
Research Article
Using Heuristic Value Prediction and Dynamic Task Granularity
Resizing to Improve Software Speculation

Fan Xu, Li Shen, Zhiying Wang, Bo Su, Hui Guo, and Wei Chen

National University of Defense Technology, Changsha, Hunan 410073, China

Correspondence should be addressed to Fan Xu; xfdadada@gmail.com

Received 24 December 2013; Accepted 2 March 2014; Published 20 May 2014

Academic Editors: K. K. Mishra and A. K. Misra

Copyright © 2014 Fan Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Exploiting potential thread-level parallelism (TLP) is becoming the key factor to improving performance of programs onmulticore
ormany-core systems. Among various kinds of parallel executionmodels, the software-based speculative parallelmodel has become
a research focus due to its low cost, high efficiency, flexibility, and scalability. The performance of the guest program under the
software-based speculative parallel execution model is closely related to the speculation accuracy, the control overhead, and the
rollback overhead of themodel. In this paper, we first analyzed the conventional speculative parallelmodel and presented an analytic
model of its expectation of the overall overhead, then optimized the conventional model based on the analytic model, and finally
proposed a novel speculative parallel model named HEUSPEC. The HEUSPEC model includes three key techniques, namely, the
heuristic value prediction, the value based correctness checking, and the dynamic task granularity resizing. We have implemented
the runtime system of the model in ANSI C language.The experiment results show that when the speedup of the HEUSPECmodel
can reach 2.20 on the average (15% higher than conventional model) when depth is equal to 3 and 4.51 on the average (12% higher
than conventional model) when speculative depth is equal to 7. Besides, it shows good scalability and lower memory cost.

1. Introduction

Exploiting potential thread-level parallelism (TLP) is becom-
ing the key factor to improving performance of programs
on multicore systems [1]. A series of productions provide
effective solutions to parallel programming, such as OpenMP
[2], MPI [3], and TBB [4]. However, as the processor cores
increase and software application becomes more and more
diverse, the traditional parallel programming frameworks are
facing new challenges. First, the complexity of dependencies
makes the program code hard to be parallelized effectively
by traditional parallel programming tools. Programs with
lots of conflict variables (CVARs, the variables involved in
cross-iteration dependencies) usually cannot be parallelized
smoothly. To solve this problem, some parallel program-
ming tools offer explicit synchronization and communi-
cation interfaces for programmers, but this will increase
the difficulty of parallel programming. Second, traditional
parallel programming tools cannot support multiple paral-
lelism modes. For example, OpenMP can support DOALL
mode well but lacks support for DOACROSS or PIPELINE

mode [5]. Third, as the processor core number increases, the
scalability of traditional parallel programmingmethods faces
additional challenge, too.

Speculative parallel execution model offers a solution to
the problems above. It offers underlying hardware or software
for correctness checking so that the programming interface
is simpler. Programmers using Transactional Memory (TM)
[6–9] or Thread Level Speculation (TLS) [10–14] models
do not have to know the details about the dependencies
between threads. They can neglect the dependencies while
they are parallelizing the program and focus on the algorithm
optimization or task partition. The underlying hardware or
runtime system will help them to insure the program against
errors. Speculative parallel model can drastically exploit
parallelism in the program and reach a high performance,
without increasing burden of programmers. The Stanford
Hydra [15] with its TLS mechanism and various kinds
of transactional memories are typical works of speculative
parallel execution models.

Although the speculative parallel model is of high effi-
ciency and practicability, there are defects of its mechanism.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 478013, 18 pages
http://dx.doi.org/10.1155/2014/478013

2 The Scientific World Journal

For conventional hardware supported models, the changes
in microarchitecture are costly and less scalable. To avoid
these problems, many researches on the speculative parallel
models are based only on software in recent years. A series
of works such as BOP [16, 17], CorD [18, 19], and SpiceC [5]
are proposed and the evaluation results of them are quite
good. However, for the software-only speculative parallel
models, there are still two kinds of obstacles. First, the
missing of hardware support usually leads to both higher
control overhead and rollback overhead. Second, the static
task partitioning leads to the imbalance of the loads of
each speculative thread. To overcome these obstacles, special
strategies are needed to reduce the overall overhead and
balance the load.

Aiming at the defects in the software-only speculative
parallel models, in this paper, we try to use a novel value
prediction scheme and a dynamic task partitioning scheme
to improve the conventional models. The paper proposes
our new software-based speculative parallel model, called
HEUSPEC. Two main contributions are included.

(i) The model uses heuristic value prediction (HVP)
mechanism to reduce the high misspeculative rate
in the conventional speculative parallel models. The
mechanism can generate predicted values of CVARs
via multiple approaches, including history value pre-
diction scheme. It uses a scorekeeper to evaluate
and select the prediction results. The mechanism can
improve the accuracy of speculative read in themodel
and reduce the rollback overhead.

(ii) Themodel involves dynamic task granularity resizing
(DTGR) mechanism. The mechanism can optimize
the overhead of the model at runtime by resizing the
granularity of each parallel task. It can augment the
task size when the misspeculation rate is at low level
and deflate the task size when the rate is high. Thus it
can reduce the overall time cost remarkably.

The rest of the paper is organized as follows. In Section 2,
the overview of the HEUSPEC model is introduced. In
Section 3, the key techniques are proposed in detail. The
implementation of the model is proposed in Section 4. The
evaluation and experiment results are given and analyzed in
Section 5. In Section 6 we introduce some related works.
Finally in Section 7, the conclusions are given.

2. Overview of the HEUSPEC Model

The HEUSPEC parallel model is a coarse-grained parallel
programming framework. It consists of two parts: the run-
time library and the source-to-source compiler. HEUSPEC
uses two stage compiling methods. Figure 1 shows the hierar-
chy structure of HEUSPEC.The programmers can parallelize
the sequential program easily with HEUSPEC. First, the
original source code of the sequential program is labeled by
the programmer; second, programmer uses the HEUSPEC
source-to-source compiler to transform the labeled code into
parallel code, with multiple parallel functions implemented
in the HEUSPEC runtime library. Finally, the parallel code

Original sequential source code

HEUSPEC source-to-source compiler

HEUSPEC style code HEUSPEC runtime library

Parallel binary code

Core1 Core2 Core3 Core4 Core5 CoreN· · ·

Figure 1: The hierarchy structure of HEUSPEC model (the shad-
owed parts are the HEUSPEC source-to-source compiler and the
runtime library).

is compiled by a normal compiler and transformed to the
parallel binary code.

The HEUSPEC abstract code structure is shown in
Figure 2. The HEUSPEC model has one main thread and
multiple speculative threads. The main thread executes the
HEUSPEC MAIN BODY, which includes several control
modules handling management work, such as specula-
tive threads creating, CVARs management, and correctness
checking. All the speculative threads are created by the
main thread, which run the HEUSPEC THREAD FUNC
code. There is no communication between the speculative
threads. However, a speculative thread can communicate
with the main thread via HEUSPEC messages during the
speculative reading and correctness checking. As the main
thread occupies a processor core during the execution, the
upper bound of the speedup of HEUSPEC on an 𝑁-core
platform is𝑁 − 1.

