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We investigate the existence of the periodic solutions of a nonlinear integro-differential system with piecewise alternately advanced
and retarded argument of generalized type, in short DEPCAG; that is, the argument is a general step function. We consider the
critical case, when associated linear homogeneous system admits nontrivial periodic solutions. Criteria of existence of periodic
solutions of such equations are obtained. In the process we use Green’s function for periodic solutions and convert the given
DEPCAG into an equivalent integral equation. Then we construct appropriate mappings and employ Krasnoselskii’s fixed point
theorem to show the existence of a periodic solution of this type of nonlinear differential equations. We also use the contraction
mapping principle to show the existence of a unique periodic solution. Appropriate examples are given to show the feasibility of

our results.

1. Introduction

Among the functional differential equations, Myshkis [1] pro-
posed to study differential equations with piecewise constant
arguments: DEPCA. The theory of scalar DEPCA of the type

% = f(t,x(t),x(}’(t)))’
1)

y®O =11 or y(t>=z[%],

where [-] signifies the greatest integer function, was initiated
in [2-4], in Wiener [5], the first book in DEPCA, and has been
developed by many authors [6-21]. Applications of DEPCA
are discussed in [5, 22-25]. They are hybrid equations; they
combine the properties of both continuous systems and
discrete equations. Over the years, great attention has been
paid to the study of the existence of periodic solutions of
several different types of differential equations. For specific
references see [5-7, 13,17, 18, 23, 24, 26-34].

Let Z, N, R, and C be the set of all integers, natural, real,
and complex numbers, respectively. Denote by | - | a norm in
R", n € N. Fix two real sequences t;, ¥,, i € Z, such that

i < iy
i — too.

Lety : R — R be a step function given by y(t) = y, for
t € I, = [t;,t;,,) and consider the DEPCA (1) with this general
y. In this case we speak of DEPCA of general type, in short
DEPCAG. Indeed, y(t) = [t] correspondstoy; =t; =i € Z,
and y(t) = 2[(t + 1)/2] corresponds to t; = 2i — 1, y; = 2i,
i € Z. The particular case of DEPCAG, when y; = t;, i €
Z, an only delayed situation, is considered by first time in
Akhmet [8]. The other extreme case is the only advanced
situation y; = t;,;. Any other situation means an alternately
advanced and delayed situation with I]” = [¢;, ;] the advanced
intervals and I = [y;,¢;,,) the delayed intervals. In [15, 16],
Pinto has cleared the importance of the advanced and delayed
intervals. This decomposition will be present in all our results.
See [12, 13, 15, 16, 23, 24, 35]. The integration or solution
of a DEPCA, as proposed by its founders [2-4, 6], is based
on the reduction of DEPCA to discrete equations. To study
nonlinear DEPCAG, we will use the approach proposed by
Akhmet in [9], based on the construction of an equivalent
integral equation, but we also remark the clear influence of
the discrete part and the corresponding difference equations
will be fundamental.

andt; <y, < t;,, foralli € Z,and t; — o0 as



In 2008, Akhmet et al. [10] obtained some sufficient
conditions for the existence and uniqueness of periodic
solutions for the following system:

X =AOxE)+h(t)+ug(txt),x(y®),u), (2)

whereA:R —» R™ h:R — R,and g: RxR"xR"XI —
R" are continuous functions, y(t) = ¢; if t; < t < t;,1, and p is
a small parameter belonging to an interval I ¢ R with 0 € I.

Recently, Chiu and Pinto [23], using Poincaré operator, a
new Gronwall type lemma and fixed point theory, obtained
some sufficient conditions for the existence and uniqueness
of periodic (or harmonic) and subharmonic solutions of
quasilinear differential equation with a general piecewise
constant argument of the form

YO =AY+ f(ty®),y(y®)), (3)

wheret € R, y € CF, A(t) is a p x p matrix for p € N,
f(t,x, y) is a p dimensional vector and f is continuous in
the first argument, and y(t) = y,, ift; < t < t;,;,i € Z.
In this paper, comparing the three DEPCAG inequalities of
Gronwall type and remarked new Gronwall lemma not only
requests a weaker condition than the other Gronwall lemmas
but also has a better estimate.

It is well-known that there are many subjects in physics
and technology using mathematical methods that depend on
the linear and nonlinear integro-differential equations, and
it became clear that the existence of the periodic solutions
and its algorithm structure from more important problems
in the present time. Where many of studies and researches
[36-40] dedicates for treatment the autonomous and non-
autonomous periodic systems and specially with the integral
equations and differential equations and the linear and
nonlinear differential and which is dealing in general shape
with the problems about periodic solutions theory and the
modern methods in its quality treatment for the periodic
differential equations.

Samoilenko and Ronto [41] assume the numerical-
analytic method to study the periodic solutions for ordinary
differential equations and its algorithm structure and this
method includes uniform sequences of periodic functions
and the results of that study are using the periodic solutions
on wide range in the difference of new processes industry and
technology. For example, Samoilenko and Ronto [41] inves-
tigated the existence and approximation of periodic solution
for nonlinear system of integro-differential equations which
has the form

L= f <t,x ®), LHT 9(5,%(s)) ds) @

where x € D ¢ R"; D is a closed and bounded domain.
The vectors functions f(t,x, y) and g(t, x) are continuous
functions in t, x, y and periodic in ¢ of period T.

