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Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < 𝑞 < 2,
one adaptive synchronization approach is established.The adaptive synchronization for the fractional-order Lorenz chaotic system
with fractional-order 1 < 𝑞 < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme.

1. Introduction

Fractional-order differential equations can be more accu-
rately described in the real-world physical systems [1–3].
Many fractional-order systems create chaotic attractor. Many
fractional-order chaotic attractors have been reported in
recent years, for example, the fractional-order Lorenz chaotic
attractor [1, 4, 5], the fractional-order Chen chaotic attractor
[5], the fractional-order Lu chaotic attractor [2, 4], the
fractional-order Chua chaotic attractor [5], the fractional-
order Duffing chaotic attractor [6], the fractional-order
Rössler chaotic attractor [7, 8], and so on. On the other hand,
synchronization of chaotic systems has been given more
attention [2, 9–13]. This is due to its applications in the field
of engineering and science. Over the last two decades, many
scholars have proposed various synchronization schemes. It is
well known that many chaotic systems in practical situations
are usually with fully or partially unknown parameters. In
order to estimate the unknownparameters, a synchronization
scheme named adaptive synchronization has been proposed.
Now, the adaptive synchronization [13–16] has attractedmore
and more attention. This is due to its effectiveness in many
practical chaos applications.

However, many adaptive synchronization approaches on
fractional-order chaotic systems reported previously [2, 9–
13] were considered the fractional-order lying in 0 < 𝑞 < 1.
To the best of our knowledge, there are a few results about
adaptive synchronization on fractional-order chaotic systems
with fractional-order 1 < 𝑞 < 2. In fact, there are many
fractional-order systems with fractional-order 1 < 𝑞 < 2

in real-world physical systems, for example, the fractional
diffusion-wave equation [17], the fractional telegraph equa-
tion [18], the time fractional heat conduction equation [19],
and so forth. So, an interesting question is how to realize the
adaptive synchronization for fractional-order lying in 1 < 𝑞 <

2?This question is of practical importance aswell as academic
significance. In this paper, a positive answer is given for the
above question.

Inspired by the above-mentioned discussion, one adap-
tive synchronization approach for a class of fractional-order
chaotic system with 1 < 𝑞 < 2 is established. This approach
is based on a new stability result of equilibrium point in
nonlinear fractional-order systems for fractional-order lying
in 1 < 𝑞 < 2 [1]. The adaptive synchronization for the
fractional-order Lorenz chaotic system with fractional-order
1 < 𝑞 < 2 is considered. Numerical simulations show the
validity and feasibility of the proposed scheme.
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2. Preliminaries and Main Results

In our paper, the 𝑞th Caputo derivative for function 𝑔(𝑡) is
shown as

𝐷
𝑞
𝑔 (𝑡) =

1

Γ (𝑙 − 𝑞)
∫

𝑡

0

𝑔
(𝑙)

(𝜏)

(𝑡 − 𝜏)
𝑞+1−𝑙

𝑑𝜏, 𝑙 − 1 < 𝑞 < 𝑙, (1)

where 𝐷
𝑞 denote the Caputo derivative, 𝑙 is the smallest

integer larger than 𝑞, 𝑔(𝑙)(𝑡) is the 𝑙 th derivative in the usual
sense, and Γ is the gamma function.

Now, consider the following fractional-order chaotic
system:

𝐷
𝑞
𝑥 = 𝑓 (𝑥) = 𝑀𝑥 + 𝑛 (𝑥) , (2)

where fractional-order 1 < 𝑞 < 2, 𝑥 ∈ 𝑅
𝑛×1, and 𝑓(𝑥) ∈ 𝑅

𝑛×1.
𝑀 ∈ 𝑅

𝑛×𝑛 is a constant matrix. 𝑛(𝑥) ∈ 𝑅
𝑛×1 is the nonlinear

part of system (2).
The system (2) can be rewritten as follows:

