeling stress is 8.3MPa.
It is reduced to 4.9MPa, when 300V electric potential is
applied. This is of great meaningfulness to the reduction
of positive peeling stress at the interface. Figures 7 and 8
show interlaminar normal stress (𝜎

3
) and interlaminar shear

stress (𝜎
4
) distribution through the in-plane direction at

the 0/90 interface, where 𝑧/𝐻 = 1/6. Our ambition is to
reduce the peeling stress at the composite layer interface by
using piezoelectric actuator. Thus, this interface is what we
concerned. 𝜎

3
and 𝜎

4
show large positive values at the free

edge and near the free edge under the mechanical loading.
With the increasing of the electric potential, the magnitudes
of peeling stresses are reduced dramatically. The peeling
stress 𝜎

3
can be reduced to almost 50.2 percent when 300V

electric potential is applied which is summarized in Table 2.
For interlaminar shear stress (𝜎

4
), 17.3 percent decrement is

observed when 300V electric potential is applied.
The second example is given by angle ply composite

laminate ([PZT/45
4
/−45
4
]s) which is subjected to −0.1%

uniaxial strain load.The laminate is subjected to compressive
load while it sustains large peeling stresses at the 45/−45 layer
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4
/90
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]s laminate at the interface of 𝑧/𝐻 = 1/6, under 0.1% uniaxial strain.

Table 2: Comparison of peak stresses for cross ply composite
laminate ([PZT/04/904]s) at the 0/90 layer interface, where 𝑧/𝐻 =

1/6, under 0.1% uniaxial strain, fifth iteration, 𝑛 = 8.

Applied electric
potential (V)

𝜎
3

𝜎
4

(MPa) Reduction (%) (MPa) Reduction (%)
0 6.62 0 2.37 0
100 5.51 16.8% 2.19 7.6%
200 4.41 33.4% 2.06 13.1%
300 3.30 50.2% 1.96 17.3%

interfaces. Figure 9 shows interlaminar normal stress (𝜎
3
)

distribution through the thickness direction at the free edge.

It is found that the peeling stress is severely concentrated
at the 45/−45 layer interface which could lead to the onset
of delamination of composite layers. However, this peeling
stress can also be significantly reduced in angle ply laminate,
when a positive electric potential is applied to the actuators.
The peak value is reduced from 11.83MPa to 8.52MPa. The
interlaminar normal stress (𝜎

3
) and interlaminar shear stress

(𝜎
4
) distribution through the in-plane direction at the 45/−45

layer interface are given in Figures 10 and 11, respectively.The
interlaminar normal stress (𝜎

3
) and interlaminar shear stress

(𝜎
4
) well match with those obtained by the finite element

analysis for the mechanical loading case. However, finite
element analysis still underestimates the stress concentration
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distribution of [PZT/45

4
/−45
4
]s laminate at the free edge, under −0.1% uniaxial strain.

at the free edge. The detailed reductions of peeling stresses
can be found in Table 3. Since angle ply composite laminates
sustain larger shear stresses than cross ply composite lami-
nates, the reduction of 𝜎

3
is smaller than that of cross ply,

while the reduction of 𝜎
4
is larger than that of the cross ply.

Theproposed reduction algorithmalsoworks for the in-plane
stress (𝜎

2
) which is obtained at the interior of the laminate,

shown in Figure 12. It is interesting to find that themagnitude
of 𝜎
2
also decreases when a positive electric potential is

applied.This result can be verified by using classical laminate
theory (CLT). The fifth result can accurately recover the
CLT solution. Thus, the proposed reduction approach is well
suited to the angle ply composite laminate.

4. Conclusions

In this study, the reduction of free edge peeling stresses of
laminated composite structures using piezoelectric actuators
was analyzed by using the extended Kantorovich method.
Multiterms of the initially assumed stress functions were
involved, and three-dimensional stress distributions were
obtained. The accuracy and effectiveness of the present
approach were demonstrated by comparing the stresses
obtained by ANSYS. The provided results showed excellent
agreements with those obtained by FEM, while it showed
accuracy and great efficiency in computation. It was found
that small terms of trail functions could lead to accurate
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Table 3: Comparison of peak stresses for angle ply laminate
([PZT/454/−454]s) at the 45/−45 layer interface, where 𝑧/𝐻 = 1/6,
under −0.1% uniaxial strain, fifth iteration, 𝑛 = 8.

Applied electric
potential (V)

𝜎
3

𝜎
4

(MPa) Reduction (%) (MPa) Reduction (%)

0 11.28 0 1.81 0

100 10.73 9.3% 1.63 10.0%

200 9.63 18.6% 1.46 19.3%

300 8.52 24.5% 1.30 28.2%

solutions. The present method is general and applicable to
various lay-up configurations. The peeling stresses generated
by mechanical load at the free edges were significantly
reduced by applying a proper electric potential. The present
method could serve as an efficient tool for reducing the
free edge peeling stresses and extending the service life of
laminated composite structures.
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