Butris [42] investigated the periodic solution of nonlinear
system of integro-differential equations depending on the
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gamma distribution, by using the numerical analytic method,
which has the form

t+T

X (t) = f<t,ﬁ(t,a),x(t),Jt g(s,[a’(s,cx),x(s))ds),

teR,
(5)

where x € D ¢ R"; D is a closed and bounded domain. The
vector functions f (¢, B(t, @), x) and g(t, B(t, «), x) are defined
on the domain (t, f(t, ), x) € R x [0,T] x D x Dj.

In the current paper, we study the existence of periodic
solutions of a nonlinear integro-differential system with
piecewise alternately advanced and retarded argument:

t+w

Z) =AMzt +f <t,z OB L C(t,s,z(y(9)) ds)

+g(tz(t),z(y®)), teR,

(6)

where A : R - R™, f: RxR"xR" — R" and
g : RxR"xR" — R"are continuous in their respective
arguments. In the analysis we use the idea of Green’s function
for periodic solutions and convert the nonlinear integro-
differential systems with DEPCAG (6) into an equivalent
integral equation. Then we employ Krasnoselskii’s fixed point
theorem and show the existence of a periodic solution of the
nonlinear integro-differential systems with DEPCAG (6) in
Theorem 12. We also obtain the existence of a unique periodic
solution in Theorem 14 employing the contraction mapping
principle as the basic mathematical tool. Furthermore, appro-
priate examples are given to show the feasibility of our results.

In our paper we assume that the solutions of the nonlinear
integro-differential systems with DEPCAG (6) are continu-
ous functions. But the deviating argument y(t) is discontin-
uous. Thus, in general, the right-hand side of the DEPCAG
system (6) has discontinuities at momentst; € R, i € Z. Asa
result, we consider the solutions of the DEPCAG as functions,
which are continuous and continuously differentiable within
intervals [t;,t;,,), i € Z. In other words, by a solution z(t)
of the DEPCAG system (6) we mean a continuous function
on R such that the derivative z'(t) exists at each point ¢ €
R, with the possible exception of the points ¢; € R, i €
Z, where a one-sided derivative exists, and the nonlinear
integro-differential systems with DEPCAG (6) are satisfied by
z(t) on each interval (t,,¢,,1), i € Z as well.

The rest of the paper is organized as follows. In Section 2,
some definitions and preliminary results are introduced. We
show double w-periodicity of Green’s function. Section 3 is
devoted to establishing some criteria for the existence and
uniqueness of periodic solutions of the DEPCAG system (6).
Green’s function and Banach, Schauder, and Krasnoselskii’s
fixed point theorems below are fundamental to obtain the
main results. Furthermore, appropriate examples are pro-
vided in Section 4 to show the feasibility of our results.
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2. Green’s Function and Periodicity

In this section we state and define Green’s function for peri-
odic solutions of the nonlinear integro-differential system
with piecewise alternately advanced and retarded argument
(6).

Let I be the n x n identity matrix. Denote by
(t,s), O(s,s) = I, t,s € R, the fundamental matrix
of solutions of the homogeneous system (7).

For every t € R, leti = i(t) € Z be the unique integer
suchthatt € I, = [t;,t;,,).

From now on the following assumption will be needed.

(N,) The homogenous equation

Yy () =A@y 7)

does not admit any nontrivial w-periodic solution.

Remark 1. For 7 € R, the condition (N,) equivalent to the
matrix (I — ®(1 + w, 7)) is nonsingular.

Now, we solve the DEPCAG system (6) on [, =
[tiey Licya1):

t+w

Z' @) = A(t)z(t)+f<t,z(t),J; C(tysz(y (s)))ds)

+g(tz1),2(Viw))>  t € [ty tiy) s

(8)
which has the solution given by

z(t) =D (t, 1)z (1)

T s

+ Jt D(t,5) [f (S’Z (s), rmﬁ Cls .z (yiw)) du

i(s+w)—1 tir
+ Z J C(s,u,z(y))du

k=i(t)+1 “tk

Sstw
+ L C (st 2 (Yigsra))) d”)

i(s+w)

+g (5’ z(s),z (Yi(—,))) ] ds.
)

Fort — tj;); in (9), we have

z (ti(‘r)+1) = (ti(‘r)+l’ T) z (T)

Litr)+1
w7 e

T

3
Litry+1
X [f (s,z(s),J- C (81,2 (yin))) du
i(stw)-1 <t
+ Z J C(s,u,z(y)) du
k=i(t)+1 “tk
[ et i)
ti(sﬂv)
+9(5,2(5),z (¥in))) ] ds
(10)

and in general, by induction, for any i(t) > i(1),

z(t) =D (t, 1)z (1)

titry+1
+ J O (t,s)

T

x [f <s, z(s), J':MM C (5,12 (yin))) du

i(stw)—1 st
+ Z J C(s,u,z(y)) du

k=i(t)+1 1tk

stw
+ L C (51,2 (Yicsew)) d“)

i(s+w)

+9(52(),2 () | ds

L0
+ ) J O (t,s)

j=i(r)+1 VL

<[ (520" o () du

N

i(stw)—1 st
+ Z J C(s,u,z(y))du

k=j+1 tx

Stw
+ J; C (S, u,z (Yi(s+w))) du)

i(s+w)

