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We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external
pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of
these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field.
This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some
experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the
fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the
geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation,
we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed
distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of
the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.

1. Introduction

Incompressible fluid motion in “self-acting thrust bearings
with spiral grooves” (SATBESPIG) is a complex motion in
thin layers [1–5] bounded by two solid surfaces in relative
rotation one to another. The incompressible fluid motion
in thin layers has as mathematical consequence the sim-
plification and particularization of the general equations of
motion. Wemade this simplification of the general equations
of motion by neglecting the terms smaller by more than one
order of magnitude [1–7] than the other terms. Starting from
this observation, the paper approaches the theoretical study
of incompressible fluidmotion in SATBESPIGwith inner and
exterior pumping, working in the laminar regime.

Some authors have developed comparative theoretical
and experimental studies concerning different aspects of
spiral groove bearings functioning in the laminar regime,
with equations for their functioning using magnetic fluids,

cavitation phenomenon, and the geometry of the bearings
with spiral/axial multiples grooves.

In [8, 9], the author studied the static and dynamic per-
formances of the bearings with spiral grooves and inner and
exterior pumping, working with compressed air. A compar-
ative study of the theoretical and experimental results was
presented.

The diversification and optimization of the geometry
of the bearings with spiral or axial multiples of grooves
were approached in [10–12]. In [13], the author analyzed the
cavitation phenomenon theoretically and experimentally in
bearings with spiral grooves working in mineral oil. The
unfavorable consequences of the cavitation were evaluated.

We consider the theoretical results as a first step in our
intention to approach the functionality of the hydrodynamic
bearings in general and of the thrust bearings with spiral
grooves in particular in the stationary/nonstationary turbu-
lent regime. The viscous compressible/incompressible fluid
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Figure 1: SATBESPIG and inner pumping.

motion can be approached by taking into consideration the
thermo-viscous-inertial phenomena ensemble that exists in
bearings.

2. Constructive Geometric and Cinematic
Elements of the SATBESPIG

The SATBESPIG (Figures 1 and 2) are special hydrodynamic
bearings that have the specific effect of “autopumping” [1–3, 5,
7], which is why we are interested in the incompressible fluid
motion in the laminar and permanent regime and, taking into
consideration the influence of the inertial forces, in the length
of the spiral groove (pumping direction 𝜓 from Figures 3, 4,
and 5). In the literature [4, 7, 10, 12–15], there are only a few
studies and a small amount of theoretical research concerning
this subject. These studies approach the incompressible fluid
motion only in the radial direction (r) without taking into
consideration the effects of the inertial forces.

In Figures 1 and 2, (i) 𝑎
1
is the width of the spiral channel,

measured on the circle arc contour; (ii) 𝑎
2
is the width of

the spiral threshold, measured on the circle arc contour; (iii)
Δ𝜃 is the center angle corresponding to a channel—threshold
pair; (iv) 𝛽

0
is the generator angle of the logarithmic spiral,

which describes the form of the cannels; (v) 𝛽
1
and 𝛽

2
are the

input and output angles, respectively, in and from the channel
(according to the accepted notations from the general study
of the hydraulic machineries); (vi) 𝜔

1
is the bearing angular

rotation speed; (vii) 𝑟
𝑖
and 𝑟
𝑒
are the inner and external radius

of the bearing, respectively; (viii) 𝑟
𝑐
is the radius marking the

zone of the spiral channels; (ix) 𝑟 is the current radius of the
bearing; (x) ℎ

1
is the lubrication film height over the bearing

channels; (xi) ℎ
2
is the lubrication filmheight over the bearing

thresholds; (xii)W is the bearing load (the weight); and (xiii)
by definition, 𝛼 = 𝑎

1
/(𝑎
1
+ 𝑎
2
).

With the geometrical dimensions in Figure 1 (or Figure 2)
we can write Δ𝜃 = 2𝜋/𝑛

𝑝
, where 𝑛

𝑝
is the number of pairs
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Figure 2: SATBESPIG and external pumping.
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Figure 3: Relations between the general and local coordinate
systems (in an arbitrary point, P). At point P, the coordinate 𝜉 is
normal to the 𝜓 direction of the spiral channel.

channel—thresholds, 𝑎
1
= 𝛼𝑟Δ𝜃, 𝑎

2
= (1 − 𝛼)𝑟Δ𝜃, 𝑎 = 𝑎

1
+

𝑎
2
= 𝑟Δ𝜃, and 𝜔

2
= 0 (the grooved surface is fixed).

3. Coordinate Systems, Control Volume,
Speed Distributions, and Mass Flow Rate
in Laminar Regime

To study the mathematical model, the coordinate systems
and the control volume must be determined so as to define
the speed distributions and the fluid mass flow rate [3, 5,
15]. The control volume (Vol) is the volume between the
bearing surfaces, between the one channel surface and one
consecutive threshold surface of the stator and the horizontal
bottom surface of the rotor (Figures 1 and 2). In Figure 3,
we show the general (𝑦, 𝑟, 𝜃) and local (𝜓, 𝑦, 𝜉) coordinate
systems used for the motion study.
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Next, we start from the fact that the incompressible fluid
laminarmotion, between the two quasiparallel surfaces of the
bearing, is described by the following speed profiles:

𝑢 (𝑦) ≅ −
1

2𝜂

1

𝑟

𝜕𝑝

𝜕𝜃
𝑦 (ℎ − 𝑦) +

𝑦

ℎ
𝜔
1
𝑟, (1a)