𝐷
𝑞
𝑥 = 𝐿(

𝑥

𝜎0
) + 𝑛 (𝑥, 𝜎0) , (3)

where 𝜎0 ∈ 𝑅 is the system parameter. 𝑛(𝑥, 𝜎0) ∈ 𝑅
𝑛×1 is the

nonlinear part, and all the terms with system parameter 𝜎0

are contained in 𝑛(𝑥, 𝜎0). 𝐿 ∈ 𝑅
𝑛×(𝑛+1) is a constant matrix,

and matrix element 𝐿 𝑖,𝑛+1 = 0 (𝑖 = 1, 2, . . . , 𝑛).
In this paper, we focus on a class of fractional-order

chaotic system in which the equation 𝑛(𝑦, 𝜎0) − 𝑛(𝑥, 𝜎0) =

𝑛𝑙𝑝(𝑥)(𝑦 − 𝑥) + 𝑛𝑛𝑝(𝑦 − 𝑥, 𝑥) holds. Here, variable 𝑦 ∈ 𝑅
𝑛×1

is real number. Vector 𝑛𝑙𝑝(𝑥)(𝑦 − 𝑥) and vector 𝑛𝑛𝑝(𝑦 −

𝑥, 𝑥) are the linear part and nonlinear part with respect to
(𝑦 − 𝑥), respectively. In fact, the nonlinear term 𝑛(𝑥, 𝜎0) in
many fractional-order chaotic systems meet this equation,
for example, the fractional-order Lorenz chaotic system,
fractional-order Chen chaotic system, fractional-order Lu
chaotic system, fractional-order Rössler chaotic system, the
fractional-order Chua’s chaotic system and its modified
chaotic system, the fractional-order Duffing chaotic system,
the fractional-order Arneodo chaotic system, the fractional-
order Sprott chaotic system, and so forth.

Next, the adaptive synchronization for fractional-order
chaotic system (3) is proposed. Select system (3) as drive
system; the response systems with parameter update law are
shown as follows:

𝐷
𝑞
𝑦 = 𝐿(

𝑦

𝜎
) + 𝑛 (𝑦, 𝜎) + 𝑢 (𝑥, 𝑦, 𝜎) ,

𝐷
𝑞
𝜎 = Ω𝑒,

(4)

where 𝑦 ∈ 𝑅
𝑛×1 is state vector, 𝑢(𝑥, 𝑦, 𝜎) ∈ 𝑅

𝑛×1 is a
controller,Ω ∈ 𝑅

1×(𝑛+1) is real constantmatrix, and parameter
𝜎 is unknown in response system (4). The true value of the
“unknown” parameter 𝜎 is selected as 𝜎0. The parameter
update law is𝐷𝑞𝜎 = Ω𝑒. The adaptive synchronization errors
are 𝑒 = (𝑒1, . . . , 𝑒𝑛, 𝑒𝑛+1)

T
∈ 𝑅
(𝑛+1)×1, 𝑒𝑖 = (𝑦𝑖 − 𝑥𝑖) ∈ 𝑅 (𝑖 =

1, 2, . . . , 𝑛), and 𝑒𝑛+1 = 𝑒𝜎 = (𝜎 − 𝜎0) ∈ 𝑅.

Lemma 1 (see [1]). For the nonlinear part 𝑛(𝑥) of systems (2),
if

(i) 𝑛(𝑥)|𝑥=0 = 0, lim𝑥→0(‖𝑛(𝑥)‖/‖𝑥‖) = 0;

(ii) Re[𝜆(𝑀)] < 0, −max[Re 𝜆(𝑀)] > [Γ(𝑞)]
1/𝑞.

Then, the zero solution of fractional-order chaotic system (2) is
asymptotically stable.

Based on this lemma, the followingmain results are given.