For the CVARs involved in dependencies between itera-
tions,HEUSPECuses the software state isolationmechanism.
This mechanism is applied by the CorD [19, 20] parallel
model proposed by Tian et al, which is proposed by Tian
et al. in 2008, Riverside. Under this mechanism, each CVAR
has a committed version and multiple speculative versions.
The committed version is stored in the committed memory
space, which can only be accessed by the main thread.
The speculative versions are generated by the speculative
threads and stored in their own private space when they
start. Meanwhile, for each CVAR, the mapping relations
between the committed version and speculative versions are
also created by the speculative thread and recorded in the
mapping table, which can be searched by main thread during
the correctness checking. The speculative threads can access
the speculative versions of CVARs directly in their own
private space. The access trace of each speculative thread
is recorded in the Read Mapping Table or Write Mapping
Table. The initial value of a speculative version of a CVAR is
generated by the speculative read mechanism in HEUSPEC
(see Section 3.1).

Figure 3 shows the state isolation mechanism in
HEUSPEC. We assume that two CVARs in the code section,
a and b, are copied to the private space when the speculative
threads start. During the parallel execution, the speculative
threads can read or modify the speculative version of a and
b stored in their own private space, while the committed

The Scientific World Journal 3

Guest program
(single thread)

Sequential
code

section

gran = 4 gran = 4

gran = 2
Labeled

code
section
(loop)

Sequential
code

section

gran = 4

gran = 4

gran = 4

gran = 8 gran = 8 gran = 8

THREAD_CREATE

Reset gran

Reset gran

Sequential code section

Sequential code section

Speculative
thread 1

Speculative
thread 2

Speculative
thread 3

Main thread

C
od

e
tr

an
sf

or
m

at
io

n
vi

a
H

EU
SP

EC

co
m

pi
le

r

HEUSPEC MAIN BODY
HEUSPEC CREATE

HEUSPEC VALUE BASED
CHECKING

HEUSPEC DYN GRAN

HEUSPEC HEURISTIC
VALUE PREDICTION

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

HEUSPEC
THREAD

FUNC

THREAD COMMIT

GRAN ADJ

CV
AR

COPY

CVAR COPY

CVAR
COPY

· · ·
· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Figure 2:The abstract code structure ofHEUSPECmodel (between themain thread and speculative thread, there are several kinds ofmessage
shown in the figure, such as CVAR COPY for copying and CVARs and GRAN ADJ for granularity resizing. The details of the HEUSPEC
message are given in Section 4).

version is protected in the shared space.When the computing
is finished, the speculative threads send messages asking
the main thread for correctness checking. The main thread
checks the correctness of each speculative read operation
by searching in Read Mapping Table and Address Mapping
Table. If there is no misspeculation, the main thread copies
each modified speculative version of CVAR in the private
space back to the shared space and overwrites its committed
version. Or else, the speculative thread rerolls and the
speculative versions of CVARs are invalidated.

HEUSPEC adopts dynamic task assignment. For exam-
ple, if the labeled code section is a loop with 𝑁 iterations,
themain thread at runtime packs several successive iterations
into a task and assigns the task to an idle speculative thread.
When all the tasks are finished, the main thread confirms
that the speculative parallel section is finished and terminates
all the speculative threads. Though dynamic task assignment
introduces some additional control overheads, it enables the
main thread to adjust the granularity of the task at runtime
and eliminates unnecessary interim thread creating and
killings processes. Therefore, it definitely benefits the overall
performance.We proposed dynamic task granularity resizing
(DTGR) mechanism based on the dynamic task assignment
(see Section 3.3).

To insure the correctness of speculative parallel execu-
tion, the speculative parallel model must include a commit
mechanism (or conflict detection mechanism), so that the
correct task can be committed, and the failed task can be
rerolled.Most of the conventional speculative parallel models
apply version based correctness checking mechanism. Under
this mechanism, each copy of CVAR has its own version
number: speculative version numbers for the speculative
versions and committed version numbers for the committed
versions. The speculative version number can be modified
during a speculative writing to the CVAR. While the com-
mitted version number can only be modified while a task
commits successfully. During the correctness checking, for
each CVAR, the speculative version number recorded in the
RAT will be compared to the current committed version
number, so as to determine the correctness of the task.

In HEUSPEC, to support HVP, we must change the
conventional version based correctness checking mechanism
to the value based correctness checking. This mechanism
was applied in the BOP [16, 17] proposed by Ding et al. in
2007 to reduce some avoidable rollback caused by written
but not changed CVARs. The key idea of the value based
correctness checking is that during the correctness checking,
for each CVAR, the values instead of the version numbers

4 The Scientific World Journal

a b

a b

Shared memory space
(managed by main thread)

Private memory space (managed
by speculative thread 1)

Private memory space (managed
by speculative thread 2)

Private memory space (managed
by speculative thread 3)

Shared space
Private space

a b

a b

Copy to private space

while speculative computing begins

Copy back to shared space

 while successfully commit

Discard the copieswhen committingfailed

Figure 3: The state isolation mechanism (in the figure, we assume
that the speculative thread 1 has successfully committed, the specu-
lative thread 2 has failed during committing, and speculative thread
3 has just initialized. Therefore, the figure shows the functions of
state isolation mechanism in 3 different cases, namely, copying back
CVARs to shared space, discarding the CVAR copies, and copying
CVAR to private space).

of the speculative versions are compared to the value of
the committed version to determine the correctness of a
speculative task during the correctness checking. To support
this, some changes in the structures of global tables (Address
Mapping Table, Read Mapping Table, and Write Mapping
Table) must be applied. For example, the version number
fields in the tables are replaced by the size of CVARfields. And
additional memory space is required to store the speculative
versions generated by HVP. For the details about the global
tables, see Section 4.1.

3. Significant Techniques in HEUSPEC

The conventional software-based speculative parallel models
are diversified in the implementations of conflict detecting
and conflict solving mechanisms. However, from most mod-
els, the 3 factors that affect the performance can be abstracted,
namely, the misspeculation rate, the average rollback over-
head, and the average controlling overhead. The relationship
between the global overhead and the 3 factors is as follows:

𝑂global = 𝑁task

× (𝑂Control In Average + 𝑅miss × 𝑂Rollback In Average) .

(1)

The variables used in the equation are shown as follows:

(i) 𝑂global: global overhead of the model,

(ii) 𝑁task: total number of tasks,
(iii) 𝑂Control In Average: average control overhead of each

task,
(iv) 𝑂Rollback In Average: average reroll overhead of each task,
(v) 𝑅miss: misspeculation rate.

From (1), we can conclude that there are 3 ways to reduce
𝑂global, namely, to reduce 𝑂Control In Average, 𝑂Rollback In Average,
or 𝑅miss. In fact, there is tradeoff between the 3 factors; take
CorD as an example; it uses precomputing to reduce𝑅miss and
checkpoint mechanism to reduce 𝑂Rollback In Average; however,
both of them increase the 𝑂Control In Average remarkably. In
the HEUSPEC model, we proposed 2 key technologies to
overcome the defects in the conventionalmodels.The heuris-
tic value prediction (HVP) mechanism can reduce the high
𝑅miss in the guest program with low cost, and the dynamic
task granularity resizing mechanism manages to balance the
𝑂Control In Average and the𝑂Rollback In Average in order to optimize
the 𝑂global.

