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Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common
geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum
temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal
heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the
dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless

temperature in each selected geometry.

1. Introduction

In many engineering and biological systems, conduction
heat transfer plays a vital role. The basic information on
conduction heat transfer can be found in any text book
[1-3]. Many researchers, including [4-16], have investigated
analytically/numerically the problems of steady/unsteady
conduction heat transfer in different geometries with differ-
ent boundary conditions.

Davalos and Rubinsky [17] incorporated, perhaps for
the first time, the ideas from the fields of evolution and
genetics in a new approach to solve heat transfer problems.
They also demonstrated the feasibility of this new approach
to solving problems in physics. Later on, Rubinsky and
Davalos [18] solved the conduction heat transfer equation
by using genetic algorithms. But their analysis was limited
to very coarse meshes. Tsourkas and Rubinsky [19] not
only resolved this problem but also extended their analysis
to fine meshes. They also studied the effect of different
parameters and operators on the accuracy of the results.
Tsourkas and Rubinsky [20] developed genetic algorithms
for implementation on parallel computers to solve heat

conduction problems. Their algorithm involved a novel local
search operator that greatly improves its accuracy. Gosselin et
al. [21] presented a comprehensive review of the application of
genetic algorithms in heat transfer problems. They presented
a number of papers in which heat conduction was optimized.
They identified three main types of heat transfer problems
related to thermal systems, inverse heat transfer problems and
development of heat transfer correlations. Felczak and Wicek
[22] implemented genetic algorithm for electronic devices
placement optimization. They assumed that nine electronic
devices can be positioned randomly on a substrate surface
and created a 2-level optimization algorithm. They optimized
the positions of nine electronic devices with respect to
thermal criteria and wiring length.

Genetic Algorithm is based on the Darwinian principle
of evolution and it follows the principle of “survival of the
fittest” Genetic algorithms, proposed by Holland [23] and
enhanced by others [24, 25], have shown exponential growth
in various fields of engineering and technology ranging from
control theory, signal processing, antenna design, biomedical
signal processing, and so forth [26-28]. Genetic algorithms
have been successfully applied in the field of heat transfer



since mid-1990s [29, 30]. Complex optimization involving
nonlinear constraints can be easily solved using genetic algo-
rithms [31]. Conventional deterministic optimization tech-
niques have immense computational requirement and can
only be applied when the objective function is differentiable
and continuous [32]. Conventional optimization schemes
have a drawback of converging in local minima; hence, the
solution is compromised [33]. Deterministic optimization
schemes often fail when the objective function is multiex-
tremal [34, 35].

2. Genetic Algorithm

Genetic algorithms have been successfully applied in the
field of heat transfer since mid-1990s. Complex optimiza-
tion involving nonlinear constraints can be easily solved
using genetic algorithms. Optimization problems that cannot
be solved because of the extremely massive computational
requirements can be easily solved using genetic algorithms.
Genetic algorithms are based on heuristic approach and
searches for the best individuals. A generation consists of
randomly generated population. The members of the popu-
lation are tested for fitness. The most suitable candidates are
allowed to reproduce the new generation. The next generation
consists of the best individuals from the previous generation
and their offspring. The chromosomes of each member are
also mutated to generate a more suitable candidate in the next
generation.

The fitness function (the function to be minimized) is
the entropy generation in all the cases. The simulation is
developed in MATLAB. The fitness scores, returned by the
fitness function, are ranked on the basis of their scores.
The rank of the fittest individual is set to “1” and the next
fittest is assigned a rank of “2” and so on. Rank fitness
scaling removes the effect of raw scores. “Stochastic uniform”
scaling function is used for selection of parents in the next
generation. The parents are selected based on the rank as
determined earlier. Stochastic uniform algorithm lays out a
line in which each parent corresponds to a section of the
line of length proportional to its expectation. The algorithm
moves along the line in steps of equal size, one step for each
parent. At each step, the algorithm allocates a parent from the
section it lands on. The first step is a uniform random number
less than the step size. Reproduction algorithm determines
how the offspring are generated. The elite count is set to
“2” which guarantees that a maximum of two individuals
will survive in the next population. Crossover generates
member of the new generation by combining genes from
two individuals from the previous generation. The crossover
process used is “scattered” which first creates a random binary
vector. A “I” in the random binary vector is replaced by
genes from the first parent and a “0” in the random binary
vector is replaced by a gene from the second individual.
Crossover fraction is a factor which determines how many
individuals in the next generation will be generated by
mixing genes from two different chromosomes. The crossover
fraction has a value of 0.8. The remaining members of the
generation will be generated by the mutation process. In the
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TaBLE 1: Comparison of entropy generation rates for the three
selected geometries when -3 < Q < 3andR* = 1.8.