Theorem 2. If the controller is selected as

𝑢 (𝑥, 𝑦, 𝜎) = [𝐹 − 𝑛𝑙𝑝 (𝑥)] 𝑒 (5)

and the following conditions are satisfied:

(i) (
𝑛
𝑛𝑝
(𝑒,𝑥)

0
) |
𝑒=0

= 0, lim𝑒→0(‖ (
𝑛
𝑛𝑝
(𝑒,𝑥)

0
) ‖/‖𝑒‖) = 0 for

any 𝑥,

(ii) Re[𝜆 (
𝐿+𝐹

Ω
)] < 0, −max[Re 𝜆 (

𝐿+𝐹

Ω
)] > [Γ(𝑞)]

1/𝑞,

then the adaptive synchronization between fractional-order
chaotic system (3) and fractional-order system (4) can be
arrived, where 𝑛(𝑦, 𝜎)−𝑛(𝑥, 𝜎0) = 𝑛𝑙𝑝(𝑥)𝑒+𝑛𝑛𝑝(𝑒, 𝑥), 𝑛𝑙𝑝(𝑥) ∈

𝑅
𝑛×(𝑛+1), and 𝑛𝑛𝑝(𝑒, 𝑥) ∈ 𝑅

𝑛×1. 𝐹 ∈ 𝑅
𝑛×(𝑛+1) is a suitable

constant matrix.

Proof. The error system between systems (4) and (3) can be
shown as

𝐷
𝑞
(𝑦 − 𝑥) = 𝐿((

𝑦

𝜎
) − (

𝑥

𝜎0
)) + 𝑛 (𝑦, 𝜎)

− 𝑛 (𝑥, 𝜎0) + 𝑢 (𝑥, 𝑦, 𝜎) .

𝐷
𝑞
𝜎 = Ω𝑒.

(6)

Due to 𝑒 = (𝑒1, . . . , 𝑒𝑛, 𝑒𝑛+1)
T, 𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛),

and 𝑒𝑛+1 = 𝑒𝜎 = (𝜎 − 𝜎0), system (6) can be rewritten as

𝐷
𝑞
(𝑦 − 𝑥) = 𝐿𝑒 + 𝑛 (𝑦, 𝜎) − 𝑛 (𝑥, 𝜎0) + 𝑢 (𝑥, 𝑦, 𝜎) ,

𝐷
𝑞
𝜎 = Ω𝑒.

(7)

Using 𝑛(𝑦, 𝜎) − 𝑛(𝑥, 𝜎0) = 𝑛𝑙𝑝(𝑥)𝑒 + 𝑛𝑛𝑝(𝑒, 𝑥), 𝐷
𝑞
𝜎0 = 0,

and 𝐷
𝑞
𝜎 = 𝐷

𝑞
(𝜎 − 𝜎0) = 𝐷

𝑞
𝑒𝜎, error system (7) can be

changed as

𝐷
𝑞
(𝑦 − 𝑥) = 𝐿𝑒 + 𝑛𝑙𝑝 (𝑥) 𝑒 + 𝑛𝑛𝑝 (𝑒, 𝑥) + 𝑢 (𝑥, 𝑦, 𝜎) ,

𝐷
𝑞
𝑒𝜎 = Ω𝑒.

(8)

Since 𝑢(𝑥, 𝑦, 𝜎) = [𝐹−𝑛𝑙𝑝(𝑥)]𝑒 and 𝑒 = (𝑒1, . . . , 𝑒𝑛, 𝑒𝑛+1)
T,

therefore, (8) can be changed as

𝐷
𝑞
𝑒 = (

𝐿 + 𝐹

Ω
) 𝑒 + (

𝑛𝑛𝑝 (𝑒, 𝑥)

0
) . (9)
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Figure 1: The attractor of fractional-order Lorenz system (12) for 𝑞 = 1.05.