+g (s,z (s),z (yj)) ] ds

o] wen[s(se [ s

i(t) S

i(s+w)-1

+ Z jtm C(s,u,z(y))du

k=i(t)+1 &

stw
+ j C(S’ u’z())i(sﬂu)))du)

ti(s+w)

9 ($> z(s),z (Yi(t))) :| ds.
(11)



On the other hand, one can easily see that

t
[[az.2 (s

Liteyn
- J g(s,z(s),z(y,-(T)))dS

T

1)-1

i Lin
+ Z J g(s,z(s),z(yj))ds

j=i(r)+1 7t

+ J; g(sz(s),z (yi(t))) ds.

i(t)
(12)

Then, any solution of the DEPCAG system (6) with the initial
condition z(7) = & can be written as

z() =D (1)

+ JtCD(t,s)

T

«|f (520 [ Clame ) )

N

+9(s,2(5),2(y(s)) ] ds, TER.
13)

Amongst these solutions, that one will be w-periodic, for
which z(7) = & = z(7 + w); by the condition (N,) and using
(13) we get

E=I-0(t+w1) "

T+w
xj O(1+w,s)

T (14)

| (520 [ Clme o) )

s

+g(s,2(s),z(y(9))) ] ds.
A substitution of (14) into (13) yields
zO) =0t I-P(T+w1) "

X {Jﬂw@(rﬂu,s)

T

<[r(sz0. [ clumzGua)

+(52(,2 () | ]
+ J: @ (t,5) [f (s,z (), Lm} C(s,u,z(yw)) du>

19 (s,2(5),2(y(s))) ] ds.
15)
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It is easy to check the following identity using properties of
the function ®(t):

' I-D(T+w1) (1 +w)
(16)

= (07 (r+w) (1) -1)

It follows that

z(t) = jt (1) (I +(@ ' r+w @) - 1)*1) O(s) ™!
X [f (s,z (s), Js ‘ C(s,u,z(yw)) du)
+9(52(9,2 () | ds

+ Jw O 1)(O7 (r+@) D) -1) D7 (s)

x [f (s,z ©.[ cluzw) du)

+9(52(5),2 (y(5)) ] ds.
17)

In such a case the DEPCAG system (6) has w-periodic
solution z(t) given by the integral equation (17). Before
studying the existence of solutions of integral equation (17)
in the next section, firstly, we define Green’s function for
periodic solutions of the DEPCAG system (6).

Definition 2. Suppose that the condition (N ) holds. For each
t,s € [1,7 + w], Greens function for (6) is given by

-1
Gts) = <D(t)(I+_11))<D (s), T<s<t<T+w, 18)
O (t) DO (s), T<t<s<T+w,
where @(t) is a fundamental solution of (7) and
_ -1
D=((0" M@ +w) 1—1) . (19)

We note that the condition (N,) implies the existence of
the matrix D.

To prove double w-periodicity of Green’s function G(%, s),
we first give the following lemma.

Lemma 3. Suppose that the condition (N,) holds. Let the
matrix D be defined by (19), and then one has the following
identities:

I+D)= (0 M P (r+w) D
p— — 71 _1
=(I-o"'(mo(r+w) , 0

Q) DO (t+w)— D) DO (t) =1,

(I+D)®O ' (1-w)® (1) =D.
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For Lemma 3 we can prove an important property, double
w-periodicity, of Greens function G(t,s) to study after the
existence of periodic solutions.

Lemma 4. Suppose that the condition (N,) holds. Then
Green’s function G(t, s) is double w-periodic; that is, G(t + w, s+
w) = G(t, s).

3. Existence of Periodic Solutions

In this section, we prove the main theorems of this paper,
so we recall the nonlinear integro-differential systems with
DEPCAG (6):

2 () = A(t)z(t)+f<t,z(t),J; Cltsz(y (s)))ds)

g(tz(),z(y®)), teR.
(21)
For this, a natural Banach space is
P, ={¢: R — R"| ¢ is w-periodic
(22)
continuous function}
with the supremum norm
lzll = sup |z (6)] = sup |z (¢)].
teR te[r,7+w] (23)

Consider f: RxR"xR" - R"and g: RxR"xR" —
R” are continuous functions. Moreover, we will refer to the
following specific conditions.

Continuous Condition

(C)LetR>0,t,s€ Rand y;, ¥, € R, |yl <R, i =1,2.

For any € > 0 there exist § > 0 and A : R? > [0,00)
a function such that |y, — y,| < & implies
|IC(t,s, ) - C(t,s, 3)| <€r(t,s), tseR,  (24)
where sup, g 'Lﬁw Alt, s)ds = A
Lipschitz Conditions
(L) There exists a continuous function A : R? — [0,00)

such thatt, s € R and for any y,, ¥, € R" we have
IC(ts ) =Cltss )| <AEs) [y = 3| (25

Moreover,  sup,.g J;Hw At, s)ds = A and

t -
sup,eg [, 1C(t, 5, 0)lds =

(Lf) Fort € Rand x|, y;, x,, ¥, € R", there exist functions
p1> P2 R — [0, 00) such that

|f (tx0, 31) = f (£ %5 )]
< pL@®) x5+ py () [y = 3o

(26)

5
Moreover, & = maxtGRIf(t, 0,0)|,
J [Pl (s) + Ap, (S)] ds<L,
m=A- max lp, )], (27)

telr,T+w]

weR,, TeR.