a 0 Sgen
GA Numerical
—0.4 3.16 3.12
0 0.2 2.62 2.61
Plane wall 0.4 2.07 2.09
-0.4 0.957 0.95
0 0.4 0.84 0.84
0.4 0.723 0.72
-0.1 4.65 4.73
0 0.2 4.46 4.50
Hollow cylinder 01 4.28 4.28
-0.1 1.47 1.48
0 0.4 1.43 1.43
0.1 1.38 1.39
-0.1 6.33 6.36
0 0.2 6.07 6.06
Hollow sphere 0.1 5.8 5.77
-0.1 1.95 1.97
0 0.4 1.89 191
0.1 1.85 1.84

mutation process one or two genes are inverted in order to
generate a better diversity in the population. The mutation
function used in our experiment is “Gaussian.” Gaussian adds
a random number to each individual; the random number
is derived from a Gaussian distribution having zero mean
and a standard deviation of 1. In all the experiments the
size of the population in each generation was set to 10. Total
generations were set to 10. The optimized values from the
genetic algorithm for the three selected geometries are shown
in Table 1.

3. Mathematical Analysis

Consider one-dimensional steady conduction in a plane wall
of thickness L, a hollow cylinder of inside radius r,, outside
radius r,, and length L or a hollow sphere of inside radius
r, and outside radius r, with temperature dependent thermal
conductivity k = k;[1+ (T -T})], where ﬂ(K_l) is a measure
of the thermal conductivity variation with temperature and k,
is the thermal conductivity at temperature T;. Each geometry
is experiencing a uniform volumetric heat generation at the
rate g. The temperature on the left face of the wall or at the
inner radius is T; while the temperature on the right face or at
the outer radius is T, where T, > T). The dimensionless gov-
erning equations for a plane wall, hollow cylinder, and hollow
sphere with temperature dependent thermal conductivity and
uniform volumetric heat generation can be written as

do .
X {[1 +a(@-1)] ﬁ} +Q =0 (Plane wall),
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L d A .
R4R ‘[[1 +a(0-1)] Rﬁ} +Q =0 (Hollow cylinder),
1

d do .
R {[1 +a(d- 1)]R2ﬁ} +Q =0 (Hollow sphere),
ey

with boundary conditions

00)=1, 6(1)=0" (Planewall),
6(1)=1, 6(R")=0" (Hollow cylinder and sphere),
(2)
where
T
0=—, 0"=-2 a=}pT,
T, A
x=12 (Plane wall),
L
r * TZ .
R=—, R = -= (Hollow cylinder or sphere),
. ; y phere), ;)
. qL?
Q= Z_Tl (Plane wall),
. qr2
Q = =% (Hollow cylinder or sphere).
KT,

The governing equations given in (1) are nonlinear due to
temperature dependent thermal conductivity and do not have
exact analytical solutions. In this study, numerical solution
is obtained by using MATLAB. The equations were solved
using MATLAB built-in function “bvp4c.” In order to use this
function (1) was transformed into a system of equations. The
boundary conditions were specified in each case. The mesh
size (used to solve the boundary value problem) was set to 10,
that is, 10 equidistant points between initial and final values
of temperatures.

3.1. Entropy Generation Rates. Once the dimensionless tem-
perature distribution is known, the entropy generation rate
for the selected geometries can be calculated using the
expressions for the volumetric entropy generation rates given
by Bejan [36]. In dimensionless form, the entropy generation

rates S, for the selected geometries can be written as

do

2
ﬁ) dX (Plane wall),

Sl [ B <l
=S —J[1+a(0 (5

3
Sgen — *
2k, L e
K 1d6
-l n “DIR( =&
L [1+a(@ )]R(edX>dR
(Hollow cylinder),
Sgen _ o
4k, 1, sen
K 146\’
= 1 DR} 2
L [1+a(@ )]R(de) dR
(Hollow sphere) .
(4)

These expressions were also evaluated numerically using
MATLAB. The solution of the dimensionless temperature,
that is, (X) or O(R) (depending upon the geometry) is
obtained by utilizing “bvp4c” A third order polynomial
was approximated from the solution. The integral for the
entropy generation rates in (4) for each of the three cases
was solved by invoking MuPad facility from the MATLAB
environment. The solution for the definite integral was found
to be very accurate. The variation of entropy generation rate
with respect to "a” and "Q” for three geometries are shown in
Figures 3, 5 and 7 respectively.