V
𝑛
(𝑦) ≅ 0, (1b)

𝑤 (𝑦) ≅ −
1

2𝜂

𝜕𝑝

𝜕𝑟
𝑦 (ℎ − 𝑦) , (1c)

V
𝜓
(𝑦) ≅

1

2𝜂𝑟 sin𝛽
0

𝜕𝑝

𝜕𝜓
𝑦 (𝑦 − ℎ) +

𝑦

ℎ
𝜔
1
𝑟 cos𝛽

0
, (1d)

V
𝜉
(𝑦) ≅

1

2𝜂𝑟 sin𝛽
0

𝜕𝑝

𝜕𝜉
𝑦 (𝑦 − ℎ) −

𝑦

ℎ
𝜔
1
𝑟 sin𝛽

0
. (1e)

In (1a)–(1e), (i) 𝑢(𝑦) is the fluid speed component in the x
(or 𝜃) direction, (ii) V

𝑛
(𝑦) is the fluid speed component in the

normal direction 𝑦, (iii)𝑤(𝑦) is the fluid speed component in
the 𝑧 (or 𝑟) direction, (iv) V

𝜓
(𝑦) is the fluid speed component

in the𝜓 curb direction, (v) V
𝜉
(𝑦) is the fluid speed component

in the 𝜉 direction, (vi) 𝑝 is the pressure in the fluid, (vii) ℎ
is the height of the lubrication film, and (viii) 𝜂 is the fluid
dynamical viscosity.

The speed distributions, given by (1a)–(1e), are typical
for the noninertial motion case initially considered, meaning
that these are parabolic speed profiles [3, 5, 6]. Observing the
geometry of the bearings in Figures 1 and 2, it is possible to
establish some functionalmathematical relations between the
coordinates. Thus, the following operational expressions can
be found [3, 5]:

𝜕

𝜕𝑟
= cos𝛽

0

𝜕

𝜕𝜉
+ sin𝛽

0

𝜕

𝜕𝜓
, (2a)

𝜕

𝜕𝑥
≡
1

𝑟

𝜕

𝜕𝜃
= − sin𝛽

0

𝜕

𝜕𝜉
+ cos𝛽

0

𝜕

𝜕𝜓
, (2b)

𝜕

𝜕𝜉
= cos𝛽

0

𝜕

𝜕𝑟
− sin𝛽

0

1

𝑟

𝜕

𝜕𝜃
, (2c)

𝜕

𝜕𝜓
= sin𝛽

0

𝜕

𝜕𝑟
+ cos𝛽

0

1

𝑟

𝜕

𝜕𝜃
. (2d)

Using relation (1e), the fluid mass flow rate in the
pumping direction 𝜓 (Figures 4 and 5), further denoted by
Ṁ
𝜓
, can be expressed by the integral representation [3, 5]:

Ṁ
𝜓
≅ ∫

𝜃+Δ𝜃

𝜃

𝑟
0
sin𝛽
0
𝑑𝜃∫

ℎ

0

𝜌V
𝜓
(𝑦) 𝑑𝑦, (3)

where 𝜌 is the fluid density and 𝑟
0
is the “reference” radius

(𝑟
0
∈ [𝑟
𝑖
, . . . , 𝑟

𝑒
], and further 𝑟

0
will be denoted by 𝑟).

4. Differential Equation for Pressure
Distribution in the 𝜓 Direction

Observing the bearing geometry (Figures 1 and 2), we admit
that the angle Δ𝜃 is infinitely small, meaning that there exist

an infinite number of spiral channels. Given the relations (1e)
and (3), the physical natural condition is that the mass flow
rate Ṁ

𝜓
is constant. With these conditions we obtain

Ṁ
𝜓
≅ Δ𝜃 [𝐶

𝜕𝑝

𝜕𝜓
+ 𝐷𝑟
2
] , (4)

where

𝐶 = −
𝜌

12𝜂
[𝛼ℎ
3

1
+ (1 − 𝛼) ℎ

3

2
] , (5a)

𝐷 =
𝜌

2
𝜔
1
sin𝛽
0
cos𝛽
0
[𝛼ℎ
1
+ (1 − 𝛼) ℎ

2
] . (5b)

The fluid mass conservation in the 𝜓 direction can be
expressed as follows:

𝜕

𝜕𝜏
(𝑚) +

𝜕

𝜕𝜓
(Ṁ
𝜓
) Δ𝜓 ≅ 0, (6)

where 𝜏 is the time, and the fluid mass 𝑚, contained in the
control volume Vol, is given by the relation

𝑚 ≅ Δ𝑟Δ𝜃𝜌𝑟 [𝛼ℎ
1
+ (1 − 𝛼) ℎ

2
] . (7)

Or, using relations (4) and (7), (6) becomes

𝜕

𝜕𝜏
{[𝛼ℎ
1
+ (1 − 𝛼) ℎ

2
] 𝜌}

+ sin2𝛽
0

1

𝜓

𝜕

𝜕𝜓
{𝐶

𝜕𝑝

𝜕𝜓
+ 𝐷

1

sin2𝛽
0

𝜓
2
} ≅ 0.