3.1. Heuristic Value Prediction. The misspeculation rate
(𝑅miss) is tightly correlated with the global overhead. How-
ever, conventional speculative parallel models without value
prediction have high𝑅miss while executing a loopwith depen-
dencies. Take the code section in Figure 4(c) as an example;
the loop in the figure has lots of potential parallelism;
however, a CVAR dep is within the loop. Using conventional
model, we assume that dep privateN is the speculative version
of CVAR dep in the speculative thread𝑁. If there is no explicit
synchronization, the conventional model always copies the
value of committed dep in the shared space when generating
dep privateN. This will cause many conflicts, make the task
reroll frequently, and impact the performance of paralellized
code section seriously.

To solve the problem, some previous works adopted
value prediction schemes [18, 20]. However, most of them
use random algorithm correlated with multiple execution
(more than one processor to execute the same loop itera-
tion) scheme in the value prediction, which is processor-
consumptive and lowers down the upper limit of the overall
speedup. In this paper, we try to find an effective and less
processor-consumptive way to lower the 𝑅miss, hoping that
the speculative read mechanism can be more “rational,” that
is, to predict the value validly with some information such
as loop index or history values rather than predict blindly.
Therefore we proposed heuristic value prediction (HVP). We
add a group of value predictors in the conventional model.
Just as Figure 4(c) shows, for a single CVAR, each predictor
predicts its value by a specific rule. A credit system is created
to evaluate the “validity” of all the predictors.The speculative
thread always adopts the value from the predictor with more
credits.

The effectiveness of theHVP depends on two aspects.The
first aspect is the predictability of the CVARs. If the value
changing trace of a CVAR follows a specific rule potentially
during the sequential execution, the variable is considered
to be predictable. The second aspect is that whether the rule
matches a specific predictor. If they arematched, the predictor

The Scientific World Journal 5

dep1 = 0

i = 1

dep1 == dep

dep3 = 0

i = 3

dep3! = dep

dep3 = 2

i = 3

dep3! = dep

dep3 = 4

i = 3

dep3 == dep

Speculative
thread 1 Speculative

thread 2 Speculative
thread 3

i = 2

dep2 = 2

i = 2

dep2 == dep

dep2 = 0

dep2! = dep

Predictor1:
committed value

(a) Conventional model without prediction
(equivalent to predicting by committed value)

i = 1
i = 2

dep2 = 2

i = 2

dep2 == dep

dep3 = 2

i = 2

dep2 = dep

dep3 = 4

i = 3

dep3 = dep

Speculative
thread 1 Speculative

thread 2 Speculative
thread 3

dep1 = 0

dep1 == dep

dep2 = 0

dep2! = dep

Predictor1:
committed value

Predictor2:
committed value + 2

(b) Model with multiple prediction and execu-
tion

i = 1
i = 2

dep3 = 4

i = 3

dep3 == dep

Speculative
thread 1 Speculative

thread 2 Speculative
thread 3

dep1 = 0

dep1 == dep

dep2 = 2

dep2 == dep

Credit system: predictor2 has more credits

for (i = 0; i < NPOINTS; i++) {
step = calculateStep();
dep = dep + step;
points[i].value = lotsOfCalculation(dep);
}

Predictor1:
committed value

Predictor2:
committed value + 2

Predictor2:
committed value + 4

(c) Heuristic value prediction in HEUSPEC
model

Figure 4: Prediction scheme in 3 different kind of models. (The code section is shown in (c). The bold line is the sentence that causes the
dependency.)

will probably pass the correctness checking. Therefore, for
thoseCVARswhose values change randomly, theHVPhardly
improves the 𝑅miss. However, for those predictable CVARs,
themechanism can reduce the𝑅miss remarkably. For example,
assume that the function calculateStep() in the code section
in Figure 4(c) always returns 2; the value of the CVAR dep
presents in a linear form.Therefore, a simple linear predictor
canmatch it, and the pitfall of rollback introduced by depwill
be reduced considerably, just as Figure 4(c) shows.

To apply the HVP, two hypotheses should be proved.
First, there are quite a number of “predictable” CVARs in the
practical applications. Second, the values of these CVARs can
be predicted by some simple methods with low overheads,
so that the prediction will not increase the overhead of the
model too much. To prove them, we carried through an
investigation to a series of applications. We found the CVARs
and categorized them by their value changing rules.

Figure 5 shows typical examples of 6 categories. The
example variables are selected from a loop in the benchmark
256.bzip. The loop has 97 iterations. Each subgraph shows
the value changing trace of a single CVAR during the loop
execution. Generally speaking, variables with random value
changing traces are hard to predict, and the variables in the
CONSTANT, BOOLEAN, LADDER, and LINEAR category
are easier. In the selected benchmarks in our investigation,
the CVARs of the last two categories (RANDOM and
RESTRICTED RANDOM) account for about 19%; the rest
are of the former four categories (CONSTANT, BOOLEAN,
LINEAR, and LADDER). Obviously, for the CONSTANT
and the LADDER category, the conventional mechanism

which uses the committed value of the CVAR is the best. The
BOOLEANs can be predicted with the mechanism similar to
the Branch Predicting Buffer in the microprocessors. For the
LINEARs, if the trace of their value can be learned, they can
be predicted precisely by linear extrapolation.

Through this investigation, we can get the basic ideas
of the HVP. First, among all the CVARs, there are several
“predictable” CVARs, whose values are changing regularly in
the loop. Second, a predictable CVAR’s value can be predict
through a low cost way with their history value, such as
linear prediction or bool prediction. Third, the changing
rule of the value of a predictable CVAR is probably steady
in a period. Based on these three ideas, we developed the
HVP. First, we build a group of predictor, in each of which
implemented a low cost prediction way. Once a speculation
read (a speculative thread reading a CVAR’s value, may
cause a misprediction) happens, each predictor generates
a speculative value of the CVAR. One of these values will
be selected as the result of the speculative read. As the
changing rule of the value is probably steady, sometimes the
value of a CVAR may be “catched” by a certain predictor;
therefore, we can use amechanism like scoreboard to evaluate
which predictor is most probably matching the CVAR. This
mechanism is called the “credit system” which is described in
Section 3.2.

3.1.1. HEUSPEC Predictors. Based on the analysis above,
we designed the HVP predictors. Figure 6 shows the 4-
field structure of a HVP predictor. During the prediction,

6 The Scientific World Journal

0

100000

200000

300000

400000

500000

600000

700000

800000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Last

(a)

0

1

2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

firstAttempt

(b)

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

nBlockRandomise7

(c)

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
bytesOut

(d)

0

100000

200000

300000

400000

500000

600000

700000

800000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

origPtr

(e)

6

8

10

12

14

16

18

20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

bsLive

(f)

Figure 5: 6 different patterns of CVAR’s value changing.

The Scientific World Journal 7

Base predFunc Result Point

linearPrediction()

⟨iter, value⟩ ⟨iter, value⟩ ⟨iter, value⟩

Figure 6:The structure of a HEUSPEC predictor (a single predictor
includes four fields, namely, the Base field which points to an array
storing the information used in prediction, the predFunction field
which is the entry of the prediction function, the Result field which
stores the prediction result, and the Points field which records the
times of correct speculation the predictor hasmade.The elements in
the Base array and the Result field are ⟨iter, value⟩ pairs. The figure
shows a linear predictor.The size of Base array is 3, and the predFunc
points to the function linearPrediction()).

the prediction function pointed by predFunction pointer
generates the Result.value based on the information in the
Base array and Result.iter. Most of the time, not all elements
in the Base array are used. For example, for the conventional
predictor and the reversal predictor, only the last committed
⟨iter, value⟩ pairs are used. To simplify theHEUSPEC predic-
tion mechanism, the max element number of the Base array
is 3.