The optimization process is shown in Figurel. An ini-
tial population is generated which should lie within the
constraints defined on the parameters. The constraints are
applied on a, Q, and 0", respectively. Each member of
the population is evaluated for fitness. The most suitable
individuals (having the best fitness values) are allowed to
breed. The breeding process (in a broad sense) consists of
crossover and mutation; the bad individuals are replaced
by the best offspring. The genetic algorithm checks for the
convergence. If the algorithm converges then it terminates
otherwise it generates a new set of population [37]. In our
experiment the maximum number of generations are set
to 10. If 10 generations is produced then the algorithm
terminates giving the best value of S, (objective function)
in the 10th generation.

gen

4. Theoretical Foundation of
Genetic Algorithms

Genetic algorithm is used for optimizing functions. Let the
objective function to be minimized be denoted by f(x) =
Sgen, where x = {x, | t = 1,2,...,Ni}. “¢” denotes
the parameter space of the optimization problem. Ny is the
maximum number of parameters to be considered in the
optimization process. “x,” can be continuous or discrete,
real or imaginary [26]. The genetic algorithm transforms
the parameter’s values x, into a symbolic representation “d”
which is termed as a chromosome. Many genes combine to
form a chromosome. The number of genes in a chromosome
determines the quantization level of the parameters (used in
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Generate initial

lati Apply constraints
population

Evaluate fitness of
each individual

Select parent for
breeding

Crossover Mutation

Replace best fit

individuals by offspring

Generate next Yes
population

Has GA Yes .
converged? Best solution

F1GURE 1: Flowchart for the optimization process.

optimization process). The chromosome “d” can be repre-
sented by

d={ej1j=1,2....Ng4}, ®)

where N is the length of the chromosome. The encoding of
a parameter value “x,” into “d” can be represented by

max min N,
. X - X .
_ .min =N, 7t t j-1
X =x, +2 NN T e;2’ ", (6)
J=N;_;+1

where x;™" and x;"** are the minimum and maximum values

of the parameter x,. A generation Z consists of randomly
generated population:

Z={z;1i=1,2,3,...,R}, (7)

where “R” is the maximum number of members in the
population. The members of the population are tested for
fitness. In our specific case the members are tested so that

they lie within the bounds defined on the parameters. The
filtered individuals are used to determine the cost (of the
objective function). Production of new members in the next
population consists of three major steps, namely, selection,
crossover, and mutation. the most suitable candidates are
selected as parents and are allowed to reproduce the new
generation. The selectionoperation can be represented by
Z’g = $(Z*) which produces a population of size “R” Various
selection schemes have been proposed such as ranking,
roulette-wheel, and stochastic uniform methods [25]. The
next generation consists of the best individuals from the
previous generation and their offspring. Chromosomes from
two parents are combined to generate an offspring; this
process is termed as crossover process. Crossover can be
denoted as the union over a composition of operators and is
given by

R/2

c@)-Uelr@m()]. o
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where the operator “ty” chooses a random chromosome from
Z and the operator “c” maps a pair of chromosomes z; =
{elj | ] = 1""’Ndl} and Zz = {ezj | ] = 1""’Ndl} to
another pair such that:

Z1,2 ith probabilit
C(Zl,Zz) — 21,22 WI proba ?%ypcross (9)
z,,2z, with probability 1 — p_..
where the newly produced offspring are given by
z = {ew €125+ +5 €1k €(k+1)> €2(k+2)> - - > eZNd,} >
(10)

Zy = {‘321’622’--"6210 €1(k+1)> €1(k+2)> - > 1N, [ -

The chromosomes of each member are also mutated (the
value of a randomly selected gene is inverted from 0 to 1
or 1to 0) to generate a more suitable candidate in the next
generation. The mutation process is given by Z’]‘VI =M (Z](‘:)
and mathematically it can be represented as

k . k

M(z¢) = Um(z). (11)
i=1

1

For a chromosome z = {ej | j=1,...,Ngz}, m(z) = {w(zj) |
j= 1""’Ndl}’ and

Z with a probability p,,

Vi) - { 1)

z with a probability 1 — p -

5. Simulation Setup

The fitness function (the function to be minimized) is the
entropy generation rate in all the cases. The simulation is
developed in MATLAB. The fitness scores returned by the
fitness function are ranked on the basis of their scores.
The rank of the fittest individual is set to “1” and the next
fittest is assigned a rank of “2” and so on. Rank fitness
scaling removes the effect of raw scores. “Stochastic uniform”
scaling function is used for selection of parents in the next
generation. The parents are selected based on the rank as
determined earlier. Stochastic uniform algorithm lays out a
line in which each parent corresponds to a section of the
line of length proportional to its expectation. The algorithm
moves along the line in steps of equal size, one step for each
parent. At each step, the algorithm allocates a parent from the
section it lands on. The first step is a uniform random number
less than the step size. Reproduction algorithm determines
how the offspring are generated. The elite count is set to “2”
which guarantees that a maximum of two individuals will
survive in the next population. The crossover process used
is “scattered” which first creates a random binary vector. A
“1” in the random binary vector is replaced by genes from
the first parent and a “0” in the random binary vector is
replaced by a gene from the second individual. Crossover
fraction is a factor which determines how many individuals
in the next generation will be generated by mixing genes
from two different chromosomes. The crossover fraction has
a value of 0.8. The remaining members of the generation will