(8)

For the permanent motion regime, (8) becomes

1

𝜓

𝜕

𝜕𝜓
{𝐶

𝜕𝑝

𝜕𝜓
+

1

sin2𝛽
0

𝐷𝜓
2
} ≅ 0. (9)

Using nondimensional variables [1, 3–5, 7, 10, 14, 15], (8)
can be written as

𝜕

𝜕𝜁
[𝑃𝐻
3
(𝐾
1
𝜁
𝜕𝑃

𝜕𝜁
+ 𝐾
2
ΩΛ𝜁
2
𝐻
−2
)] − 𝜎𝜁

𝜕

𝜕𝑡
[𝑃𝐻𝐾

3
] ≅ 0.

(10)

For the stationary motion regime, (10) becomes [1, 2]

𝜕

𝜕𝜁
[𝑃(𝐾

1
𝜁
𝜕𝑃

𝜕𝜁
+ 𝐾
2
ΩΛ𝜁
2
)] ≅ 0. (11)

5. Integration of the Differential Equation of
the Pressure Distribution in the 𝜓 Direction

In the𝜓 direction, the fluid film ℎ varies rapidly from ℎ
1
to ℎ
2
,

at the frontier 𝑟 ≅ 𝑟
𝑐
(Figures 4 and 5).The existing radial step

with length in the pumping direction 𝜓 produces a pressure
jump from 𝑝

ℎ1
to 𝑝
ℎ2
. This pressure jump has different values

as a function of (i) the flow regime through bearing (laminar,
transition, or turbulent regime), (ii) the value of the rapport
ℎ
1
/ℎ
2
, (iii) the fact that we take (or not) into consideration

the inertial forces, and (iv) the fluid type [2, 3, 5, 16, 17].
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Figure 4: Radial step of the inner pumping bearing.

Integrating differential equation (9) and observing the
limit conditions for pressures [3, 5] and the notations from
Figures 4 and 5 (𝑝supp. is the supply pressure of the lubrication
fluid and 𝑝atm. is the atmospheric pressure), we obtain the
mathematical relations for the pressure distributions in the
SATBESPIG:

𝑝 (𝜓)

≅ 𝑝
ℎ2
+
𝜓 − (𝐿

2
+ 𝜓
0
)

𝜓
0
− (𝐿
2
+ 𝜓
0
)

× {(𝑝supp. − 𝑝ℎ2) −
2𝜂 cos𝛽

0
𝜔
1

ℎ2
2
sin𝛽
0

[𝜓
3

0
− (𝐿
2
+ 𝜓
0
)
3

]}

+
2𝜂 cos𝛽

0
𝜔
1

ℎ2
2
sin𝛽
0

⋅ [𝜓
3
− (𝐿
2
+ 𝜓
0
)
3

] .

(12)

Relation (12) presents the pressure distribution in the laminar
and permanent flow regime in the smooth region of the inner
pumping bearing surface, where ℎ = ℎ

2
. Consider

𝑝 (𝜓)

≅ 𝑝supp. +
𝜓 − (𝐿 + 𝜓

0
)

(𝐿
2
+ 𝜓
0
) − (𝐿 + 𝜓

0
)

× {(𝑝
ℎ1
− 𝑝supp.) −

2𝜂 cos𝛽
0
𝜔
1
[𝛼ℎ
1
+ (1 − 𝛼) ℎ

2
]

sin𝛽
0
[𝛼ℎ
3

1
+ (1 − 𝛼) ℎ3

2
]
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Figure 5: Radial step of the external pumping bearing.

× [(𝐿
2
+ 𝜓
0
)
3

− (𝐿 + 𝜓
0
)
3

]}

+
2𝜂 cos𝛽

0
𝜔
1
[𝛼ℎ
1
+ (1 − 𝛼) ℎ

2
]

sin𝛽
0
[𝛼ℎ
3

1
+ (1 − 𝛼) ℎ3

2
]

[𝜓
3
− (𝐿 + 𝜓

0
)
3

] .

(13)

Relation (13) presents the pressure distribution in the region
with spiral channels of the inner pumping bearing surface,
where ℎ = ℎ

1
.

In a similar way, for the SATBESPIG with exterior
pumping (Figure 5), we obtain

𝑝 (𝜓)

≅ 𝑝
ℎ2
+

𝜓 − (𝐿
1
+ 𝜓
0
)

(𝐿 + 𝜓
0
) − (𝐿

1
+ 𝜓
0
)

×{(𝑝supp. − 𝑝ℎ2) −
2𝜂 cos𝛽

0
𝜔
1

ℎ2
2
sin𝛽
0

[(𝐿 + 𝜓
0
)
3

− (𝐿
1
+ 𝜓
0
)
3

]}

+
2𝜂 cos𝛽

0
𝜔
1

ℎ2
2
sin𝛽
0

[𝜓
3
− (𝐿
1
+ 𝜓
0
)
3

] .

(14)
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Relation (14) presents the pressure distribution in the laminar
and permanent flow regime in the smooth region of the
external pumping bearing surface, where ℎ = ℎ

2
. Consider

𝑝 (𝜓)

≅ 𝑝supp. +
𝜓 − 𝜓

0

(𝐿
1
+ 𝜓
0
) − 𝜓
0

× {(𝑝
ℎ1
− 𝑝supp.) −

2𝜂 cos𝛽
0
𝜔
1
[𝛼ℎ
1
+ (1 − 𝛼) ℎ

2
]

sin𝛽
0
[𝛼ℎ
3

1
+ (1 − 𝛼) ℎ3

2
]

× [(𝐿
1
+ 𝜓
0
)
3

− 𝜓
3

0
]}

+
2𝜂 cos𝛽

0
𝜔
1
[𝛼ℎ
1
+ (1 − 𝛼) ℎ

2
]

sin𝛽
0
[𝛼ℎ
3

1
+ (1 − 𝛼) ℎ3

2
]

[𝜓
3
− 𝜓
3

0
] .