(L,) Fort € Randxy, y;, x,, , € R, there exist functions
v}, U, : R — [0, 00) such that

|9 (t> xl’yl) -9 (t’ sz’z)l
(28)

< (t) |x1 —x2| + U, (¢) |}’1 —)’2|-

Moreover, 8 = maxt€R|g(t, 0,0)| and

JHw [ () +v,(s)]ds<L,, weR,, TeR. (29

T

Invariance Conditions

(M) For every R > 0,t,s € R, |y| < R, there exist A, h :

R* — [0,c0) functions and positive constants A, h
for which
IC(ts, y)| <At 9)|y|+h(ts), (30)

where sup, g Ltm A(t, s)ds = A and sup,.p JtHw h(t,s)ds = h

(Mf) For every R > 0,t € R, |x|,|yl < R, there exist
functions m,, m, R — [0,00) and positive
constants p;, C;, #, for which

|f (tx, y)| <my () |x] +my (8) |y| + py> (31)

where Lﬂw[ml(s) + sz(s)]ds <

MaAXye(r 4] My(H), 0 € R, T €R.

C, and , = h -

(Mg) For every R > 0,t € R, |x|,|y] < R, there exist
functions x,, x, : R — [0, co) and positive constants
p,» C, for which

g (t, %, y)| <1 (0) 1x] + 1, () || + pos (32)

where ["“[k,(s) + ky(s9)ds < Cpw € R,, T €R.

Periodic Conditions
(P) There exists w > 0 such that

(1) A(t), f(t,x, y1), and g(t, x,, y,) are periodic
functions in t with a period w for all t > 7;

(2) C(t + w, s + w, x1) = C(t, s, x,) forall t > 7;



(3) there exists p € Z*, for which the sequences
{t:}icr :}icp satisfy the (w, p) condition; that
is,

tip =t + @, forieZ.  (33)

1

Yiep = Vi T @,

Remark 5. Note that (w, p) condition is a discrete relation,
which moves the interval I; into I;,,. Then we have the
following consequences.

(i) For any 7 € R, the interval [r,7 + w] can be
decomposed as follows:

i(T)+p-1

(7.t ] U U I;u [ti(r)+p’7 + “’] : (34)
j=i(T)+1

(ii) For t € [t;,t;,,), we have

() Y() + € [tisprtisper) -
(35)

(@) t+we [ti+p’ ti+p+1) >

Then,
Y+ @) = Yigrw) = Yirp = Yiy T@ =y @) + . (36)

Using Definition 2, Remark 5, and double w-periodicity
of Green’s function, similar formula is given by (17). So, we
have obtained the following result.

Proposition 6. Suppose that the conditions (N,,) and (P) hold.
Let (1,2(7)) € R x R". Then, z(t) = z(t,7,2(1)) is w-periodic
solution on R of the DEPCAG system (6) if and only if z(t) is
w-periodic solution of the integral equation

z(t) = J-T wG(t,s) [f (s,z(s),r wC(s,u,z(y(u)))du)
r9(52(9,2 (1 ) | s,
(37)

where Green’s function G(t, s) is defined by (18).

Consider the operator § : P, — P, by

T+w

([2)(t) = J G(t,s)

T

«|r (5200 [ Clame o) )

N

+9(s,2(s),z(y(9))) ] ds.
(38)

It is easy to see that the DEPCAG system (6) has w-
periodic solution if and only if the operator J has one fixed
pointin P,,.

To prove some existence criteria for w-periodic solutions
of the DEPCAG system (6) we use the Banach, Schauder, and
Krasnoselskii’s fixed point theorems.
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Next we state first Krasnoselskii’s fixed point theorem
which enables us to prove the existence of a periodic solution.
For the proof of Krasnoselskii’s fixed point theorem we refer
the reader to [43].

Theorem A (Krasnoselskii’s fixed point theorem). Let S be
a closed convex nonempty subset of a Banach space (E, || - ||).
Suppose that o and B map S into E such that

(i) x, y € S, implies o/ x + By € S,
(ii) o is a contraction mapping,

(iii) AB is completely continuous.

Then there exists z € Swithz = dz + RBz.

Remark 7. Krasnoselskii’s theorem may be combined with
Banach and Schauder’s fixed point theorems. In a certain
sense, we can interpret this as follows: if a compact operator
has the fixed point property, under a small perturbation,
then this property can be inherited. The theorem is useful
in establishing the existence results for perturbed operator
equations. It also has a wide range of applications to nonlinear
integral equations of mixed type for proving the existence of
solutions. Thus the existence of fixed points for the sum of
two operators has attracted tremendous interest, and their
applications are frequent in nonlinear analysis. See [32, 33,
43-46].

We note that to apply Krasnoselskii’s fixed point theorem
we need to construct two mappings; one is contraction and
the other is compact. Therefore, we express (38) as

(S2) (1) = (Az) (t) + (B=2) (1), (39)
where o/, B : P, — P, are given by

(dz) ()

= JT+w G(ts) f <s, z(s), J'5+w C(s,u,z(yw)) du> ds,
T s (40)

T+w

(%’z)(t)=J Gt9)g(s2(),2(y())ds.  (41)

T

To simplify notations, we introduce the following constant
and sets:

IG(t,s)], S={zeP,:|z] <R},

(42)

CG = max
t,s€[1,T+w]

Cu=1{z€R":|z| <R}.