Table 1 shows all the predictors implemented in the
HEUSPEC model. Among these 5 predictors, the conven-
tional predictor inherits the speculation mechanism in the
conventional models, which always uses the committed value
in the shared space.The reverse predictor is for the Bool type
CVARs. In the scheme of the reverse predictor, we assume
that the value of the CVAR always reverses between two
adjacent iterations. Therefore, the predictor can calculate the
speculative value in the current iteration. For example, if the
Base[0] is ⟨1, 1⟩ which means that the number of the last
committed iteration is 1 and the predicted value is 1 and the
current iteration number is 2, the Result should be ⟨2, 0⟩.
The restricted random, linear, and guadratic predictors are
for integers. The linear and quadratic predictors take the
elements in the Base array as a series of points in 2-D space
and use them to generate theResult via extrapolationmethod.
The restricted random predictor uses the Base array to record
the upper and lower limit.

3.1.2. Credit System. The commonness of the 5 predictors is
that they use, more or less, the history values of the CVARs
to guide predictions. However, a single predictor has little
probability to make a correct prediction. To augment the
probability, the credit system is applied. For a speculative
read, each predictor produces a candidate value. Figure 6
shows the structure of the predictors. The Points field in
each predictor records the correct speculation it has made.
Through this, the credit system can quantify the “rational”
level of the predictors, and select an appropriate speculative
value among them.

Figure 7 shows the workflow of the credit system. During
the speculative read process, each predictor generates a
speculative value candidate (depN in the figure) for dep. Only
the value generated by the predictor with the highest point is
selected via the select function HEUSPEC selectPredictor().
If multiple predictors have the same highest point, the select

function selects one from them randomly. Once the specu-
lative value is selected, it is returned to the speculative read
function and used in the calculation of the speculative thread.
Finally During the commit process, the commit function
HEUSPEC commit() compares all the generated speculative
value, no matter used or not, with the committed value in
the shared space. If a predictor did a correct prediction, it
gains an additional 1 point. Therefore, the HVP can generate
speculative values of CVARs more rationally, making use of
their history values.

Although the HVP cannot insure that the predictions are
always correct, it can improve the speculation accuracy by
a certain extent. Especially for those CVARs whose values
changing pattern matches a given predictor, most of the
rollback can be eliminated.The evaluation and result of HVP
are discussed in Section 5.1.

3.2. Dynamic Task Granularity Resizing. The Dynamic task
granularity resizing (DTGR) is intended to reduce the global
overhead of the HEUSPEC model and balance the load.
Models with static task granularity always suffer from much
additional overhead and imbalanced load. As Figure 8 shows,
two different code sections (DEPENDENCY = 1 or not)
are executed under a conventional model with static task
granularity. Obviously, for a high misspeculation rate (𝑅miss),
granularity should be lowered down to avoid additional
rollback overhead. However, for a low 𝑅miss, finer tasks will
break the continually of the calculation and cause a lot of
control overhead, so in this case the bigger granularity is
better. In fact, the appropriate granularity task is related
not only to the rollback rate, but also to the computation
in the parallel section and control overhead caused by task
creating and committing. Therefore, to find the appropriate
granularity, we use the dynamic optimization technique.

We believe that the global speculation overhead can
be optimized to adapt the runtime behavior of a program
via dynamic optimization. In Section 3, we have created
the analytical model of global overhead in the HEUSPEC,
which is described by (1). We have analyzed that the global
overhead depends on the 3 factors, namely, the average
control overhead (𝑂Control In Average), the misspeculation rate
(𝑅miss), and the average rollback overhead (𝑂Rollback In Average).
In this section we give a further discussion about the 𝑂global.
The variables used are listed:

(i) 𝑁task: total task number,
(ii) 𝑁iter: total iteration number of the loop,
(iii) 𝑅miss: miss rate,
(iv) 𝑁miss: total miss time of the loop,
(v) 𝑁thread: total number of speculative threads,
(vi) gran: task granularity,
(vii) 𝑂Control In Average: average control overhead of each

task,
(viii) 𝑂Rollback In Average: average rollback overhead of each

task,
(ix) 𝑂Rollback Per Iter: rollback overhead of a single iteration.

8 The Scientific World Journal

dep

Predictor
1

Predictor
2

Predictor
3

Predictor
4

Predictor
5

dep1 dep2 dep3 dep4 dep5

dep1 dep2 dep3 dep4 dep5

Predictor1.point + 1

HEUSPEC_commit()

Predictor3.point + 1 Speculation
success

Speculative read process

Commit process dep speculative

dep
committed

HEUSPEC selectPredictor()

Figure 7: The speculative read and commit processes of heuristic value prediction. (We use the code section in Figure 4. The shadowed part
of the figure shows the new workflow introduced by the heuristic value prediction. The unshadowed part is the original speculation-commit
workflow of the conventional speculation model.)

Table 1: The HEUSPEC predictors.

Name
Base

elements
used

Especially
applicable
category

Speculative value
depends on Example

Reverse 1 BOOLEAN The reverse of the value
in the last iteration Base[0] = ⟨1, 1⟩ Result = ⟨2,Reverse(1)⟩

Conventional 1 CONSTANT,
LADDER

The committed value in
the shared space Base[0] = ⟨1, 135⟩ Result = ⟨2, 135⟩

Restricted
random 2 RESTRICTED

RANDOM
A random number in a
restricted value space

Base[0] = ⟨1, 20⟩ Base[1] = ⟨2, 5⟩
Result = ⟨3,Rand(5, 12)⟩

Linear 2 LINEAR
The linear extrapolation
of last 2 committed

values

Base[0] = ⟨1, 20⟩ Base[1] = ⟨2, 5⟩
Result = ⟨3, Linear Extra(1, 20, 2, 5)⟩

Quadratic 3 LINEAR,
CONSTANT

The quadratic
extrapolation of last 3
committed values

Base[0] = ⟨1, 20⟩ Base[1] = ⟨2, 5⟩
Base[2] = ⟨3, 8⟩ Result = ⟨4,Quad Extra(1, 20, 2, 5, 3, 8)⟩

In a period, if task granularity is constant, we have𝑁task =
𝑁iter/gran,𝑅miss = 𝑁miss/𝑁task, and𝑂Rollback In Average = gran×
𝑂Rollback Per Iter; therefore, we can transform (1) as follows:

𝑂global = (
𝑁iter
gran
)

× (𝑂Control In Average + (
𝑁miss
(𝑁iter/gran)

)

× gran × 𝑂Rollback Per Iter) .

(2)

Equation (2) can be simplified as follows:

𝑂global = (
𝑁iter

gran × 𝑂Control In Average
)

+ (𝑁miss × gran ×ORollback Per Iter) .