(15)

Relation (15) presents the pressure distribution in the laminar
and permanent motion regime in the spiral grooves region of
the bearing surface with exterior pumping, where ℎ = ℎ

1
.

In the relations (12)–(15), all the constants are known (for
a designed and realized SATBESPIG), the exception being
the extreme pressures 𝑝

ℎ1
and 𝑝

ℎ2
. If we do not take into

consideration the influence of the inertial forces, then the
pressures 𝑝

ℎ1
and 𝑝

ℎ2
are equal. Thus, 𝑝

ℎ1
≡ 𝑝
ℎ2
, Δ𝑝 =

𝑝
ℎ2
− 𝑝
ℎ1
= 0.

6. Calculus Relations for the Extreme
Pressures 𝑝

ℎ1
and 𝑝

ℎ2

To express the pressure distribution in the 𝜓 direction and
the extreme pressures 𝑝

ℎ1
and 𝑝

ℎ2
, wemust analyze the liquid

motion in the fluid film existing between the quasiparallel
surfaces of the SATBESPIG [1–3, 5, 7]. On the other hand,
the inertial effects (which considerably influence the extreme
pressures 𝑝

ℎ1
and 𝑝

ℎ2
) exist on all the surfaces of the

SATBESPIG in the 𝜓 direction, but the maximum effect is
concentrated in the zone of the radial step, 𝑟 ≅ 𝑟

𝑐
(Figures 4

and 5) [2, 3, 5, 16, 17].
Some theoretical results concerning themotion of liquids

in similar bearings with the consideration of the influence of
inertial forces have been presented in the literature [3, 5–7,
14]. It is possible to demonstrate [3, 5] that, for the case of the
stationary motion regime and when only the smooth surface
is in a rotation with 𝑛

1
= constant [rot/min], the equation

that describes the viscous fluid motion in 𝜓 direction is

𝜌

𝜓

𝑑

𝑑𝜓
(
𝛼
0
𝑄
2

𝜓

ℎ𝜓2Δ𝜃
2
−
𝛾𝑄
𝜓
𝜔
1

Δ𝜃

cos𝛽
0

sin𝛽
0

+ 𝛽𝜔
2

1
𝜓
2 cos2𝛽0
sin2𝛽
0

ℎ)

+
2𝜌𝛿𝑄

𝜓
𝜔
1
sin𝛽
0

𝜓2Δ𝜃 cos𝛽
0

− 3𝜌𝛽𝜔
2

1
ℎ +

𝜌𝛼
0
𝑄
2

𝜓

ℎ𝜓4Δ𝜃
2

−
𝜌𝛾𝑄
𝜓
𝜔
1
cos𝛽
0

𝜓2Δ𝜃 sin𝛽
0

+ 𝜌𝛽𝜔
2

1

cos2𝛽
0

sin2𝛽
0

ℎ +
1

𝜓

𝑑𝑝

𝑑𝜓
ℎ

+
12𝜂

ℎ
(
𝑄
𝜓

ℎ𝜓Δ𝜃
−
𝜔
1
𝜓 cos𝛽

0

2 sin𝛽
0

) ≅ 0,

(16)

where

𝑄
𝜓
= 𝑈av.ℎ ≅ −

ℎ
3

12𝜂𝑟 sin𝛽
0

𝜕𝑝

𝜕𝜓

+
ℎ

2
𝜔
1
𝑟 cos𝛽

0
= const. (volumic flow rate) ,

(17a)

𝑈av.

=
1

ℎ
∫

ℎ

0

V
𝜓
(𝑦) ⋅ 𝑑𝑦

=average speed in the fluid film by the curb direction 𝜓,
(17b)

𝛼
0
=
6

5
, 𝛽 =

2

15
, 𝛾 =

1

5
, 𝛿 =

1

10
. (17c)

The constructive angle of spiral groove is 𝛽
0
= 17
∘ [3, 5, 14].

Calculating the derivative of the relation (16) versus the
variable 𝜓 and taking into consideration the constants from
above, the following expression can be found:

𝑑𝑝

𝑑𝜓
≅ (

𝜌𝛼
0
𝑄
2

𝜓

ℎ3𝜓2Δ𝜃
2
−
𝜌𝛽𝜔
2

1
𝜓
2

ℎ

cos2𝛽
0

sin2𝛽
0

)
𝑑ℎ

𝑑𝜓
+
𝜌𝛼
0
𝑄
2

𝜓

ℎ2𝜓3Δ𝜃
2

+ 3𝜌𝛽𝜔
2

1
𝜓(1 −

cos2𝛽
0

sin2𝛽
0

) −
2𝜌𝛿𝑄

𝜓
𝜔
1
sin𝛽
0

ℎ𝜓Δ𝜃 cos𝛽
0

+
𝜌𝛾𝑄
𝜓
𝜔
1
cos𝛽
0

ℎ𝜓Δ𝜃 sin𝛽
0

−
12𝜂𝑄
𝜓

ℎ3Δ𝜃
+
6𝜂𝜔
1
𝜓
2 cos𝛽

0

ℎ2 sin𝛽
0

.