Due to (
𝑛
𝑛𝑝
(𝑒,𝑥)

0
) |
𝑒=0

= 0, lim𝑒→0(‖ (
𝑛
𝑛𝑝
(𝑒,𝑥)

0
) ‖/‖𝑒‖) =

0 for any 𝑥, Re[𝜆 (
𝐿+𝐹

Ω
)] < 0, and −max[Re 𝜆 (

𝐿+𝐹

Ω
)] >

[Γ(𝑞)]
1/𝑞. According to the above-mentioned lemma, the

zero solution of fractional-order system (9) is asymptotically
stable. So, the following result holds:

lim
𝑡→+∞

‖𝑒‖ = 0. (10)

It implies the following:

lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 = 0, lim

𝑡→+∞
(𝜎 − 𝜎0) = 0. (11)

Therefore, the adaptive synchronization between
fractional-order chaotic system (3) and fractional-order
system (4) can be arrived. The proof is completed.

3. Illustrative Example

In this section, to show the effectiveness of the adaptive
synchronization approach in this paper, the adaptive syn-
chronization for the fractional-order Lorenz chaotic system
[4] with fractional-order 1 < 𝑞 < 2 is considered. Numerical
simulations show the validity and feasibility of the proposed
scheme.

The fractional-order Lorenz system is described by

(

𝐷
𝑞
𝑥1

𝐷
𝑞
𝑥2

𝐷
𝑞
𝑥3

) = (

𝑎0 (𝑥2 − 𝑥1)

𝑏0𝑥1 − 𝑥2 − 𝑥1𝑥3

𝑥1𝑥2 − 𝑐0𝑥3

) , (12)

where 𝑎0, 𝑏0, and 𝑐0 are system parameters. Let 𝑎0 = 10, 𝑏0 =
28, 𝑐0 = 8/3, and 𝑞 = 1.05; the system (12) creates chaotic
attractor. The chaotic attractor is shown in Figure 1.

Case 1 (parameter 𝑎 is unknown in response system). Now,
assume the system parameter 𝑎 in in response system is
the unknown parameter. The true value of the “unknown”
parameter 𝑎 is selected as 𝑎0.

The fractional-order Lorenz system (12) can be rewritten
as

(

𝐷
𝑞
𝑥1

𝐷
𝑞
𝑥2

𝐷
𝑞
𝑥3

) = (

0 0 0 0

28 −1 0 0

0 0 −
8

3
0

)(

𝑥1

𝑥2

𝑥3

𝑎0

)

+ (

𝑎0 (𝑥2 − 𝑥1)

−𝑥1𝑥3

𝑥1𝑥2

) ,

(13)

where 𝑎0 = 10.
So

𝐿 = (

0 0 0 0

28 −1 0 0

0 0 −
8

3
0

) . (14)

According to Section 2, the response system with
unknown parameter 𝑎 can be given as

(

𝐷
𝑞
𝑦1

𝐷
𝑞
𝑦2

𝐷
𝑞
𝑦3

) = (

0 0 0 0

28 −1 0 0

0 0 −
8

3
0

)(

𝑦1

𝑦2

𝑦3

𝑎

)

+ (

𝑎 (𝑦2 − 𝑦1)

−𝑦1𝑦3

𝑦1𝑦2

) + (𝐹 − 𝑛𝑙𝑝 (𝑥))(

𝑒1

𝑒2

𝑒3

𝑒𝑎

)

(15)

and the parameter update law is

𝐷
𝑞
𝑎 = Ω(𝑒1 𝑒2 𝑒3 𝑒𝑎)

T
. (16)

It is easy to obtain the following:

(

𝑎 (𝑦2 − 𝑦1)

−𝑦1𝑦3

𝑦1𝑦2

) − (

𝑎0 (𝑥2 − 𝑥1)

−𝑥1𝑥3

𝑥1𝑥2

)

= (

−𝑎0 𝑎0 0 𝑥2 − 𝑥1

−𝑥3 0 −𝑥1 0

𝑥2 𝑥1 0 0

)(

𝑒1

𝑒2

𝑒3

𝑒𝑎

)

+ (

𝑒𝑎 (𝑒2 − 𝑒1)

−𝑒1𝑒3

𝑒1𝑒2

) .