(3)

Since gran ≥ 1, to minimize the GO, we derive both sides
of (3) by gran. Therefore we have

𝑂
󸀠

global (gran) = (−𝑁iter × 𝑂Control In Average ×
1

gran2
)

+ (𝑁miss × 𝑂Rollback Per Iter) .

(4)

The Scientific World Journal 9

i = 0~7
i = 8~15

i = 16~23

Speculative
thread 1

Speculative
thread 2

Speculative
thread 3

i = 0~1
i = 2~3

i = 4~5

i = 6~7
i = 8~9

i = 10~11

i = 12~13
i = 14~15

i = 16~17

i = 18~19
i = 20~21

i = 22~23

Speculative
thread 1

Speculative
thread 2

Speculative
thread 3

//code section
for (i = 0; i < 100; i ++){
#if DEPENDENCY

if (i == 10) v[i] = f(v[i − 3]);
else

#endif
v[i] = f(v[i]);}

(a) Execution with DEPENDENCY = 0 (bigger task granularity wins)

i = 0~7
i = 8~15

i = 16~23

Speculative
thread 1

Speculative
thread 2

Speculative
thread 3

i = 0~1
i = 2~3

i = 4~5

i = 6~7
i = 8~9

i = 10~11

i = 12~13
i = 14~15

i = 16~17

i = 18~19
i = 20~21

i = 22~23

Speculative
thread 1

Speculative
thread 2

Speculative
thread 3

i = 8~15
reroll

i = 10~11
reroll

(b) Execution with DEPENDENCY = 1 (smaller task granularity wins)

Figure 8: The execution flow of a code section under the conventional speculative model with static task granularity (the two parts of the
figure share the same code section, in which the “#ifdef ” part in the code section brings a dependency. The shadowed part in the task shows
the control overhead brought by task creating and committing. The (a) part of the figure shows the execution flow with DEPENDENCY = 0,
while the (b) part shows the execution flow with DEPENDENCY = 1.The bigger task granularity is 8, while the smaller task granularity is 2).

Let 𝑂󸀠global(gran) = 0; if𝑁miss ̸= 0, we have

gran = √
(𝑁iter × 𝑂Control In Average)

(𝑁miss × 𝑂Rollback Per Iter)
(𝑁miss ̸= 0) ,

(5)

From above analysis, we can make conclusion. If we
take a certain number of iterations as an adjusting period
(AP), we optimize gran according to (5). During an adjusting
period, the 𝑁iter is a constant, while the 𝑂Control In Average, the
𝑂Rollback Per Iter, and the𝑁miss can be calculated by a group of

10 The Scientific World Journal

Speculative
thread 1

Speculative
thread 2

Speculative
thread 3

Gran = 1
Gran = 1

…
AP1

Checking MT,
resizing task

Initially,
gran = 1 in

the AP1

Gran = 10
Gran = 10

Gran = 10 AP2

…

Gran = 10 in
the AP2

Checking MT,
resizing task

Gran = 4
Gran = 4

Gran = 4 AP3

Main
thread

Main loop

DTGR

Main loop

DTGR

Main loop

Gran = 1

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · · · · ·

Figure 9: Dynamic task granularity resizing (in the speculative thread columns, the shadowed parts represent the control overheads).

profiling counters at runtime.Therefore, we can calculate the
optimized gran dynamically. However, since the𝑁miss can be
zero and the calculation may fail, in that case, we prescribe
that when 𝑁miss = 0, we let gran = 𝑁iter/𝑁thread. 𝑁thread
represents the number of speculative thread.

In the HEUSPEC, the DTGR is implemented as a module
embedded in the HEUSPEC MAIN BODY (shown in Fig-
ure 2), which is executed by the main thread. Initially, we
set gran to a certain value (in the experiment in Section 5,
it is 1) then recalculate and update the gran at the beginning
of every adjusting period. After that, the succeeded tasks are
assigned with the granularity equal to the newly updated
gran. The DTGR assures that tasks are assigned betimes to
idle speculative threads. Figure 9 shows the details of DTGR.
We let a constant number of iterations be an adjusting period
(AP). The main thread executes task granularity resizing
function to adjust the task granularity with dynamically cal-
culated𝑁iter,𝑂Control In Average,𝑁miss, and𝑂Rollback Per Iter. After
resizing, the main thread assigns task with new granularity.

Through the DTGR, programmers are able to optimize
the global overhead and balance the loadwithout considering
the task partition scheme. According to our experiment,
however, some profiling information such as𝑂Control In Average
and 𝑂Rollback Per Iter can just reflect the average behavior of
the loop iterations in a constant time period. Therefore,
this method can assuredly help the programs without much
computation difference across iterations (such as the loops in
MatMul or LU). For those loops with large across-iteration
computation difference, we cannot ensure that the granularity
will have converge to the best value. But this method includes
the dynamic assignment, with which the performance loss
can be made up, and we still can get an acceptable speedup.

The details of the experiment results and analysis are given in
Section 5.

3.3. Other Optimizations. Besides the two key techniques,
we have adopted some other optimizations.The out-of-order
confirming mode is used for those benchmarks without
dependencies. Because there is no dependency between the
adjacent speculative threads, thus the implicit synchroniza-
tion in the in-order confirming mode can be eliminated. The
on-the-fly copying is adopted for those read-only CVARs.
If a CVAR is read-only in the parallel section, it is not
necessary to generate its speculative version. Instead, we
can use the committed version directly. The out-of-order
confirming mode and on-the-fly copying are adopted in the
HEUSPEC model, in order to further reduce its time and
memory cost.

4. Implementation

As Figure 1 shows, the HEUSPEC includes a source-to-
source compiler and a runtime library. We implemented the
compiler via LLVM framework and the runtime library via
POSIX thread library in ANSI C. The HEUSPEC model is
implemented based on the traditional software-based spec-
ulative model. The two key techniques proposed in Section 3
are implemented in the runtime library. In this section we
show details of the global tables and the implementation of
the HEUSPEC.

4.1. Global Tables. We have introduced in Section 2 that
the state isolation mechanism is the basic mechanism of

The Scientific World Journal 11

addr size version type buffptr

addr version size arrElemNum arrElemSize

addr size cvarID value

Confct variable table

Address mapping table

Read mapping table/write mapping table

spec addr

Figure 10: The structures of the global tables (there are only one
Conflict Variable Table.The number of AddressMapping Tables and
Read Mapping Tables/Write Mapping Tables is equal to the𝑁thread).

the HEUSPEC model. To manage the different versions
of CVARs, it is necessary to create the mapping relations
between the speculative versions and committed version for
each CVAR. Meanwhile, the access information should be
recorded, too. Therefore, the sufficiency of the information
for the correctness checking and task committing can be
insured. In the HEUSPEC model, the information related
to speculative execution is stored in several global tables.
Figure 10 shows the structures of the global tables.

The Conflict Variable Table, which can only be
accessed by the main thread, is used to store the basic
information of the CVARs, such as address (for the
committed version), size, or type. For each CVAR,
there is a record in the CVAR Table.
The Address Mapping Table is used to maintain the
mapping relation between the addresses of com-
mitted version (addr) and the speculative version
(spec addr). Each speculative thread has its own
Address Mapping Table.
The ReadMapping Table andWrite Mapping Table are
used to keep the record of accesses to the CVARs for
each speculative thread. The value field in the two
tables is used to store the speculative value of the
CVARs while being read or written.This value will be
used in the committing process.

