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In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we
classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct
(MCHF/OVRP/SDMP) which is a novel classification of an OVRP.We have developed a mixed integer programming (MIP) model
for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. AlthoughMIP
is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets
harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP
fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have
developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA
based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain
10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In
conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods.

1. Introduction

Open vehicle routing problems (OVRPs) have gained much
attention recently since they represent a problem type that
needs to be solved by many production companies. In most
industries, companies choose to use a hired vehicle fleet for
distributing their goods. In this way, they do not have to
endure the extra cost for returning vehicles since they use
the resources of a third-party logistics (3PL) provider such as
trucks or TIRs [1]. As consequences of such benefits, however,
the companies have to accept some restrictions defined by the
3PL providers. For example, the 3PL provider can determine
some particular routes considering the experiences of the
drivers or the highway conditions. In addition, the 3PL
provider can restrict the number of customers visited by a
particular vehicle. Such specifications require some changes
in the classicalOVRP structure tomake themmore applicable
for real-world problems.

In this paper, we consider a real-world vehicle routing
problem for a production company. The company produces
twodifferent types of products (multiple products—MP)with
different volume and weight properties. The first product is
a lightweight but large product, such as styrofoam, and the
second product has opposite volume-weight characteristics,
heavyweight but small product, such as tar. Since the com-
pany uses a fleet of vehicles of a 3PL provider, the vehicles
do not need to return to the depot, and thus, the underlying
problem becomes an open vehicle routing problem (OVRP).
The 3PL provider has a heterogeneous fleet of vehicles, such
as trucks and TIRs (heterogeneous fleet—HF), with different
volume andweight capacities (multiple capacitated—MC). In
addition, on any route, the vehicles can serve two customers
atmost, and the demand of a customer can be supplied by dif-
ferent vehicles (split delivery—SD). Based on these problem
specifications, we classify our problem as a multicapacitated/
heterogeneous fleet/open vehicle routing problem with split
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deliveries andmultiproducts (MCHF/OVRP/SDMP), which,
to the best of our knowledge, has not yet been considered in
previous studies.

Since theOVRP consists of Hamiltonian paths, we should
find the best Hamiltonian path for each set of customers
assigned to a vehicle for the optimal solution [2]. There-
fore, it can be concluded that the OVRP has an NP-hard
structure because of the NP-hard Hamiltonian path sub-
problems.Many researchers have developed various heuristic
approaches to solve the OVRP. Brandão [2] developed a tabu
search algorithm for the OVRP to generate good solutions
in short time periods where the researcher obtained better
results using a random tabu tenure instead of a fixed one [2].
Zachariadis and Kiranoudis [3] developed a novel approach
to produce initial solutions forOVRPs.The researchers tested
their metaheuristic on some well-known OVRP instances
where improvements on several best-known solutions from
previous studies were presented [3]. Eksioglu et al. [4] pre-
sented an extensive literature review for the vehicle routing
problem (VRP), classified the VRP studies according to their
specifications, and built the taxonomy of the VRP literature.
According to the study, the VRP literature was categorized
into five main groups that contain 106 different subcate-
gories. They discovered that the number of the VRP studies
including load specific and heterogeneous vehicles has been
three times less than the others. We note that there have
been a few VRP studies that contain heterogeneous vehicles
in the literature. In this study, we consider an OVRP with
heterogeneous fleet where we evaluate the loading process
using the volume and weight coefficients of the products
which has not yet been studied in detail so far.

Capacitated open vehicle routing problems (COVRPs)
have also been studied by various researchers. Among these,
Letchford et al. [5] formulated the first exact algorithm, and
Simbolon [6] developed a direct search algorithm for the
COVRP. In our study, we additionally consider the volume
and weight capacities (multicapacitated—MC) of a hetero-
geneous fleet (HF) of vehicles. Just like the multicapacitated
problems, the heterogeneous fleet of vehicles is also common
in real-world transportation problems since a smaller vehicle
with sufficient capacity would always be preferable to a larger
one which, beyond decreasing the transportation cost, is also
a basic principle of green logistics. Some studies considered
different variations of these problems, such as Gendreau et al.
[7] and Taillard [8] who developed a tabu search algorithm
and a column generation method to solve the heterogeneous
fleet vehicle routing problem (HVRP), respectively.The study
of Tavakkoli-Moghaddam et al. [9] additionally considered
the concept of split service in the capacitated vehicle routing
problem (CVRP) where they showed that splitting demand
implies a higher capacity utilization. In split delivery, cus-
tomers might be visited by more than one vehicle similar
to some real-life scenarios especially in the existence of a
3PL provider. Many researchers have studied the vehicle
routing problems with split delivery properties. The study
of Archetti and Speranza [10] presented a survey of split
delivery vehicle routing problems (SDVRP) that includes the
description of the SDVRP, its properties, exact algorithms
and heuristics, and its variants and applications. None of