(17)
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So

𝑛𝑙𝑝 (𝑥) = (

−𝑎0 𝑎0 0 𝑥2 − 𝑥1

−𝑥3 0 −𝑥1 0

𝑥2 𝑥1 0 0

) ,

𝑛𝑛𝑝 (𝑒, 𝑥) = (

𝑒𝑎 (𝑒2 − 𝑒1)

−𝑒1𝑒3

𝑒1𝑒2

) .

(18)

Now, it is easy to verify the following:

󵄩󵄩󵄩󵄩󵄩
(
𝑛
𝑛𝑝
(𝑒,𝑥)

0
)
󵄩󵄩󵄩󵄩󵄩

‖𝑒‖

= √
𝑒
2

𝑎
(𝑒2 − 𝑒1)

2
+ (𝑒1𝑒3)

2
+ (𝑒1𝑒2)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑎

≤ √
𝑒
2

𝑎
(
󵄨󵄨󵄨󵄨𝑒2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨)
2
+ (𝑒1𝑒3)

2
+ (𝑒1𝑒2)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑎

= √
𝑒
2

𝑎
(
󵄨󵄨󵄨󵄨𝑒2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨)
2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑎

+
(𝑒1𝑒3)

2
+ (𝑒1𝑒2)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑎

≤ √
𝑒
2

𝑎
(
󵄨󵄨󵄨󵄨𝑒2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨)
2

𝑒
2
𝑎

+
(𝑒1𝑒3)

2
+ (𝑒1𝑒2)

2

𝑒
2

1

= √(
󵄨󵄨󵄨󵄨𝑒2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨)
2
+ (𝑒2)

2
+ (𝑒3)

2
,

lim
𝑒→0

󵄩󵄩󵄩󵄩󵄩
(
𝑛
𝑛𝑝
(𝑒,𝑥)

0
)
󵄩󵄩󵄩󵄩󵄩

‖𝑒‖

≤ lim
𝑒→0

√(
󵄨󵄨󵄨󵄨𝑒2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨)
2
+ (𝑒2)

2
+ (𝑒3)

2
= 0,

(
𝑛𝑛𝑝 (𝑒, 𝑥)

0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒=0

= 0.

(19)

Therefore, the first condition in the above-mentioned
theorem holds.

Now, choose suitable real constant matrix Ω ∈ 𝑅
1×𝑛 and

𝐹 ∈ 𝑅
𝑛×(𝑛+1) such that

Re [𝜆(
𝐿 + 𝐹

Ω
)] < 0,

−max [Re 𝜆(
𝐿 + 𝐹

Ω
)] > [Γ (𝑞)]

1/𝑞
.

(20)

So the second condition in the above-mentioned theorem
holds. According to the theorem in Section 2, the adaptive
synchronization between drive system (13) and response
system (15) with parameter update law (16) can be achieved.

For example, let 𝐹 = (
−1 0 0 0
−28 0 0 0
0 0 0 0

) and Ω = (0 0 0 −1).

So (
𝐿+𝐹

Ω
) = (

−1 0 0 0
0 −1 0 0

0 0 −8/3 0

0 0 0 −1

). Therefore, 𝜆𝑖 = −1 (𝑖 = 1, 2, 3),
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Figure 2: Simulation results of the adaptive synchronization for the
fractional-order Lorenz chaotic system.

𝜆4 = −8/3, and −max[Re 𝜆 (
𝐿+𝐹

Ω
)] = 1 > [Γ(𝑞)]

1/𝑞
= 0.9722,

respectively. Simulation results are shown in Figure 2. Here,
𝑎(0) = 7, and all the initial conditions in this paper are
(𝑥10, 𝑥20, 𝑥30) = (10, 20, 30), and (𝑦10, 𝑦20, 𝑦30) = (1, 2, 5),
respectively.

Case 2 (parameter 𝑏 is unknown in response system). Now,
assume that the system parameter 𝑏 in response system is
the unknown parameter. The true value of the “unknown”
parameter 𝑏 is selected as 𝑏0.