4.2. HEUSPEC Style Code. The HEUSPEC source-to-source
compiler can translate the labeled C code into HEUSPEC
style C code. During this process, the original C code is
transformed, mixed with HEUSPEC runtime library func-
tion, and finally transformed to the code which can be
parallel executed. In Figure 2 we have shown the abstract
code structure of the HEUSPEC code. Algorithm 1 shows an
example of the code transformation of a real benchmark (Pi
in the OmpSrc 2.0).

5. Experiments and Evaluation

To test the performance of the HEUSPEC model and prove
its advantage comparing with the conventional model, we
designed and carried on a series of experiments. We choose
the hardware platform with two Xeon5450 processors, which
have 4 processor cores. The capacity of the memory is
24GB.The software environment includes a LinuxOS (kernel

Table 2: The benchmarks used in experiment.

Name Package CVAR number
backprop Rodinia 2.1 5
heartwall Rodinia 2.1 2
kmeans Rodinia 2.1 8
hotspot Rodinia 2.1 10
leucocyte Rodinia 2.1 16
srad v1 Rodinia 2.1 13
lavaMD Rodinia 2.1 5
adpcm mibench 2
susan-s mibench 8
183.equake Spec2K INT 5
179.art Spec2K INT 13
LU OmpSrc 2.0 4
mandelbrot OmpSrc 2.0 3
MD OmpSrc 2.0 7
Pi OmpSrc 2.0 2
blackscholes Parsec 2.1 0
badloop self-coded 1
MatMul self-coded 0

version 2.6.32) and a C compiler. We chose the benchmarks
of different CVAR numbers. Table 2 lists the benchmarks we
used in the experiments.

We have designed four experiments to test the perfor-
mance of the HEUSPEC. First, to show how speculation
accuracy improved by HVP; we did the experiment and
gathered the miss rate with two typical benchmark on
multiple levels of task granularity. Second, to reflect the
performance gain by the HEUSPEC, we have contrasted
the performance speedup of a program executed under the
HEUSPEC against that under the conventional model.Third,
to reflect the scalability of the HEUSPEC, we have tested
the speedup of each benchmark under the HEUSPEC as
the speculative depth (the number of concurrent speculative
threads) increases. Forth, we have tested the control overhead
introduced by the HEUSPEC.

5.1. Speculation Accuracy Improvement. We choose the
benchmark badloop and fluidanimate and run them under
the HEUSPEC. To show the miss rate improvement with
different task granularity levels, we shut down the DTGR.
For badloop, we choose 6 levels of task granularity, and for
fluidanimate, we choose 3 levels of task granularity.

Figure 11 shows the experiment result: the miss rate of
badloop reduced by 12.9% on the average and the miss rate of
fluidanimate reduced by 25.6%. The experiment shows that
the HVP actually reduced the miss rate of speculation.

5.2. Speedup. Figure 12 shows the speedup of each bench-
mark under the HEUSPEC against that under the conven-
tional model. In this experiment, we run the benchmarks
under the conventional model (without HVP and DTGR)
and the HEUSPEC, respectively. We used out of order
confirmmode forMatMul, lavaMD, adpcm, and blackscholes,

12 The Scientific World Journal

(a) original labeled C code

int main(int argc, char ∗ argv[]) {

⋅ ⋅ ⋅

#pragma heuspec parallel for (w, pi)

for (i = 0; i < N; i++) {

local = (i + 0.5) ∗ w;

pi += 4.0/(1.0 + local ∗ local);

}

⋅ ⋅ ⋅

}

(b) HEUSPEC style C code

int main(int argc, char ∗ argv[]) {

⋅ ⋅ ⋅

#ifdef ENABLE HEUSPEC

HEUSPEC register cvar in version table(&w, sizeof(double), 1, NORMAL);

HEUSPEC register cvar in version table(&pi, sizeof(double), 2, RD PLUS);

HEUSPEC main body(&threadfunc, N),

#else

for (i = 0; i < N; i++) {

local = (i + 0.5) ∗ w;

pi += 4.0/(1.0 + local ∗ local); }

#endif

⋅ ⋅ ⋅ }

(c) HEUSPEC main body

int HEUSPEC main body(void ∗ (∗threadfunc)(long ∗)) {

HEUSPEC initiallization();

for (𝑖 = 0; 𝑖 < NUM THREAD; 𝑖++) {

HEUSPEC create thread(𝐼, threadfunc);

Algorithm 1: Continued.

The Scientific World Journal 13

HEUSPEC assign task(𝑖); }

for

(𝑖 = 0; 𝑖 < NUM THREAD&&exceed flag[𝑖]! = 1; 𝑖 = (𝑖 + 1)%NUM THREAD) {

while (1) {

𝑗 = HEUSPEC catch message(msg buffer, 𝑖);

if (msg buffer[𝑗].type == FINISH && 𝑖 == 𝑗) //in-order commit

HEUSPEC commit()

if (msg buffer[𝑗].type == EXCEPTION) //do HVP

HEUSPEC HeuristicValuePrediction(); }

if(taskno ≥ AP) //an AP passed, do DTGR

gran =HEUSPEC DynamicTaskGranResizing(OC, OR, MT, AP, gran));

If(taskno > quan ||HEUSPEC break()) {

set exceeded flag(𝑖);

if(HEUSPEC check exceed flag() == 1) break;

else continue; }

HEUSPEC assign new task(); }

HEUSPEC main body end(); }

(d) HEUSPEC threadFuncion

void ∗HEUSPEC threadfunc(unsigned long ∗ child args) {

double pi, w;

while (1) {//main loop on threadfunc

TLS wait start msg(𝑖);

mt[𝑖][0].PAddr = &w;

mt[𝑖][1].PAddr = π

HEUSPEC getHeadAndTail(&head, &tail, 𝑖);

pi = 0.0; //it is a RD PLUS cvar

TLS spec read(&w, 0);

TLS spec read(&pi, 1);

Algorithm 1: Continued.

14 The Scientific World Journal

for (i = head; i < tail; i++) {

local = (i ∗ 0.5) ∗ w;

pi += 4.0/(1.0 + local ∗ local); }

TLS spec write(&(pi), 1);

TLS send finish msg(𝑖);

TLS wait confirm msg(𝑖);

TLS task terminated(taskno);

TLS send ready msg(𝑖); }

return; }

Algorithm 1: A code example optimized by HEUSPECmodel. (The benchmark is Pi in the OmpSrc package. (a) the labeled sequential code.
The loop is bolded. (b) the HEUSPEC style code after transformation. (c) the HEUSPEC main body() function.The HVP and the DTGR are
bolded. (d) the HEUSPEC threadFunc().)

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 AVG.

Conventional (no prediction)
HVP

Badloop

(a)

Conventional (no prediction)
HVP

0

0.2

0.4

0.6

0.8

1

2 4 8 AVG.

Fluidanimate

(b)

Figure 11: The miss rate under HEUSPEC with HVP.

thus greatly improving the performance of those bench-
marks without dependencies. According to our experiment,
when the speculative depth is 3, the average speedup of
the HEUSPEC is 2.20, about 15% higher than that of the
conventional model(1.91). The speedup of the HEUSPEC can
reach a high level when the speculative depth is 7, about 4.51
on the average, about 12%higher than that of the conventional
model(4.02).