(18)

We obtain a similar but more precise relation to (18) by
introducing a supplementary coercive term [1, 2, 4, 9]. In this
case, relation (18) becomes

𝑑𝑝

𝑑𝜓
≅ [

𝜌𝑄
2

𝜓

ℎ3𝜓2Δ𝜃
2
(𝛼
0
+ 𝜀𝜓)]

𝑑ℎ

𝑑𝜓
−
𝜌𝛽𝜔
2

1
𝜓
2

ℎ

cos2𝛽
0

sin2𝛽
0

𝑑ℎ

𝑑𝜓

+
𝜌𝛼
0
𝑄
2

𝜓

ℎ2𝜓3Δ𝜃
2
+ 3𝜌𝛽𝜔

2

1
𝜓(1 −

cos2𝛽
0

sin2𝛽
0

)

−
2𝜌𝛿𝑄

𝜓
𝜔
1
sin𝛽
0

ℎ𝜓Δ𝜃 cos𝛽
0

+
𝜌𝛾𝑄
𝜓
𝜔
1
cos𝛽
0

ℎ𝜓Δ𝜃 sin𝛽
0

−
12𝜂𝑄
𝜓

ℎ3Δ𝜃

+
6𝜂𝜔
1
𝜓
2 cos𝛽

0

ℎ2 sin𝛽
0

,

(19)

where 𝜀 = 2/15 [1, 2, 4].
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Integrating the differential equation (19), for both regions
of the SATBESPIG, where ℎ = ℎ

1
= const. and ℎ = ℎ

2
=

const. (Figures 4 and 5), we obtain the calculus relations for
the pressures 𝑝

ℎ1
and 𝑝

ℎ2
:

𝑝
ℎ1
≅ 𝑝supp. +

𝜌𝛼
0
𝑄
2

𝜓

2ℎ2
1
Δ𝜃
2
[

1

(𝐿 + 𝜓
0
)
2
−

1

(𝐿
2
+ 𝜓
0
)
2
]

+
3

2
𝜌𝛽𝜔
2

1
(1 −

cos2𝛽
0

sin2𝛽
0

) [(𝐿
2
+ 𝜓
0
)
2

− (𝐿 + 𝜓
0
)
2

]

−
2𝜌𝛿𝑄

𝜓
𝜔
1
sin𝛽
0

ℎ
1
Δ𝜃 cos𝛽

0

ln
𝐿
2
+ 𝜓
0

𝐿 + 𝜓
0

+
𝜌𝛾𝑄
𝜓
𝜔
1
cos𝛽
0

ℎ
1
Δ𝜃 sin𝛽

0

ln
𝐿
2
+ 𝜓
0

𝐿 + 𝜓
0

+
12𝜂𝑄
𝜓

ℎ3
1
Δ𝜃

[(𝐿 + 𝜓
0
) − (𝐿

2
+ 𝜓
0
)]

−
2𝜂𝜔
1
cos𝛽
0

ℎ2
1
sin𝛽
0

⋅ [(𝐿 + 𝜓
0
)
3

− (𝐿
2
+ 𝜓
0
)
3

] ,

𝑝
ℎ2
≅ 𝑝supp. −

𝜌𝛼
0
𝑄
2

𝜓

2ℎ2
2
Δ𝜃
2
[

1

(𝐿
2
+ 𝜓
0
)
2
−
1

𝜓2
0

]

+
3

2
𝜌𝛽𝜔
2

1
(1 −

cos2𝛽
0

sin2𝛽
0

) [(𝐿
2
+ 𝜓
0
)
2

− 𝜓
2

0
]

+
2𝜌𝛿𝑄

𝜓
𝜔
1
sin𝛽
0

ℎ
2
Δ𝜃 cos𝛽

0

ln
𝜓
0

𝐿
2
+ 𝜓
0

−
𝜌𝛾𝑄
𝜓
𝜔
1
cos𝛽
0

ℎ
2
Δ𝜃 sin𝛽

0

ln
𝜓
0

𝐿
2
+ 𝜓
0

+
12𝜂𝑄
𝜓

ℎ3
2
Δ𝜃

[𝜓
0
− (𝐿
2
+ 𝜓
0
)]

+
2𝜂𝜔
1
cos𝛽
0

ℎ2
2
sin𝛽
0

[(𝐿
2
+ 𝜓
0
)
3

− 𝜓
0

3
] .

(20)

These relations are valid for the SATBESPIG with inner
pumping.

In a similar way, for the SATBESPIG with exterior
pumping, we obtain

𝑝
ℎ1
≅ 𝑝supp. +

𝜌𝛼
0
𝑄
2

𝜓

2ℎ2
1
Δ𝜃
2
[
1

𝜓2
0

−
1

(𝐿
1
+ 𝜓
0
)
2
]

+
3

2
𝜌𝛽𝜔
2

1
(1 −

cos2𝛽
0

sin2𝛽
0

) [(𝐿
1
+ 𝜓
0
)
2

− 𝜓
2

0
]

+
2𝜌𝛿𝑄

𝜓
𝜔
1
sin𝛽
0

ℎ
1
Δ𝜃 cos𝛽

0

ln
𝜓
0

𝐿
1
+ 𝜓
0

−
𝜌𝛾𝑄
𝜓
𝜔
1
cos𝛽
0

ℎ
1
Δ𝜃 sin𝛽

0

ln
𝜓
0

𝐿
1
+ 𝜓
0

+
12𝜂𝑄
𝜓

ℎ3
1
Δ𝜃

[𝜓
0
− (𝐿
1
+ 𝜓
0
)]