the above studies, however, considered the open vehicle
routing problem (OVRP) with a multiple capacitated het-
erogeneous fleet and multiple products with split deliveries
together as in our study.

This paper is organized as follows. In Section 2, a
mixed-integer programming (MIP) model is formulated.
In Section 3 the proposed hybrid genetic-local search is
described. Computational results and conclusions are pre-
sented in Sections 4 and 5, respectively.

2. Mixed-Integer Programming Model

In this section, we present a mixed-integer programming
model for the MCHF/OVRP/SDMP. A real-world problem
of production company with its real-life assumptions was
considered for themodel. As mentioned before, the company
uses a heterogeneous fleet of vehicles of a 3PL provider
for distribution of goods, and the 3PL provider allows the
vehicles to serve two customers at most. The 3PL provider
determines the transportation cost considering the target
customer. In addition, if a vehicle supplies the demand of
an intermediate customer along with the target customer,
the 3PL provider charges a stopping cost which depends on
the vehicle type. We therefore calculate the total cost of the
distribution process considering the transportation and the
stopping cost of the vehicles together, which is aimed to
be minimized in the MIP model. In our experiments, we
consider two different types of products, however we define
the type of materials with “𝑚” index, and we allow MIP to
model the problems with multiple types of materials (more
than two) simultaneously.The notation of theMIPmodel can
be found in Table 1. Consider
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Table 1: Sets, indices, parameters, and variables for MIP.

Indices (for sets see below):
𝑖, 𝑗 Index of customers, 𝑖, 𝑗 ∈ 𝐼.
𝑘 Index of vehicles, 𝑘 ∈ 𝐾.
𝑚 Index of product types,𝑚 ∈ 𝑀.

Parameters:

𝑅𝑖𝑗

0-1 matrix for connections of customers. 𝑅𝑖𝑗 is 1, if there is a connection between customer 𝑖 and
customer 𝑗.

𝐷𝑗𝑚 The demand of productm for customer 𝑗.
𝐶𝑗𝑘 Transportation cost for vehicle 𝑘 while traveling to target city 𝑗.
𝐹𝑖𝑘 Stopping cost for vehicle 𝑘 on customer 𝑖.
𝑊𝑚 Weight coefficient for product𝑚.
𝑉𝑚 Volume coefficient for product𝑚.
𝐺𝑘 Weight capacity for vehicle 𝑘.
𝑃𝑘 Volume capacity for vehicle 𝑘.
𝐿 Large number.

Sets:
𝐼 The set of customers, 𝐼 = {1, 2, . . . , 𝐼max}.
𝐾 The set of vehicles, 𝐾 = {1, 2, . . . , 𝐾max}.
𝑀 The set of product types,𝑀 = {1, 2, . . . ,𝑀max}.
Set1 {(𝑖, 𝑗, 𝑘) | 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑅𝑖𝑗 = 1}.

Decision variables:
𝑥𝑖𝑗𝑘𝑚 The quantity of product𝑚 that is left on customer 𝑖, while vehicle 𝑘 is travelling to target customer 𝑗.

𝑦𝑖𝑗𝑘

{

{

{

1, if vehicle 𝑘 stops on customer 𝑖 while traveling to target customer 𝑗;

0, otherwise.

The objective function (1) aims for the minimization of
total cost which includes the transportation and the stopping
cost of vehicles. To reduce the size of the solution space,
we determine the maximum number of vehicles for the
problem, and use this knowledge as a parameter for the
index of vehicles. Constraint (2) ensures that each vehicle
has only one target customer at most. Constraint (3) shows
that each customer is decided as a target by only one
vehicle at most. Constraint (4) guarantees that a vehicle
can serve two customers at most; one, if applies, is the
intermediate customer and the other is the target customer.
The relationship between decision variables has been set by
constraint (5). Constraint (6) ensures that the demands of
customers are met by the vehicles. Constraints (7) and (8)
represent the capacities of the vehicles in terms of weight
and volume, respectively. Finally, (9) and (10) present the
definition space of the decision variables.