The fractional-order Lorenz system (12) can be rewritten
as

(

𝐷
𝑞
𝑥1

𝐷
𝑞
𝑥2

𝐷
𝑞
𝑥3

) = (

−10 10 0 0

0 −1 0 0

0 0 −
8

3
0

)(

𝑥1

𝑥2

𝑥3

𝑏0

) + (

0

𝑏0𝑥1 − 𝑥1𝑥3

𝑥1𝑥2

) ,

(21)

where 𝑏0 = 28.
So

𝐿 = (

−10 10 0 0

0 −1 0 0

0 0 −
8

3
0

) . (22)
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According to Section 2, the response system with
unknown parameter 𝑏 can be given as

(

𝐷
𝑞
2𝑦1

𝐷
𝑞
2𝑦2

𝐷
𝑞
2𝑦3

) = (

−10 10 0 0

0 −1 0 0

0 0 −
8

3
0

)(

𝑦1

𝑦2

𝑦3

𝑏

)

+ (

0

𝑏𝑦1 − 𝑦1𝑦3

𝑦1𝑦2

) + (𝐹 − 𝑛𝑙𝑝 (𝑥))(

𝑒1

𝑒2

𝑒3

𝑒𝑏

)

(23)

and the parameter update law is

𝐷
𝑞
𝑏 = Ω(𝑒1 𝑒2 𝑒3 𝑒𝑏)

T
. (24)

It is easy to obtain the following:

(

0

𝑏𝑦1 − 𝑦1𝑦3

𝑦1𝑦2

) − (

0

𝑏0𝑥1 − 𝑥1𝑥3

𝑥1𝑥2

)

= (

0 0 0 0

𝑏0 − 𝑥3 0 −𝑥1 0

𝑥2 𝑥1 0 0

)(

𝑒1

𝑒2

𝑒3

𝑒𝑏

)

+ (

0

−𝑒1𝑒3 + 𝑒𝑏𝑒1

𝑒1𝑒2

) .

(25)

So

𝑛𝑙𝑝 (𝑥) = (

0 0 0 0

𝑏0 − 𝑥3 0 −𝑥1 0

𝑥2 𝑥1 0 0

) ,

𝑛𝑛𝑝 (𝑒, 𝑥) = (

0

−𝑒1𝑒3 + 𝑒𝑏𝑒1

𝑒1𝑒2

) .

(26)

Now, it is easy to verify the following:

󵄩󵄩󵄩󵄩󵄩
(
𝑛
𝑛𝑝
(𝑒,𝑥)

0
)
󵄩󵄩󵄩󵄩󵄩

‖𝑒‖

= √
(−𝑒1𝑒3 + 𝑒𝑏𝑒1)

2
+ (𝑒1𝑒2)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2

𝑏

≤ √
(
󵄨󵄨󵄨󵄨𝑒3

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒𝑏

󵄨󵄨󵄨󵄨)
2
𝑒
2

1
+ (𝑒1𝑒2)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2

𝑏

≤ √
(
󵄨󵄨󵄨󵄨𝑒3

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒𝑏

󵄨󵄨󵄨󵄨)
2
𝑒
2

1
+ (𝑒1𝑒2)

2

𝑒
2

1

= √(
󵄨󵄨󵄨󵄨𝑒3

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒𝑏

󵄨󵄨󵄨󵄨)
2
+ (𝑒2)

2
,
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Figure 3: Simulation results of the adaptive synchronization for the
fractional-order Lorenz chaotic system.

lim
𝑒→0

󵄩󵄩󵄩󵄩󵄩
(
𝑛
𝑛𝑝
(𝑒,𝑥)

0
)
󵄩󵄩󵄩󵄩󵄩

‖𝑒‖
≤ lim
𝑒→0

√(
󵄨󵄨󵄨󵄨𝑒3

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑒𝑏

󵄨󵄨󵄨󵄨)
2
+ (𝑒2)

2
= 0,

(
𝑛𝑛𝑝 (𝑒, 𝑥)

0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒=0

= 0.