−
2𝜂𝜔
1
cos𝛽
0

ℎ2
1
sin𝛽
0

[𝜓
3

0
− (𝐿
1
+ 𝜓
0
)
3

] ,

(21)

𝑝
ℎ2
≅ 𝑝supp. +

𝜌𝛼
0
𝑄
2

𝜓

2ℎ2
2
Δ𝜃
2
[

1

(𝐿 + 𝜓
0
)
2
−

1

(𝐿
1
+ 𝜓
0
)
2
]

+
3

2
𝜌𝛽𝜔
2

1
(1 −

cos2𝛽
0

sin2𝛽
0

) [(𝐿
1
+ 𝜓
0
)
2

− (𝐿 + 𝜓
0
)
2

]

−
2𝜌𝛿𝑄

𝜓
𝜔
1
sin𝛽
0

ℎ
2
Δ𝜃 cos𝛽

0

ln
𝐿
1
+ 𝜓
0

𝐿 + 𝜓
0

+
𝜌𝛾𝑄
𝜓
𝜔
1
cos𝛽
0

ℎ
2
Δ𝜃 sin𝛽

0

ln
𝐿
1
+ 𝜓
0

𝐿 + 𝜓
0

+
12𝜂𝑄
𝜓

ℎ3
2
Δ𝜃

[(𝐿 + 𝜓
0
) − (𝐿

1
+ 𝜓
0
)]

+
2𝜂𝜔
1
cos𝛽
0

ℎ2
2
sin𝛽
0

[(𝐿
1
+ 𝜓
0
)
3

− (𝐿 + 𝜓
0
)
3

] .

(22)

In relations (20)–(22), all the variables are known except
the volumetric flow rate 𝑄

𝜓
.

7. Calculus Relation for the Fluid Volumetric
Flow Rate 𝑄

𝜓

Thecalculus relation for the fluid volumetric flow rate𝑄
𝜓
will

be established using differential equation (19) again. To find
the calculus relation, at the position of the radial step of the
bearing we suppose that 𝑑ℎ/𝑑𝜓 ̸= 0. So, in this zone of the
bearing the inertial effects are dominant in comparison to the
viscous effects. In other words, in the radial step zone of the
bearing, the liquid moves approximately like an ideal but not
viscous fluid [3, 5].

Integrating (19) in the vicinity of the radial step of the
bearing grooved surface (Figures 4 and 5), we obtain a
relation between 𝑝

ℎ1
, 𝑝
ℎ2
, and 𝑄

𝜓
:

Δ𝑝 = 𝑝
ℎ1
− 𝑝
ℎ2
≅

𝜌𝑄
2

𝜓

𝜓2
𝑐
Δ𝜃
2
(𝛼
0
+ 𝜀𝜓
𝑐
) (

1

2ℎ2
2

−
1

2ℎ2
1

)

− 𝜌𝛽𝜔
2

1
𝜓
2

𝑐

cos2𝛽
0

sin2𝛽
0

ln ℎ1
ℎ
2

,

(23)

where 𝜓
𝑐
is the length measured by the 𝜓 coordinate cor-

responding to the grooves radius of the profiled surface, 𝑟
𝑐

(Figures 4 and 5).
Relation (23) has some limits, especially at high values of

ℎ
1
/ℎ
2
, when ℎ

2
→ 0, or, in other words, at the heavy regimes
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for the bearing functionality. If we know the other variables,
including the extreme pressures 𝑝

ℎ1
and 𝑝

ℎ2
, relation (23)

offers the flow rate 𝑄
𝜓
.

Therefore, using (20) and then (21), (22), and (23), we
obtain a typical second degree algebraic equation, (24), from
which we obtain the fluid flow rate 𝑄

𝜓
:

𝜌𝑄
2

𝜓

Δ𝜃
2
{𝛼
0
[
1

2ℎ2
1

(
1

(𝐿 + 𝜓
0
)
2
−

1

(𝐿
2
+ 𝜓
0
)
2
)

+
1

2ℎ2
2

(
1

(𝐿
2
+ 𝜓
0
)
2
−
1

𝜓2
0

)]

−
1

𝜓2
𝑐

(𝛼
0
+ 𝜀𝜓
𝑐
) (

1

2ℎ2
2

−
1

2ℎ2
1

)}

+
𝑄
𝜓

Δ𝜃
⋅[
𝜌𝛾𝜔
1
cos𝛽
0

sin𝛽
0

(
1

ℎ
1

ln
𝐿
2
+ 𝜓
0

𝐿 + 𝜓
0

+
1

ℎ
2

ln
𝜓
0

𝐿
2
+ 𝜓
0

)

−
2𝜌𝛿𝜔
1
sin𝛽
0

cos𝛽
0

(
1

ℎ
1

ln
𝐿
2
+ 𝜓
0

𝐿 + 𝜓
0

+
1

ℎ
2

ln
𝜓
0

𝐿
2
+ 𝜓
0

)

+12𝜂(
𝐿 − 𝐿
2

ℎ3
1

+
𝐿
2

ℎ3
2

)] − 𝑇1 + 𝑇2 ≅ 0,

(24)

where

𝑇1 =
3

2
𝜌𝛽𝜔
2

1
(1 −

cos2𝛽
0

sin2𝛽
0

) [(𝐿 + 𝜓
0
)
2

− 𝜓
2

0
] ,

𝑇2 = 𝜌𝛽𝜔
2

1
𝜓
2

𝑐

cos2𝛽
0

sin2𝛽
0

ln ℎ1
ℎ
2

−
2𝜂𝜔
1
cos𝛽
0

sin𝛽
0

× {
1

ℎ2
1

[(𝐿 + 𝜓
0
)
3

− (𝐿
2
+ 𝜓
0
)
3

]

+
1

ℎ2
2

[(𝐿
2
+ 𝜓
0
)
3

− 𝜓
0

3
]} .