Since the definition of the problem is unique, no bench-
mark for this type of problem is available. We therefore
generate random samples for evaluating the performance of
the MIP model which are detailed in Section 4.1. Although
we can find the solutions with smaller gaps of small-size
problems (10–50 customers) using MIP, it is not able to find
any feasible solution of large-size real-world-like problems
(60–90 customers) within time limits (7200 s). To handle
large-size problems,we develop a genetic algorithmwith local
search which is detailed in Section 3.

3. Hybrid Genetic-Local Search Algorithm

A genetic algorithm (GA) is a search technique based on the
biological process of evolution theory that mimics natural
selection. One of the important issues in GA is the genetic
representation (string of symbols) of each solution in a
population. The string is referred to as chromosome and
the symbols as genes [11]. After generation of the initial
population and determination of the fitness function values
for each chromosome, GA manipulates the selection process
by operations such as reproduction, crossover, and mutation
[11]. The introduction of GA dates back to 1970s [12]. As
the searching technique of genetic algorithms (GAs) [13]
became popular in the mid-1980s, many researchers started
to apply the approach to different types of problems. To date,
GA has been applied to many different types of problems
including vehicle routing problems. In this paper, we also
have developed a hybrid genetic-local search algorithm for
the MCHF/OVRP/SDMP problem which is detailed in the
next section. The proposed local search algorithms, imple-
mented in C#, are performed during the fitness function
calculation process. In order to eliminate the infeasible chro-
mosome structure, we were mainly inspired by our previous
algorithms related to scheduling problem in the literature
[14, 15]. The novel characteristic of the studied problem is
the capacity constraint. The algorithm is not only applied
to logistic area but also included capacities of vehicles and
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Figure 1: Representation of a chromosome in the GA.

orders. The developed new approach related to capacity issue
is integrated into the algorithm successfully and is explained
in the next section.

3.1. Genetic Algorithm for Order Splitting Property

3.1.1. Encoding Scheme. In the proposed GA, a chromosome
is mainly designed by a string of random numbers that are
uniformly generated between 0 and 1. These random keys
show the transportation route for each vehicle. In addition,
each chromosome also carries the number of suborders for
each customer. It would be necessary to note that this chro-
mosome structure is used in our previous study [14]. Figure 1
illustrates a sample chromosome. In the first section of the
chromosome, the string contains 𝑛 (number of customers)
segment. Each segment is further divided into 𝑚 (number
of vehicle types) part, and then, each part for vehicle types
is divided into genes. The number of genes for vehicles is
two in this problem, which shows the maximum number of
suborders. Note that the chromosome structure is convenient
to increase the maximum suborder quantities. To decide the
exact number of suborders for each customer, it is necessary
to check the second section of the chromosome. In the
second section of the chromosome, the string contains 𝑛

(number of customers) segment which shows the number of
suborders for each customer. These numbers might be 1 or 2
for this problem, and they are generated randomly to reflect
the variable suborder environment. For the chromosome
structure in Figure 1, we have 2 vehicle types and 3 customers.
For 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴, since the number of suborders equals 2 as
in the second section’s first segment of the chromosome,
the smallest two random numbers will be selected from
the first section of the chromosome among all the numbers
generated for 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴. The selected values (0.2 and 0.3
for 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴) are in bold in Figure 1. It means that the
first order of𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 will be transported by𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1

and the second order of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 will be transported by
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2. Similarly, the number of suborders is 2 for
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 and they will be transported by 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2.
The number of suborders is 1 for 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 and it will be
transported by 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1.