(27)

Therefore, the first condition in the above-mentioned theo-
rem holds.

Now, choose suitable real constant matrix Ω ∈ 𝑅
1×𝑛 and

𝐹 ∈ 𝑅
𝑛×(𝑛+1) such that

Re [𝜆(
𝐿 + 𝐹

Ω
)] < 0,

−max [Re 𝜆(
𝐿 + 𝐹

Ω
)] > [Γ (𝑞)]

1/𝑞
.

(28)

So the second condition in the above-mentioned theorem
holds. According to the theorem in Section 2, the adaptive
synchronization between drive system (21) and response
system (23) with parameter update law (24) can be achieved.

For example, let 𝐹 = (
0 0 0 0
−10 0 0 0
0 0 0 0

) and Ω = (0 0 0 −1).

So (
𝐿+𝐹

Ω
) = (

−10 10 0 0
−10 −1 0 0

0 0 −8/3 0

0 0 0 −1

). Therefore, 𝜆± = −5.5 ± 8.9303𝑗,

𝜆3 = −8/3, 𝜆4 = −1, and −max[Re 𝜆 (
𝐿+𝐹

Ω
)] = 1 >

[Γ(𝑞)]
1/𝑞

= 0.9722, respectively. Simulation results are shown
in Figure 3. Here, 𝑏(0) = 10.

Case 3 (parameter 𝑐 is unknown in response system). Now,
assume that the system parameter 𝑐 in response system is
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the unknown parameter. The true value of the “unknown”
parameter 𝑐 is selected as 𝑐0.

The fractional-order Lorenz system (12) can be rewritten
as

(

𝐷
𝑞
𝑥1

𝐷
𝑞
𝑥2

𝐷
𝑞
𝑥3

) = (

−10 10 0 0

28 −1 0 0

0 0 0 0

)(

𝑥1

𝑥2

𝑥3

𝑐0

) + (

0

−𝑥1𝑥3

𝑥1𝑥2 − 𝑐0𝑥3

) .

(29)

So

𝐿 = (

−10 10 0 0

28 −1 0 0

0 0 0 0

) . (30)

According to Section 2, the response system is given as

(

𝐷
𝑞
𝑦1

𝐷
𝑞
𝑦2

𝐷
𝑞
𝑦3

) = (

−10 10 0 0

28 −1 0 0

0 0 0 0

)(

𝑦1

𝑦2

𝑦3

𝑐

)

+ (

0

−𝑦1𝑦3

𝑦1𝑦2 − 𝑐𝑦3

) + (𝐹 − 𝑛𝑙𝑝 (𝑥))(

𝑒1

𝑒2

𝑒3

𝑒𝑐

)

(31)

and the parameter update law is

𝐷
𝑞
𝑐 = Ω(𝑒1 𝑒2 𝑒3 𝑒𝑐)

T
. (32)

It is easy to obtain the following:

(

0

−𝑦1𝑦3

𝑦1𝑦2 − 𝑐𝑦3

) − (

0

−𝑥1𝑥3

𝑥1𝑥2 − 𝑐0𝑥3

)

= (

0 0 0 0

−𝑥3 0 −𝑥1 0

𝑥2 𝑥1 −𝑐0 −𝑥3

)(

𝑒1

𝑒2

𝑒3

𝑒𝑐

)

+ (

0

−𝑒1𝑒3

𝑒1𝑒2 − 𝑒𝑐𝑒3

) .

(33)

So

𝑛𝑙𝑝 (𝑥) = (

0 0 0 0

−𝑥3 0 −𝑥1 0

𝑥2 𝑥1 −𝑐0 −𝑥3

) ,

𝑛𝑛𝑝 (𝑒, 𝑥) = (

0

−𝑒1𝑒3

𝑒1𝑒2 − 𝑒𝑐𝑒3

) .