5
9 Best, worst, and mean scores
NN 6" =02
8t . - - S ‘ﬂ:f0.4 :
Q=-3t03
Worst scores
-1 ‘ ‘ ‘
<
=<
~
§ 6F
o0
1%
5 -
Best scores
4 - d N .
1 2 3 4 5 6 7 8 9 10 11
Generation
FIGURE 2: Best, worst, and mean values of fitness function (S,_.) for

plane wall. .

be generated by the mutation process. The mutation process
generates a better diversity in the population. The mutation
function used in our experiment is “Gaussian.” Gaussian adds
a random number to each individual; the random number is
derived from a Gaussian distribution having zero mean and a
standard deviation of 1. In all the experiments the size of the
population in each generation was set to 10, that is, N is set
to 10. Total generations were set to 10. The optimized values
from the genetic algorithm for plane wall, hollow cylinder,
and hollow sphere are shown in Table 1.

6. Results and Discussion

The genetic optimization tool in the MATLAB environment
was used to solve nonlinear heat conduction problem in
three selected geometries. The most important task is to
code the fitness function and to set all the constraints. The
genetic algorithm calls the fitness function at each instant
with random values of the parameters to be optimized.
These random values are the members of the population.
With each set of values, the boundary value problem is
solved and the numerical solution is converted into a third
degree polynomial. The polynomial is subsequently used (by
invoking MUPAD from MATLAB) to determine the entropy
generation rate. The entropy generation rate is determined
for the complete population and the minimum value of the
entropy generation rate is held and the remaining values are
discarded.

One case for each of the selected geometries that is,
plane wall, hollow cylinder, and hollow sphere, is shown
in Figures 2-7, respectively. In Figure 2, initially the fitness
function value is above 4 and the worst score varies between
3 and 9 but when more members of the population are
generated, the fitness value converges. It can be observed that
after the fourth generation the fitness value does not change.
In the case of hollow cylinder, the fitness values converge
in the sixth generation. There is a lot of variation in the
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A
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Best scores
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FIGURE 3: Variation of S, with respect to “a” and “Q” Generation
FIGURE 6: Best, worst, and mean values of fitness function (Sgen) for
hollow sphere.
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FIGURE 7: Variation of Sgen with respect to “a” and “Q”
FIGURE 4: Best, worst, and mean values of fitness function (S,.,) for

hollow cylinder.

gen)

initial generations as can be seen in Figure 4 but the solution
gradually converges. For the case of hollow sphere (Figure 3),
the solution converges in the fifth generation. The vertical
lines in all the figures represent the maxima and minima
generated in each generation. In all the cases there are vertical
lines for the initial generations but the vertical lines do not
appear in the later generations. This clearly shows that only
the best individuals are retained and they migrate from one
generation to another.

—
~
1

—
[ S}
L

104

Syen /27K L
oo

7. Conclusions

Genetic algorithms are successfully employed to optimize
the dimensionless temperature in the selected geometries.
The concept of minimum entropy generation was used to
obtain the minimum dimensionless temperature. It is found
that, for the same constraints, the minimum dimensionless
“a” and “Q” temperature and hence the minimum entropy generation
rates are obtained in case of plane wall.

FIGURE 5: Variation of Sge“ with respect to “a” an,
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Nomenclature

a: Thermal conductivity parameter, 5T},
dimensionless

A:  Area of plane wall normal to the direction
of heat transfer, m*

k:  Thermal conductivity, W/m-K

k,: Thermal conductivity at T = T;, W/m-K

L:  Thickness of plane wall or the length of
hollow cylinder, m

r:  Radial coordinate, m

r;:  Inside radius of hollow cylinder or hollow
sphere, m

r,:  Outside radius of hollow cylinder or
hollow sphere, m

R:  Dimensionless radial coordinate, r/r,

R*: The ratio of outside to inside radius, r,/r,

: Entropy generation rate per unit volume,

W/m* K

Sgen: Entropy generation rate, W/K

T: Temperature, K

x:  Distance, m

X: Dimensionless distance, x/L.

Greek Symbols

B: Thermal conductivity coefficient, K™
0: Dimensionless temperature, T/T;
0*: temperature ratio, T,/T;.
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