3.1.2. Fitness Function. In the proposed algorithm, the chro-
mosome structure defines the routes for each vehicle type.
But we also need to integrate capacity conditions into the
algorithm. Figure 2 shows the outline of integration process.
We consider the volume and weight constraints of vehicles
as well as the demands of each customer. After obtain-
ing the routes for the customers—which will be explained
in detail shortly after as in Figure 3—we need to iterate

the integration process in two phases as shown in Figure 2. In
the first phase, if the demands of customers are greater than
a full load vehicle, then the number of fully loaded vehicles
and costs are calculated. In the second phase of the algorithm,
the remaining demands of customers are trying to be con-
solidated to maximize vehicles’ utilizations. After assigning
the first demand to the vehicle, if the capacity of the existing
vehicle is enough, route is the same, and the number of
customers on the route is less than two, then the next demand
can be loaded into the vehicle.This loading demandmight be
the suborder of the same product, the demand of the second
product of the same customer, or the demand of the next
customer on the route.Otherwise, the newvehicle is required.
To explain how the algorithm obtains the routes for the
customers and calculate total costs, the example in Figure 1 is
considered. According to the chromosome shown in Figure 1,
the number of suborders for 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵, and
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 is determined as two, two, and one, respectively.
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1 will supply the 1st suborder of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 and
the suborder of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶. 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2 will supply the 1st
and the 2nd suborders of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 and the 2nd suborder
of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴. The sequence of customers on 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1

will be determined by the random key numbers (0.20 and
0.43). Increasing arrangement of these random numbers will
designate 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1’s customer sequence. Similarly, the
sequence of customers on 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2 will be determined
by the random key numbers (0.11, 0.26, and 0.30). Figure 3
shows the vehicle types and the customers for the examining
problem. According to Figure 2, we need to calculate the full
load vehicles for each customer’s suborders, considering two
types of products. Then for the remaining loads, we need to
combine the vehicles on the same route. For the considered
example, three customers and two vehicle types, we will
ignore the vehicles which are fully loaded in order to simplify
the explanation.

As mentioned earlier, two types of costs are considered
in the problem: stopping costs and transportation costs for
each type of vehicle. For the considered example, each vehicle
type’s route and customers’ loads (information about splitting
or not splitting) are shown in Figure 3. Assume that Table 2
shows the stopping costs for each type of vehicle, and Tables
3 and 4 present the transportation costs of 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1

and 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2, respectively. Transportation costs from
the depot to the corresponding customers are shown in the
first rows of Tables 3 and 4. The total cost is calculated by
utilizing the transportation and stopping costs. Considering
the first vehicle of 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1, the transportation cost
from depot to 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 is 60, and the stopping cost of
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1 is 40, so the partial total cost is 60 + 40 =
100, and then the same vehicle transports from 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴
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Figure 2: Determining the number of vehicles and their loads.

to 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 and the transportation cost is 20. Similarly the
stopping cost of 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1 is 40. It means that the total
cost of 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1 is 100 + 20 + 40 = 160. The total cost of
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2 is greater than the total cost of 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1.
Our aim is to minimize the maximum total cost. As seen

in Figure 3, the fitness value of chromosome in Figure 1 is
395. The structure of chromosome will be modified with
the aim of finding the routes with minimum cost utilizing
local search. The details of the GA-based local search algo-
rithm are explained in Section 3.2. After the algorithm runs,
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Vehicle type1

Vehicle type2

Customer

Customer

A/1 suborder

B/1 and 2 suborder CustomerA/2 suborder

Total cost
100 160 220 395

CustomerC/suborderst

st 2nd nd

Figure 3: Resulting loading schema for chromosome in Figure 1.

Table 2: Stopping costs for each vehicle type.

𝐹𝑖𝑘 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶

𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1 40 40 40
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2 80 80 80

Table 3: Transportation costs for 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1.

𝐶𝑖𝑗1 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶

Depot 60 70 90
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 — 50 20
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 50 — 40
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 20 40 —

we obtain the total cost for the chromosome. The population
size determines the number of different chromosomes and
fitness function values.

3.1.3. Genetic Operators. After generating the initial popula-
tion, the operations of selection, crossover, and mutation are
iteratively used to search for the best solution.

(i) Selection: chromosomes are selected into the mating
pool based on the random selection method [16]. In
this method, parents are randomly chosen from the
population.

(ii) Crossover: the crossover operator, with crossover rate
𝑃𝑐, is amethod for sharing information between chro-
mosomes. We use single point crossover approach in
our algorithm which randomly chooses the crossing
point and exchanges the genes between two parents
to create the offspring. We use separate crossover
operations in the first and second phases. Figure 4
illustrates the crossover operation.