(25)

Relation (24) is valid for the SATBESPIGwith inner pumping.
For the SATBESPIG with exterior pumping, we obtain a

similar relation:

𝜌𝑄
2

𝜓

Δ𝜃
2
{𝛼
0
[
1

2ℎ2
2

(
1

(𝐿 + 𝜓
0
)
2
−

1

(𝐿
1
+ 𝜓
0
)
2
) (26)

−
1

2ℎ2
1

(
1

𝜓2
0

−
1

(𝐿
1
+ 𝜓
0
)
2
)] (27)

+
1

2𝜓2
𝑐

(𝛼
0
+ 𝜀𝜓
𝑐
) (

1

ℎ2
2

−
1

ℎ2
1

)}
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Figure 6: Pressure and speed distributions in the SATBESPIG with
inner pumping. (See details in Figures 7 and 8.)

+
𝑄
𝜓

Δ𝜃
⋅[
𝜌𝛾𝜔
1
cos𝛽
0

sin𝛽
0

(
1

ℎ
1

ln
𝜓
0

𝐿
1
+ 𝜓
0

+
1

ℎ
2

ln
𝐿
1
+ 𝜓
0

𝐿 + 𝜓
0

)

−
2𝜌𝛿𝜔
1
sin𝛽
0

cos𝛽
0

(
1

ℎ
1

ln
𝜓
0

𝐿
1
+ 𝜓
0

+
1

ℎ
2

ln
𝐿
1
+ 𝜓
0

𝐿 + 𝜓
0

)

+12𝜂(
𝐿 − 𝐿
1

ℎ3
2

+
𝐿
1

ℎ3
1

)] − 𝑇1 − 𝑇3 ≅ 0,

(28)

where

𝑇3 = 𝜌𝛽𝜔
2

1
𝜓
2

𝑐

cos2𝛽
0

sin2𝛽
0

ln ℎ1
ℎ
2

−
2𝜂𝜔
1
cos𝛽
0

sin𝛽
0

{
1

ℎ2
1

[𝜓
0

3
− (𝐿
1
+ 𝜓
0
)
3

]

+
1

ℎ2
2

[(𝐿
1
+ 𝜓
0
)
3

− (𝐿 + 𝜓
0
)
3

]} .

(29)

Both (24) and (28) are classical algebraic equations of
second degree in 𝑄

𝜓
. If we denote by 𝑄𝐼

𝜓
and 𝑄𝐼𝐼

𝜓
the two

solutions of the every algebraic equation (24) or (28), using
𝑄
𝐼

𝜓
and 𝑄

𝐼𝐼

𝜓
, and if we take into consideration that the
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Figure 7: Detail of Figure 6 concerning the pressure jump between
ℎ
1
and ℎ

2
. (The marked points are those where we made the

calculation.)

SATBESPIG realizes inner pumping and exterior pumping,
it is not possible to have a negative fluid flow rate from a
physical point of view.Thus, the algebraic solution, which has
physical meaning, is the positive solution [3, 5].

The numerical evaluation of 𝑄𝐼
𝜓
and 𝑄𝐼𝐼

𝜓
algebraic solu-

tions, for 𝑄𝐼
𝜓
and 𝑄𝐼𝐼

𝜓
using medium (normal) values for the

physical and geometrical dimensions [1, 2] of (24) and (28),
leads to 𝑄𝐼

𝜓
< 0 and 𝑄𝐼𝐼

𝜓
> 0. Thus, the mathematical relation

for the calculus of the fluid volumetric flow rate 𝑄
𝜓
is

𝑄
𝜓
≡ 𝑄
𝐼𝐼

𝜓
, (30)

where, in conformity to the devoted notations from the
classical algebra, the solution 𝑄𝐼𝐼

𝜓
is

𝑄
𝐼𝐼

𝜓
=
−�̈� − √�̈�2 − 4 ̈𝑎 ̈𝑐

2 ̈𝑎
, (31)

where ̈𝑎, �̈�, and ̈𝑐 are the coefficients of the algebraic equations
(24) or (28).

8. Numerical and Experimental Results

The established mathematical relations allow the numerical
calculation of the pressure and speed distributions for several
SATBESPIG with inner or external pumping in permanent
and laminar regimes. For these numerical calculations we

0.25 0.26 0.27 0.28 0.29 0.30
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

(𝜓 − 𝜓0)/L

U: h1 = 0.7mm; h2 = 0.3mm
U: h1 = 0.9mm; h2 = 0.5mm
U: h1 = 1.1mm; h2 = 0.7mm
U: h1 = 1.3mm; h2 = 0.9mm

U
av

./
(U

av
.)

m
ax

Figure 8: Detail of Figure 6 concerning the speed jump between
ℎ
1
and ℎ

2
. (The marked points are those where we made the

calculation.)

used two different computer programs: one for the SATBE-
SPIG with inner pumping and the other for the SATBESPIG
with external pumping.