On one hand, the HVP aims at the cross-iteration depen-
dencies of the loop. Therefore, it is more efficient on those
benchmarks which have more predictable CVARs. On the
other hand, a loopwith bigger iteration number and intensive
computation can introduce a larger space of optimization for

DTGR. Therefore, the DTGR prefers the benchmarks with
this feature. FromFigure 12, we can see that somebenchmarks
(badloop, LU, Molecular Dynamic, Mandelbrot, and kmeans)
show remarkable improvement compared with the conven-
tional model (especially with 7 speculative threads). That is
mainly because they fit the two conditions we mentioned
above. Some benchmarks (heartwall, blackscholes, hotspot,
leucocyte,MatMul, lavaMD, and adpcm) show a high speedup
compared with the serial execution, but little improvement
compared with the conventional model. That means that
HVP and DTGR are less efficient in these benchmarks,
because they have little predictable CVAR, and less optimized
space forDTGR. Some other benchmarks (backprop, srad v1,

The Scientific World Journal 15

0

1

2

3

4

5

6

7

Conventional (3 threads)
HEUSPEC (3 spec threads)

Conventional (7 threads)
HEUSPEC (7 spec threads)

Ba
ck

pr
op

H
ea

rt
w

al
l

K
m

ea
ns LU

M
an

de
lb

ro
t Pi

Bl
ac

ks
ch

ol
es

H
ot

sp
ot

Le
uc

oc
yt

e

M
at

M
ul

sr
ad

vl

La
va

M
D

Ba
dl

oo
p

18
3

.e
qu

ak
e

Su
sa

n-
s

17
9

.a
rt

AV
G

.

M
ol

ec
ul

ar
..
.

A
dp

cm
 (e

nc
..
.

Figure 12: The speedup of HEUSPEC against conventional model. (We show the speedup under the conventional model with 3 speculative
threads and the speedup under the HEUSPEC with 3 and 7 speculative threads, resp.)

and 183.equake) have low speedup compared with other
benchmarks. That is mainly because the computation in the
parallelized loop in these benchmarks is not enough, and the
global overhead of HEUSPEC is too much for them.

Due to the unavoidable rollback overhead or the high
control overhead, several benchmarks show low speedups
under the speculative parallel model, such as backprop,
183.equake, and srad v1. However, most of the benchmarks
show remarkable performance gain on this experiment.

5.3. Scalability. Figure 13 shows that the speedup improved
along with the speculative depth increases under the
HEUSPEC, which can reflect the scalability of the HEUSPEC
model to a certain extent. In our experiment, the perfor-
mances of all the benchmarks improve as the speculation
depth increases. Among them, adpcm and MatMul show
better scalability, while some other benchmarks show worse,
such as backprop or 183.equake.

The speedup of a benchmark depends on two factors. On
the one hand, the rate of the parallel section is relative to the
speedup of the benchmark. For example, the parallel section
of the MatMul benchmark accounts for more than 97%
code, while the parallel section of the backprop benchmark
accounts for less than 30%. Thus the former shows better
speedup and scalability than others while the latter perfor-
mances are worse. On the other hand, the code structure
of the parallel section can also influence the speedup. For
example, the parallel section of the benchmark 183.equake is
in the function smvp opt(); this function is repeatedly called
in another loop in themain().Thismakes the program call the
HEUSPEC main body() repeatedly, bringing much control
overhead. Therefore, it shows a bad speedup and scalability.

5.4. Time and Space Overhead. Figure 14 shows the control
overhead introduced by theHEUSPEC.The control overhead
includes the time cost on the CVAR copy, task creating
and eliminating, correctness checking, and communication

between speculative threads and main thread. The experi-
ment is carried with the speculation depth equaling to 7. We
compared the result with that of the conventional model.
The overall control overhead is 6% on the average, about 7%
lower than that of the conventional model. Except several
benchmarks such as LU, kmeans, and 181.equake with higher
control overhead, formost benchmarks, the control overhead
is lower than 4%.

Figure 15 shows the additional space overhead introduced
by HEUSPEC. We carried on this experiment with 7 spec-
ulative threads and used on-the-fly copying to reduce the
memory cost further. According to our experiment results,
the average memory cost increased by 21% on the average
under the HEUSPEC. Compared to other software-based
speculative models, the additional space overhead of the
HEUSPEC is much lower.

6. Related Works

The hardware based speculation model has not been widely
used due to its limited availability. The researchers concen-
trated on software speculation mechanism in recent years.
To reduce the overhead and to improve the accuracy are the
key problems in the software speculation model research in
recent years.

Ding et al. have proposed behavior oriented parallelism
(BOP) mechanism [16, 17]. In the BOP, the UNIX process
is used to encapsulate the speculative thread information.
The shared variables are copied to the private space of each
speculative threadwhen theUNIX process is forked. For each
CVAR, the BOP allocates a single page to store it. Compared
with traditional conflict detecting techniques, the BOP uses
value based correctness checking, rather than version based
checking, which can avoid some unnecessary rerolls of spec-
ulative threads and improve the overall performance. BOP
supports DOACROSS parallel model through the dynamic
dependence hints.

16 The Scientific World Journal

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Backprop
Heartwall
Kmeans

(a)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

LU
Mandelbrot
Molecular dynamic

(b)

0

1

2

3

4

5

6

1 2 3 4 5 6 7

Pi
Blackscholes
Hotspot

(c)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Leucocyte
MatMul
srad v1

(d)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

lavaMD
Badloop
183.equake

(e)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Adpcm (encoder)
Susan-s
179.art

(f)

Figure 13: The speedup of the benchmarks under HEUSPEC with the speculation depth changes from 3 to 7.

The copy or discard (CorD) [18, 19] execution model
implemented by Tian et al. is another software speculation
mechanism. In the CorD, the variables may have dependen-
cies identified by compiler and “copied-in” to the private
memory space (𝑃 space) of the speculation threads. Conflicts
are detected andhandled bymain threads, which is amanager
thread without doing any calculation. Ideally, the overall
speedup using CorD can approach to 𝑝 − 1 in a 𝑝-core plat-
form. To reduce the misspeculation rate, CorD has brought
in the “multiple random value prediction”mechanism, which
uses 3 ormore predictors to generate the speculative values of
the CVARs. Under this mechanism, several processor cores
are used to execute same iterations to increase the speculation
accuracy. The “pre-computing” technique is also used to
improve the accuracy of the speculation.

Liu et al., in University of California Irvine, have per-
formed speculative execution with multiple value prediction
on GPUs [20]. Similar to the CorD, for each CVAR, it
uses multiple random value prediction mechanism. A single
loop iteration may have several copies executed in different
threads with different sets of predicted CVAR values. For
each loop iteration and its copies, the earliest finished one
which passed the correctness checking can submit, while
others are discarded. This mechanism can improve the
speculation accuracy remarkably with large hardware thread
consumption (a task with 𝑛 CVARs and𝑚 possible values for
each CVAR may have 𝑚𝑛 copies and need the same number
of hardware threads to execute them in parallel). With the
help of GPU architecture, the number of the predictors is very
large. The CVAR values generated by different predictors are

The Scientific World Journal 17

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Control time rate (7 spec threads) Calculate time rate (conventional)
Control time rate (7 spec threads) Control time rate (conventional)

Ba
ck

pr
op

H
ea

rt
w

al
l

K
m

ea
ns LU

M
an

de
lb

ro
t Pi

Bl
ac

ks
ch

ol
es

H
ot

sp
ot

Le
uc

oc
yt

e

M
at

M
ul

sr
ad

vl

La
va

M
D

Ba
dl

oo
p

18
3

.e
qu

ak
e

Su
sa

n-
s

17
9

.a
rt

AV
G

.