(34)

Now, it is easy to verify the following:
󵄩󵄩󵄩󵄩󵄩
(
𝑛
𝑛𝑝
(𝑒,𝑥)

0
)
󵄩󵄩󵄩󵄩󵄩

‖𝑒‖

= √
(𝑒1𝑒2 − 𝑒𝑐𝑒3)

2
+ (𝑒1𝑒3)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑐

≤ √
(
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨)
2
+ (𝑒1𝑒3)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑐

= (
2
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑐

+
(𝑒𝑐𝑒3)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑐

+
(𝑒1𝑒2)

2
+ (𝑒1𝑒3)

2

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑐

)

1/2

≤ √
2
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑐

+
(𝑒𝑐𝑒3)

2

𝑒
2
𝑐

+
(𝑒1𝑒2)

2
+ (𝑒1𝑒3)

2

𝑒
2

1

= √
2
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2
𝑐

+ 2𝑒
2

3
+ 𝑒
2

2

≤ √
2
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨 + 2

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

+ 2𝑒
2

3
+ 𝑒
2

2

= √(
1

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

+
1

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨

)

−1

+ 2𝑒
2

3
+ 𝑒
2

2
,

lim
𝑒→0

󵄩󵄩󵄩󵄩󵄩
(
𝑛
𝑛𝑝
(𝑒,𝑥)

0
)
󵄩󵄩󵄩󵄩󵄩

‖𝑒‖

≤ lim
𝑒→0

√(
1

󵄨󵄨󵄨󵄨𝑒3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒𝑐
󵄨󵄨󵄨󵄨

+
1

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨

)

−1

+ 2𝑒
2

3
+ 𝑒
2

2
= 0,

(
𝑛𝑛𝑝 (𝑒, 𝑥)

0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒=0

= 0.

(35)

Therefore, the first condition in the above-mentioned theo-
rem holds.

Now, choose suitable real constant matrix Ω ∈ 𝑅
1×𝑛 and

𝐹 ∈ 𝑅
𝑛×(𝑛+1) such that

Re [𝜆(
𝐿 + 𝐹

Ω
)] < 0,

−max [Re 𝜆(
𝐿 + 𝐹

Ω
)] > [Γ (𝑞)]

1/𝑞
.

(36)

So, the second condition in the above-mentioned theorem
holds. According to the theoremin Section 2, the adaptive
synchronization between drive system (29) and response
system (31) with parameter update law (32) can be achieved.
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Figure 4: Simulation results of the adaptive synchronization for the
fractional-order Lorenz chaotic system.

For example, let 𝐹 = (
0 0 0 0
−38 0 0 0
0 0 −1 0

) and Ω = (0 0 0 −1).

So (
𝐿+𝐹

Ω
) = (

−10 10 0 0
−10 −1 0 0
0 0 −1 0
0 0 0 −1

). Therefore, 𝜆𝑖 = −1 (𝑖 = 1, 2),

𝜆± = −5.5 ± 8.9303𝑗, and −max[Re 𝜆 (
𝐿+𝐹

Ω
)] = 1 >

[Γ(𝑞)]
1/𝑞

= 0.9722, respectively. Simulation results are shown
in Figure 4. Here, 𝑐(0) = 10.

4. Conclusions

One adaptive synchronization scheme for a class of
fractional-order chaotic system with fractional-order
1 < 𝑞 < 2 is suggested in this paper. This synchronization
approach is based on a new stability result of equilibrium
point in nonlinear fractional-order systems for fractional-
order lying in 1 < 𝑞 < 2. In order to verify the effectiveness
of the adaptive synchronization approach, the adaptive
synchronization for the fractional-order Lorenz chaotic
system with fractional-order 1 < 𝑞 < 2 is considered.
Numerical simulations show the validity and feasibility of
the proposed scheme.The current results in this paper can be
extended to several unknown parameters of the fractional-
order chaotic systems. Moreover, this synchronization
approach can be applied to other fractional-order chaotic
systems.
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