Lemma8. If(N,), (P), (Ly), and (L) hold, d is given by (40)
with ¢cgL, < 1, and then & is a contraction mapping.

Proof. Let o be defined by (40). First we want to show that
()t +w) = (Lo)(t).
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Let ¢ € P,. Then using (40), the periodicity of Green’s
function, and (w, p) condition, we arrive at

(do) (t +w)

T+2w
= J G(t+w,s)

T+w

x f <s, @ (s), Js+w C(s,u,p(yw)) du> ds

s

T+w
:J G(t+ws+w)

T

><f<5+w,<p(s+w),

r+2w C(s+w,up(yw)) du> ds

Stw

T+w
=J G(t+ws+w)

T

xf(s+w,g0(s+a)),

r+wC(s +w,u+wo(yu +w)))du> ds

N

T+w
=J G(t+ws+w)

T

xf(s+w,g0(s+w),

r+wC(s +w,u+wo(yu)+ w))du) ds

N

[

T

x f (s, @ (s), JSW C(s,u,@(yw)) du) ds

N

= (do) ().
(43)

Secondly, we show that ¢/ is a contraction mapping. Let g, { €
P,; then we have

ot - <]

= sup |do(t) - ()|

telr,7+w]

T+w
< sup J |G (t,s)]

telr,m+w] JT

X

f<5’<P(S),jS+wC(s,u,go(y (u)))du)

N

(560 [ el @) das

S%erM@Ww—HM+m®

T

X

| g du

- rﬂu C(ssu,{(yw))du

N

Jas

sSG L [Pl ) |9 (s) = ¢ () + ps (S)J A(s,u)

S

ﬂ¢@m»—uﬂmnmﬁm

(a] [porno | Acwda)

T N

x| -]
<(w] @+ Ap @) ds) o~

< calyflo -]
(44)

Hence of defines a contraction mapping. O

Similarly, & is given by (41), which may be also a
contraction operator.

Lemma9. If(N,), (P), and (Lg) hold, & is given by (41) with
gL, < 1, and then 9B is a contraction mapping.

Lemma 10. If (N,) holds, 9 is defined by (41), and then 9B is
completely continuous; that is, % is continuous and the image
of % is contained in a compact set.

Proof. Step 1. First we prove that B : P
continuous.

w — P, is

As the operator ¢/, a change of variable in (41), we have
(Bo)(t + w) = (RBe)(t). Now, we want to show B is
continuous.

The function g(t, x, y) is uniformly continuous on [7, 7 +
w] X €4 X G4 and by the periodicity in ¢, the function
g(t, x, y) is uniformly continuous on R x €, x €. Thus,
for any e = (e/cgw) > 0, there exists § = &(e) > 0 such
that z;, z, € S, llz; — 2,|| < & implies |g(t, z,(t), z; (y(t))) —
g(t,z,(t), z, ()| < ¢ fort € [1,7 + w]. Then | Bz, -
Bz, < e. In fact, by the continuity of g,

9tz (1),2, (y () - g (62, (1), 2, (y (1)) < €

for t € [1, 7+ w]
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and then
"‘%21 _‘%22“
= sup |Bz (t) - Bz, (1)
te[r,7+w]
T+w

< sup J IG(t,9)l|g (5,21 (5), 2, (y (5)))
te[r,t+w] JT

(5,2, ()2, ( ()] ds

IN

T+w ) '
J cgeds < cgew =€,
T

(46)
and the continuity of & is proved.

Step 2. We show that the image of 9% is contained in a
compact set.

Letx,y € €4 and s € [1, 7 + w]; for the continuity of the
function g(s, x, ¥), there exists M > 0 such that |g(s, x, y)| <
M. Let ¢, € S where # is a positive integer; then we have

1Bl = sup ] | B, )]

telr,T+w

j G (£,9)1 ]9 (5, @ (5), 9 (3 (5)))] s

T

< sup
telr,7+w]

< CGJ 19 (5,9, (5), 9, (y(5)))| ds < (cMaw.

T

(47)
Moreover, a direct calculation (.93<pn(t))' shows that

(B, 1))

X

=o' () J (I+D)D " (s) g (s,90,(5),0,(y(s))ds

JT wG(t, $)g (5,9, (5), 9, (y (S)))d5>

T

+ @) I +D)O " () g(t,9, (), 0, (y (1))

T+w

+ @' () J [DCD_1 () g(s,9,(s), 9, (y (s)))] ds

t

~ O () DO (1) g (t 9, () 9, (¥ (1))

~a0([ 7 6699(.9.9.0, 0 ) as)

T

+9(te, ), 9, (y®))

= A(t) B, (1) + g (£, 9, 1), 0, (y())).
(48)

As A(t) is bounded on [7,7 + ] and RBe,(t),
g, ,(t),@,(y(t)) are bounded on [7,7 + w] x S x S.
Thus, the above expression yields ||(95’<pn)'|| < L, for some
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positive constant L. Hence the sequence (A¢,,) is uniformly
bounded and equicontinuous. Ascoli-Arzela’s theorem
implies that a subsequence (%¢, ) of (B¢,) converges
uniformly to a continuous w-periodic function. Thus A is
continuous and (S) is a compact set. O]

In a similar way, for &/ we obtain the following.