M
ol

ec
ul

ar
da

yn
am

ic

A
dp

cm
(e

nc
od

er
)

Figure 14: The control overhead introduced by the HEUSPEC model. (The benchmarks with higher control overhead is mainly due to the
repeated calling of HEUSPEC main body(), such as LU, kmeans and 183.equake.)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Control time rate (7 spec threads) Calculate time rate (conventional)
Control time rate (7 spec threads) Control time rate (conventional)

Ba
ck

pr
op

H
ea

rt
w

al
l

K
m

ea
ns LU

M
an

de
lb

ro
t Pi

Bl
ac

ks
ch

ol
es

H
ot

sp
ot

Le
uc

oc
yt

e

M
at

M
ul

sr
ad

vl

La
va

M
D

Ba
dl

oo
p

18
3

.e
qu

ak
e

Su
sa

n-
s

17
9

.a
rt

AV
G

.

M
ol

ec
ul

ar
da

yn
am

ic

A
dp

cm
(e

nc
od

er
)

Figure 15: The additional memory cost introduced by HEUSPEC. (The experiment is done with 7 speculative threads. The increasing rate of
the memory cost is about 21% on the average.)

mapped to different speculative threads which run in parallel,
thus providing a high speculation accuracy and reducing the
rollback overhead.

7. Conclusion

We presented a novel speculation parallel execution model:
the HEUSPEC. Based on the conventional software specula-
tion parallel execution model, the HEUSPEC adopts 2 key
techniques, heuristic value prediction (HVP) and dynamic
task granularity resizing (DTGR). The HVP is adopted to
reduce themisspeculation rate.TheDTGR is implemented to

reduce the global overhead and balance the load of the specu-
lative threads.With 18 different benchmarks and 7 speculative
threads, our experiments show that the HEUSPEC achieves a
speedup of 4.51 on the average (12% higher than conventional
model), and 6.56 of the highest on a 8-core platform. The
model also shows good scalability and low time and space
overheads.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

18 The Scientific World Journal

Acknowledgments

This work is partially supported by China National 863
Program (no. 2012AA010905), the National Natural Science
Foundation of China (no. 61070037, 61272143, 61103016, and
61202121), the NUDT Innovation Foundation For Excellent
Postgraduate (no. B120604), and the Hunan Provincial Inno-
vation Foundation For Postgraduate (no. CX2012B209).

References

[1] J. G. Steffan and T. C. Mowry, “Potential for using thread-
level data speculation to facilitate automatic parallelization,”
in Proceedings of the 4th International Symposium on High-
Performance Computer Architecture (HPCA ’98), pp. 2–13,
February 1998.

[2] L. Dagum and R. Menon, “OpenMP: an industry standard
API for shared-memory programming,” IEEE Computational
Science & Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[3] W.Gropp, E. Lusk, andA. Skjellum,UsingMPI: Portable Parallel
Programmingwith theMessage Passing Interface,TheMITPress,
Cambridge, Mass, USA, 1999.

[4] G. Contreras and M. Martonosi, “Characterizing and improv-
ing the performance of Intel Threading Building Blocks,” in
Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC ’08), pp. 57–66, Seattle, Wash, USA,
September 2008.

[5] M. Feng, R. Gupta, and Y. Hu, “SpiceC: scalable parallelism
via implicit copying and explicit Commit,” in Proceedings of
the 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP ’11), pp. 69–79, February 2011.

[6] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood, “LogTM: log-based transactional memory,” in Proceed-
ings of the 12th International Symposium on High-Performance
Computer Architecture (HPCA ’06), pp. 254–265, February
2006.

[7] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson, “Architectural
support for software transactional memory,” in Proceedings
of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’06), pp. 185–196,Orlando, Fla, USA,
December 2006.

[8] N. Shavit, “Software transactional memory: where do we come
from? What are we? Where are we going?” in Proceedings of
the IEEE International Symposium on Parallel & Distributed
Processing (IPDPS ’09), p. 1, Rome, Italy, May 2009.

[9] L. Hammond, V.Wong, M. Chen et al., “Transactional memory
coherence and consistency,” in Proceedings of the 31st Annual
International Symposium on Computer Architecture (ISCA ’04),
pp. 102–113, June 2004.

[10] J. G. Steffan,C. B. Colohan,A. Zhai, andT.C.Mowry, “A scalable
approach to thread-level speculation,” in Proceedings of the
27th Annual International Symposium onComputer Architecture
(ISCA ’00), pp. 1–12, June 2000.

[11] M. K. Prabhu and K. Olukotun, “Using thread-level speculation
to simplify manual parallelization,” in Proceedings of the 9th
ACMSIGPLANSymposium on Principles and Practice of Parallel
Programming (PPoPP ’03), pp. 1–12, June 2003.

[12] S.Wang, X. Dai, K. S. Yellajyosula, A. Zhai, and P.-C. Yew, “Loop
selection for thread-level speculation,” in Proceedings of the 18th
InternationalWorkshop on Languages and Compilers for Parallel
Computing (LCPC ’05), pp. 289–303, 2005.

[13] J. T. Oplinger, D. L. Heine, andM. S. Lam, “In search of specula-
tive thread-level parallelism,” in Porceedings of the International
Conference on Parallel Architectures andCompilation Techniques
(PACT ’99), pp. 303–313, October 1999.

[14] N. Ioannou and M. Cintra, “Complementing user-level coarse-
grain parallelism with implicit speculative parallelism,” in
Proceedings of the 44th Annual IEEE/ACM Symposium on
Microarchitecture (MICRO ’11), pp. 284–295, December 2011.

[15] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen,
and K. Olukotun, “The Stanford Hydra CMP,” IEEE Micro, vol.
20, no. 2, pp. 71–84, 2000.

[16] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang,
“Software behavior oriented parallelization,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’07), pp. 223–234, June 2007.

[17] C. Ke, L. Liu, C. Zhang, T. Bai, B. Jacobs, and C. Ding, “Safe
parallel programming using dynamic dependence hints,” in
Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications
(OOPSLA ’11), pp. 243–258, October 2011.

[18] C. Tian, M. Feng, V. Nagarajan, and R. Gupta, “Copy or discard
execution model for speculative parallelization on multicores,”
in Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’08), pp. 330–341,
Lake Como, Italy, November 2008.

[19] C. Tian, C. Lin, M. Feng, and R. Gupta, “Enhanced speculative
parallelization via incremental recovery,” in Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP ’11), pp. 189–199, February 2011.

[20] S. Liu, C. Eisenbeis, and J.-L. Gaudiot, “Speculative execution
on GPU: an exploratory study,” in Proceedings of the 39th
International Conference on Parallel Processing (ICPP ’10), pp.
453–461, September 2010.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