In Figures 6 to 8, we present the calculated pressure and
speed distributions for a SATBESPIG with inner pumping
and 𝑟
𝑒
= 90mm, 𝑟

𝑐
= 57.15mm, 𝑟

𝑖
= 45mm, 𝑛

𝑝
= 10, 𝛼 = 0.615,

𝛽
0
= 17∘, 𝜌 = 905 kg/m3, 𝜂 = 10−4 Pa⋅s, 𝑝supp. = 101325N/m2,

𝑛 = 900 rot/min, 𝛼
0
= 6/5, 𝜀 = 2/15, 𝛾 = 1/5, 𝛿 = 1/10, 𝛽 = 2/15,

and the parameters h
1
and h
2
as written in the figures.

Figure 9 presents the calculated pressure and speed dis-
tributions for a SATBESPIG with external pumping with the
same characteristics as the SATBESPIG with inner pumping
above, with the exception that 𝑟

𝑐
= 77.85mm.

In Figure 10, we compared the theoretical results and the
experimental measurements for the SATBESPIG with inner
pumping and ℎ

1
, ℎ
2
, and 𝑛 written in the figure.

In all our studies, the main constructive geometrical and
functional parameters for the calculation of these bearings
were ℎ

1
, ℎ
2
, n, 𝑟
𝑖
, and 𝑟

𝑒
[3, 5].

9. Discussion and Conclusions

Theanalysis of the theoretical results allows some conclusions
to be drawn concerning the laminar motion of incompress-
ible fluids in some models of a SATBESPIG. We analyzed
two variants of the SATBESPIG with inner pumping, which
are called the First Variant and the Second Variant below.
The difference between these bearings is the 𝑟

𝑐
dimension.
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Figure 9: Pressure and speed distributions in the SATBESPIG with
external pumping.

The First Variant is the SATBESPIG from Figure 6 (𝑟
𝑐
=

57.15mm), and the Second Variant has 𝑟
𝑐
= 70.29mm.

(a) For all the rotation per minute (r.p.m.) ranges n and
for all the analyzed rapports ℎ

1
/ℎ
2
, the First Vari-

ant SATBESPIG with inner pumping had superior
hydrodynamics performance compared to the Second
Variant SATBESPIG.Thus, high pressures in bearings
can be realized with an appropriate dimension of
the bearing surface, especially the dimension of the
grooved surface, meaning the parameters 𝑟

𝑖
, 𝑟
𝑐
, and

𝑟
𝑒
.

(b) Generally speaking, increasing other hydraulics per-
formance of the SATBESPIG for the same dimensions
𝑟
𝑖
, 𝑟
𝑐
, and 𝑟

𝑒
can be realized by increasing the number

of the rotation per minute 𝑛. The modification of the
rapport ℎ

1
/ℎ
2
has a small influence.

(c) The nondimensional speeds increase (and decrease)
from the bearing input to the bearing output, with a
jump at the radial step 𝑟 ≅ 𝑟

𝑐
. The nondimensional

pressures change, but not linearly with the channel
length, from the input, where𝑝imput ≅ 𝑝supp., up to the
pressure 𝑝

ℎ1
and from the pressure 𝑝

ℎ2
to the output

pressure, where 𝑝output ≅ 𝑝supp..
(d) The pressure jump Δ𝑝 = 𝑝

ℎ1
− 𝑝
ℎ2
theoretically tends

to zero when the rapport ℎ
1
/ℎ
2
→ 1 and thus when
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Th.: h1 = 0.4mm; h2 = 0.1mm; 180 rot/min
Th.: h1 = 0.38mm; h2 = 0.08mm; 280 rot/min
Th.: h1 = 0.38mm; h2 = 0.08mm; 450 rot/min
Ex.: h1 = 0.4mm; h2 = 0.1mm; 180 rot/min
Ex.: h1 = 0.38mm; h2 = 0.08mm; 280 rot/min
Ex.: h1 = 0.38mm; h2 = 0.08mm; 450 rot/min
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p
(𝜓

)/
p
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.

Figure 10: Pressure distributions in the SATBESPIG with inner
pumping (comparison between the theoretical and experimental
curves). The marked points are those where we performed the
experimental measurements.

the radial step vanishes or when 𝑝
ℎ1
≅ 𝑝
ℎ2
. The case

𝑝
ℎ1

≅ 𝑝
ℎ2

appears only when we do not take into
consideration the inertial effects.

(e) The pressure jump Δ𝑝 depends not only on the
rapport ℎ

1
/ℎ
2
but also on the value of the 𝑛 and on

the bearing geometry (𝑟
𝑖
, 𝑟
𝑐
, and 𝑟

𝑒
).

(f) For the same constructive geometrical and functional
parameters (𝑟

𝑖
, 𝑟
𝑒
, ℎ
1
/ℎ
2
, n,. . .), the SATBESPIG with

exterior pumping gives lower pressures than the
bearing with inner pumping.

(g) The comparative analysis between the theoretical
and experimental results shows good correlation,
especially at low 𝑛 and at middle values for the
rapport ℎ

1
/ℎ
2
(ℎ
1
/ℎ
2
≅ 4). Some of the mathematical

relations established above can be used to approach
the theoretical functionality of the SATBESPIG hav-
ing magnetic controllable fluids (magnetic fluids or
magnetorheological fluids) as incompressible fluids,
in the presence of a controllable magnetic field [18–
20].
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