Lemma 11. If (N,) and (C) hold, </ is defined by (40), and
then o is completely continuous.

Theorem 12. Suppose the hypotheses (N,), (P), (Ly), (Lo)
(M) hold. Let R be a positive constant satisfying the inequality

(L +Cy)R+cg(a+m +p)w <R (49)

Then the DEPCAG system (6) has at least one w-periodic
solution in' S.

Proof. By Lemma 8, the mapping & is a contraction and it
is clear that &/ : P, — [P,. Also, from Lemma 10, & is
completely continuous.

Next, we prove that if ¢, { € S with [l¢]l < Rand ||{]| < R,
then || /¢ + BL| < R.

Let ¢, { € Swith |l¢|l < Rand ||{|| < R. Then

|1t + 2B

= sup
te[r,7+w]

Jﬁw G(t,s)

T

x [f(s«p ©.[ clomoly (u>))du)

N

—f(s,0,0)+f(s,0,0)]ds

+J G(t,5) g (¢ (s),¢(y(s))ds

T

[

T

< sup
telr,7+w)

X

f<5> IOR Jﬁw C(s,u9(yw)) du)

N

~£(5,0,0) | ds

| e warls soolds

T

+ sup
te[r,7+w]

j G699 (5.0 (9).2 (v ()] ds

T

+ sup
te[r,7+w]

< CGJ py(s) |(p (s)|

T

+p, (s) J. C(ssu,@(yw)))du|ds

N

+ acow + ¢ (J [1; (5) + 15, (5)] ds> IS]l + pacew

T
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<o nOkOl RO

T

X

| etuerw)

N

—C(s,u,0) + C(s,u,0) | du|ds

racgotio ([ In 00k s ) [6] + pe

T

<c J P18 @ 9]+ py(s)

T

X ds

r ! (A (s, 1) @ (y )] +IC (s,u,0)|] du

N

+ acqw + ¢ (J [K1 (8) +1 (5)] dS) IICII + Pt

T

<eo( [ p @+ A ds) ol

vl [ @ e @las) )

T
T+w

+CGXOJ

T

P, (5)ds + acgw + pycqw

<Ly +Cy))R+cg(a+n +p,) .
(50)

We now see that all the conditions of Krasnoselskii’s
theorem are satisfied. Thus there exists a fixed point z in S
such that z = @/z + 9Bz. By Proposition 6, this fixed point is
a solution of the DEPCAG system (6). Hence the DEPCAG
system (6) has w-periodic solution. O]

By the symmetry of the conditions, we will obtain as
Theorem 12.

Theorem 13. Suppose the hypothesis (N,), (P), (Lg), (Mf),
(M), (C) hold. Let R be a positive constant satisfying the
inequality

(C+Ly)R+cg(B+m+p)w<R (51)

Then the DEPCAG system (6) has at least one w-periodic
solution in S.

By Lemma 9, the mapping 9B is a contraction and it is
clear that 8 : P, — P,. Also, from Lemmall, & is
completely continuous.

Next, we prove that if ¢, { € S with [|¢|| < Rand ||{]| < R,
then [|/¢ + S| < R.

Let ¢, { € S with |l¢]| < Rand ||{]| < R. Then

It + B
_ T+w G(t’ )
], e
x f (s, @(s), j C(s,u,p(yw)) du) ds
SRR {ER{HIE)
-g9(s,0,0) + g (s,0,0) )] ds
< 6wl
aw Jees
x <m1 ®) | ()| +m, ()
X J C(s,u,9(yw)))du +p1>ds
6l
’ te[srl,]frw] L )
X (v (5)C(s) +v, ()¢ (v (s)))ds
+ [sup ]jﬁw IG (t,5)| |g (s,0,0)| ds

<c J <m1 ) |9 (5)] +m, ()

X

JS “ s ) o (y )] + 1 (s, )] du

+P1) ds

+cg <J (v () + v, (5)) ds) S]] + Begw

T

. ( J [y (5) 4 iy (9] ds> lol

T

T+w

+cgh J. m, (s)ds + p;cgw

T

+cg <J (v () + v, (5)) ds) S]] + Begw

T

S (Cr+Ly)R+cg(B+m+p) .
(52)

Applying Banachs fixed point theorem we have the
following.
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Theorem 14. Suppose the hypotheses (N,), (P), (Lf), (L)
(L,) hold. If

(L, +L,y) <1, (53)
then the DEPCAG system (6) has a unique w-periodic solution.

Proof. Let the mapping  be given by (38). For ¢, { € P, in
view of (38), we have

|Se - 5]

[T

T

< sup
te[r,7+w]

X
s

f (5) IO Jsm C(s,u,9(yw)) du)

s (sg0. [ euc @) an)a

+ sup J IG (t:9)l|g (s, 9 (s), 9 (y(5)))

telr,t+w] JT

-9 (5:¢(9),¢ (y(9))| ds

sof  [POkO-tO+pO

X

| clomepty ) du

N

- J'5+w C(s,u, ¢ (y(w)))du

N

|as

+ ch 19 (0 (5),9(y(s))

T

~g(5,0(), L (y(s)))] ds

< ¢ (Lﬁw [P (5) + Ap, ()] ds

+ J ! [v; (s) + vy (s)] ds) ||(p - C"

T

SCG(L1+L2)"‘P_("‘ )
(54

This completes the proof by invoking the contraction
mapping principle. O

As a direct consequence of the method, Schauder’s theo-
rem implies the following.