(iii) Mutation: the mutation operator is used to prevent
the algorithm converging to a local optimum. In
our algorithm, a mutation operation is performed
as follows. Mutation operation is applied to the
randomly selected chromosomes of the population
according to the mutation rate (𝑃𝑚). The value of
randomly selected gene of the selected chromosome
is replaced with a new random number. By applying
the operation to all selected chromosomes, we can

Table 4: Transportation costs for 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒2.

𝐶𝑖𝑗1 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶

Depot 120 140 160
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 — 95 50
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵 95 — 80
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 50 80 —

obtain new chromosomes with new routes and fitness
function values. The fitness value might be better or
worse or remain same after applying the operator. An
example for our problem is shown in Figure 5.

To enhance the performance of the genetic algorithm, we
use a local search algorithm in the literature [14], which is
detailed in the next subsection.

3.2. Local Search. Integrating one of the local search tech-
niques within GA will commonly generate more competitive
results. For instance, the integrating dominance properties
method that was originally developed by Chang and Chen
[17]was afterward applied successfully tomachine scheduling
problem [15]. In the other paper of researchers, which
includes job splitting property in scheduling problem [14], an
advance approach is adopted. And in this paper, finally the
algorithm adopted more complex aforementioned logistics
problemwhich contains capacity constraints. By searching all
possible alternatives in a chromosome, we aim to reduce the
total cost. After this process, the routes will be determined.

We consider all alternative situations for the local search
as summarized in the Appendix. The proposed intervehicle
type (interchange) and intravehicle type (exchange) customer
changes are explained in Section 3.2.1 and the calibration of
random numbers are explained in Section 3.2.2.The notation
used in the pseudocode and some explanations on the local
search operation are as follows.

(i) 𝑔: the selected genes from the chromosome are
ordered by vehicle type and then by customer
sequence. The value of 𝑔 shows the total number of
these genes. Each individual gene contains vehicle
type and customer features. Figure 6 explains a sam-
ple gene structure of an examplewith seven customers
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Figure 4: Crossover operation: Two parents mate in order to produce two offspring.
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Figure 5: Mutation operation.

Customers
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1
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2
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3 4 5 6 7Gene number

Figure 6: Sample gene structure for an example that contains seven customers and two vehicle types.

and two vehicle types.The structure also indicates the
sequence of customers for each type of vehicle.

(ii) 𝑖 and 𝑗: they are the gene numbers which are com-
pared to decide whether the customers encoded in
these genes should be exchanged or not.

(iii) 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒: it indicates the type of vehicle
encoded in the 𝑖th gene. According to the structure
shown in Figure 6, the type of vehicle for the 1st gene
(𝐺𝑒𝑛𝑒(1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒) is 1.

(iv) 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟: it indicates the customer encoded
in the 𝑖th gene. According to the structure
shown in Figure 6, the customer for the 1st gene
(𝐺𝑒𝑛𝑒(1)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) is Customer D.

(v) 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖),𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑘): it is the transportation cost
between 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐺𝑒𝑛𝑒(𝑘)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 for
𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒.

(vi) 𝑈𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖),𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗): it is the stopping cost of
𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 for 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟.

(vii) 𝑇𝑇𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒: it is the total transportation cost for
𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒.

3.2.1. Interchange and Exchange of Customers

(i) Interchange of customers: there are two cases to be
considered within the intervehicle type interchange:

adjacent customers interchange and nonadjacent cus-
tomers interchange.
(I) Adjacent interchange: in the intervehicle type,
adjacent customers interchange section of the
pseudocode, steps are as follows.
(1) If 𝐺𝑒𝑛𝑒(𝑖 − 1)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 precedes

𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟, then “a” represents the
total difference of transportation costs
between after interchange and before
interchange situations.

(2) If 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 is the first customer on
the vehicle, then “b” represents the total
difference of transportation costs between
after interchange and before interchange
situations.

(3) Either “a” or “b” must be equal to 0.
(4) If 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 precedes 𝐺𝑒𝑛𝑒(𝑗 +

1)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟, then “c” represents the
differences of transportation costs between
after interchange and before interchange
situations.