Theorem 15. Suppose the hypotheses (N,,), (P), (My), (Mc¢),
(M), (C) hold. Let R be a positive constant satisfying the
inequality

G(CL+Cy)R+cg(py +pp+m)@w<R (55)

Then the DEPCAG system (6) has at least one w-periodic
solution in' S.
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Remark 16. Considering the DEPCAG system (6)

X O=AOx®)+g(tx(t),x(y)). (56)

Krasnoselskii (see [47]) proved that if A is a stable constant
matrix, without piecewise alternately advanced and retarded
argument and lim|x|+|y|ﬁ+oo (lg(t, x, »)I/(Ux]+]y1)) = 0, then
the system (56) has at least one periodic solution. In our case,
applying Theorem 12, this result is also valid for the DEPCAG
system (56), requiring the hypothesis: (N,), (P;), (M g), A(t)
and g(t, x, y) are periodic functions in ¢ with a period w for
allt > 7 and |g(t, x, y)| < ¢ (Ix] + |y]) + py, with 2w < C,
and p, constants for |x| + |y < R,R > 0.

Remark 17. Considering the nonlinear system of differential
equations with a general piecewise alternately advanced and
retarded argument,

()= A®x@®) + f(tx),x(y))
+g(tx(t),x(y®)).

(57)

In this particular case, applying Theorem 13, this result is also
valid for the DEPCAG system (57), requiring the hypothesis:
(N (P (Py), (L), (M), and i5(C, +L,) R (B+p ) < R
with A = 1.

Remark 18. Suppose that (P)) is satisfied by w = w,
(P,) by w = w,, and (P;) by w = w;, if w;/w; is a
rational number for all i, j = 1,2,3; then (P,), (P,), and
(Ps) are simultaneously satisfied by w = lLcm.{w,,w,, ws},
where l.c.m{w,, w,, w;} denotes the least common multiple
between w;, w, and w;. In the general case it is possible
that there exist five possible periods: w, for A, w, for f, w,
for g, w, for C, and the sequences {t,},.,, {};};c, satisfy the
(ws, p) condition. If w;/w; is a rational number for all 7, j =
1,2,3,4,5, s0, in this situation our results insure the existence
of w-periodic solution with w = Lemw;,w,,w;, w,, ws}.
Therefore the above results insure the existence of w-periodic
solutions of the DEPCAG system (6). These solutions are
called subharmonic solutions. See Corollaries 19-22.

To determine criteria for the existence and uniqueness of
subharmonic solutions of the DEPCAG system (6), from now
on we make the following assumption.

(P,) There exists w = L.cm.{w;, w), w3, w,, ws} > 0, w;/w;
which is a rational number for all i,j = 1,2,3,4,5
such that

(1) A(t), f(t,xy, y1), and g(t, x,, y,) are periodic
functions in ¢ with a period w,;, w,, and w;,
respectively, for all t > T;

(2) C(t + wy, s + wy, x3) = C(t, 5, x5), for all t > 1;

(3) There exists p € Z", for which the sequences
{t:i}icz> (7:}ic, satisfy the (w5, p) condition.

As immediate corollaries of Theorems 12-15 and Remark 18,
the following results are true.
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Corollary 19. Suppose the hypotheses (N,), (P,), (L), (L¢)s
(Mg) and (49) hold. Then the DEPCAG system (6) has at least
one subharmonic solution in S.

Corollary 20. Suppose the hypotheses (N,,), (P,), (L), (M),
(Mc), (C) and (51) hold. Then the DEPCAG system (6) has at
least one subharmonic solution in S.

Corollary 21. Suppose the hypotheses (N,), (P,), (L ¢), (L¢)s
(L,) and (53) hold. Then, the DEPCAG system (6) has a unique
subharmonic solution.

Corollary 22. Suppose the hypotheses (N,), (P,), (My),
(Mc), (Mg), (C) and (55) hold. Then the DEPCAG system (6)
has at least one subharmonic solution in' S.

4. Applications and Illustrative Examples

We will introduce appropriate examples in this section. These
examples will show the feasibility of our theory.

Mathematical modelling of real-life problems usually
results in functional equations, like ordinary or partial differ-
ential equations, integral and integro-differential equations,
and stochastic equations. Many mathematical formulations
of physical phenomena contain integro-differential equa-
tions; these equations arise in many fields like fluid dynamics,
biological models, and chemical kinetics. So, we first consider
nonlinear integro-differential equations with a general piece-
wise constant argument mentioned in the introduction and
obtain some new sufficient conditions for the existence of the
periodic solutions of these systems.

Example 1. Let A : R?> — [0,00)and h : R* — [0,00) be
two functions satisfying

t+2m = t+2m =
sup J Aes)ds<h,  sup J h(t,s)ds <h. (58)
teR Jt teR Jt

Consider the following nonlinear integro-differential equa-
tions with piecewise alternately advanced and retarded argu-
ment of generalized type:

2O =al)z(®)
t4+2m
+ J In [1 +]z(y (s))|3)t (t,s) +h(t, s)] ds

+(sint) 2* () + (1 + coszt) z (y(), teR,
(59)

where the sequences {t,},., and {y,},., satisfy the (27, p) con-

dition, A and & are double 27-periodic continuous functions,

and a is a 27r-periodic continuous function satisfying (N,).
The conditions of Theorem 15 are fulfilled. Indeed,

(i) f(t, x,y) = y satisfies (Mf): Lt 9)| < |yl;

(ii) g(t, x, y) = (sin Hat + (1 + coszt)y9 satisfies (Mg):
lg(t, x, Y)| < ¢, (R)(Ix] + |y]) + p, for every x, y such
that |x|, |y| < R, uniformly in t € R where 47¢,(R) <
C,;

1

(iii) C(t,s, y) = In[1 + |y3|)t(t, s) + h(t, s)] satisfies (M):
IC(t, s, ¥)| < 6, (R)A(L, s)|y| + h(t, s) for | y| < R, where
27A < Cy;

(iv) g : RxR"xR" — R"is continuous and C(t, s, )
satisfies (C).

Indeed, for any & > 0, there exists § > 0 such that |y, —y,| <6
implies

for t,s € R.
(60)

|C(t5,1) = C(t:5,3,)| < e, (R)A (£, 9)

Furthermore, there exists R such that

exp (2a*m) ~
op a1 (Gt CIR2m(p +R)| <R, ()

where a” = sup,p |a(t)| and a, = inf,gla(t)|.
Then, by Theorem 15, the DEPCAG system (59) has at
least one 27-periodic solution.

Example 2. Thus many examples can be constructed where
our results can be applied.

Let A: R — R™andp: R — R” be two functions
satisfying

t+w
supj |A (s)|ds = A < oo,
teR Jt

(62)

t+w
supJ |u(t = s)|ds = i < co.
teR Jt

Now, consider the integro-differential system with piecewise
alternately advanced and retarded argument

ZM)=At)zt)+B(t)g(z(t),z(y()))
t+w (63)
+ L [AGs)k(z(y(s)) +u(t—19)]ds,

where the sequences {t;},., and {y;},., satisfy the (w, p)
condition, A, B, A, k, and p are w-periodic continuous
functions, and

(i) 2'(t) = A(t)z(t) satisfies (N,);

(i) B is w-periodic matrix function: [B(¢)| < b, g : R" x
R" — R"is a continuous function, and |g(x, y)| <
q(R)x]+ 6 (R)|y| + 9, for |x|, |y| < R, where (¢;(R) +
qR)w < Cy;

(iii) |x(x) — k(¥)| < ;(R)|x — yl, where c3(R)Kw <L,.

The hypotheses of Theorem 12 are fulfilled. Then if there exists
R such that

Co(Ly+bCy)R+Cq (b9, +x (A +a)w <R,  (64)

Theorem 12 implies that there exists at least a w-periodic
solution of the DEPCAG system (63).
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Note that similar results can be obtained under (L g)
and (M). On the other hand, the periodic situation of the
DEPCAG system (56) and (57) can be treated in the same way.

Let us consider another example for second-order differ-
ential equations with a general piecewise constant argument.
In this case, we can show the existence and uniqueness
of periodic solutions of the following nonlinear DEPCAG
system.

Example 3. Consider the following nonlinear DEPCAG sys-
tem:

Y0+ (k7 () -2) y' (1) - 8y (8)
(65)
— i, sin (wt) y* (y () =k, cos (wt) = 0,
where x;,%x, € R, p(t) = y; ift; <y, < t;;;,i € Z, and the

sequences {t;},., and {y;},., satisty the (27r/w, p) condition.
We write the DEPCAG system (65) in the system form

2 (t) = (2 ;) z(0)+ (;cl sin (wt())zf (y (t))>

0
* <K2 cos (wt) — Kzzf (t) z, (t)) ?

01
*=(32)

ftz@®),z(y®)) =<

where

0

x, sin (wt) z; (y (t))) ’ (67)

0
9 (t’Z ),z ()/ (t))) - <K2 cos (wt) — Kzzf () z, (t)>'

It is easy to see that the linear homogenous system
Z'(t) = Az(t) does not admit any nontrivial w-periodic
solution; that is, the condition (N,) is satisfied. Let ¢(t) =
(@), 0, ), w(t) = (y;(t),v,(t)) and define S = {z €

P, Izl < R}, where R € R, satisfies the condition
2¢gR (x, + %,R) < 1. (68)
Then, for ¢, € S we have

l9Ge() oy ) =gy (y )]

0
= te[srl,lrgw] (Kz cos (wt) — Kz‘/’f ) ¢, (t))
n 0 )
K, cos (wt) — Kzt//f ®By, (1)
Vi () =1 (1)
e M SISO LSRRI the It )

<2K,R* sup
te[r,T+w]

() — oy (1)
(1"2 -1 (t))‘ = 2R o -y

(69)
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In a similar way, for f we have

If ooy - fGvOwO)

<2kR ||(p - 1//" .

By Theorem 14, the DEPCAG system (65) has a unique 27/ w-
periodic solution in S.
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