(5) If the sum of “a,” “b,” and “c” is smaller than
0, it means that a lower total transportation
cost is obtained. In this case,𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

and 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 are interchanged.
(6) Calibrate the random key numbers. In

Section 3.2.2, item (i) gives the description
of the intervehicle type interchange.
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(II) Nonadjacent interchange: the steps for deter-
mining the exchange of 𝐺𝑒n𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and
𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 on the route are similar to adja-
cent interchange with one exception. During
the calculation of “a” and “b,” the additional
difference of transportation costs should be
considered. The remaining steps are the same
with the adjacent interchange situation.

(ii) Intravehicle type exchanging: in the intravehicle type
exchanging section of the pseudocode, steps are as
follows.

(1) Calculate the total transportation cost of
𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 and 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 before
exchange. “D1” represents the maximum
transportation cost of them.

(2) If 𝐺𝑒𝑛𝑒(𝑖 − 1)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 precedes 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

on 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒, then “a1” represents the
difference of transportation costs between after
interchange and before interchange situations.
If 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 is the first customer on
𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒, the second “a1” in the pseu-
docode represents the total difference of trans-
portation costs between after interchange and
before interchange situations.

(3) If 𝐺𝑒𝑛𝑒(𝑗 − 1)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 precedes 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

on 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒, then “b1” represents the
difference of transportation costs between after
interchange and before interchange situations.
If 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 is the first customer on
𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒, the second “b1” in the pseu-
docode represents the total difference of trans-
portation costs between after interchange and
before interchange situations.

(4) If 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 precedes 𝐺𝑒𝑛𝑒(𝑗 + 1)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

on 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒, then “b2” represents the
difference of transportation costs between after
interchange and before interchange situations.

(5) Calculate the total transportation cost of
𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 and 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 after
a possible exchange. “D2” represents the
maximum of these two values.

(6) If “D2” is smaller than “D1”, it means a lower
total transportation cost is obtained. In this case,
𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 are inter-
changed.

(7) Calibrate the random key numbers. In
Section 3.2.2, item (ii) gives the description of
intravehicle type exchange.

3.2.2. Calibration of the Random Numbers on the Chro-
mosome. If it is decided to change 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and
𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟, we need to calibrate the chromosome to
represent the new situation by the following configurations.
During the integration process, the positions of the random
numbers are considered. In Figure 4, parent 2 is taken into
account to explain the calibration phase. The orders of

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 and𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 are split into 2 suborders (no split
for the orders of𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐵) for the considered chromosome.
Due to simplicity, the sections of the number of suborders are
not shown on the chromosomes of Figures 7 and 8.

(i) Intervehicle type interchange: Figure 7 shows the
before and after interchange of the customers on the
same vehicle type. The genes of a chromosome can
be labeled as “selected genes from the chromosome”
and “nonselected genes from the chromosome.” The
realized interchanges are shown in bold on the
after interchange section. The steps of interchanging
𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 for the example
are as follows.

(I) Random numbers of the customers to be
exchanged are 0.40 for 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 →

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 and 0.62 for 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 →

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 to be changed to 0.62 for
𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 → 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴, and 0.40
for 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 → 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶.

(II) After the interchange, 0.40 is smaller than 0.62,
and hence there is no need to change other ran-
dom numbers for 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶. Because, the cur-
rent situation guarantees 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 to select
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒1.

(III) After the interchange, 0.62 is bigger than
0.40, and hence other random numbers for
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴, which are smaller than 0.62 (as
0.41) in the “nonselected genes from chromo-
some,”must be changed.Anew randomnumber
(bigger than 0.62) will be randomly generated
(as 0.96) and changed to 0.41. Another random
number, smaller than 0.62, is 0.61 in the “nonse-
lected genes from chromosome” for𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴.
Therefore, a new random number (bigger than
0.62) will be randomly generated (as 0.75) and
changed to 0.61.

(ii) Intravehicle type exchange: Figure 8 shows the before
and after exchange of the customers on two dif-
ferent vehicle types. The realized exchanges are
shown in bold on the after exchange section of
Figure 8. The steps of exchanging 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and
𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 for the example of Figure 8 are as
follows. Value(𝑖) is amaximum randomnumber value
for 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 on 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒. Similarly,
Value(𝑗) is a maximum random number value for
𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 on 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒.

(I) The random numbers for 𝐺𝑒𝑛𝑒(𝑖) and Value(𝑖)
are exchanged in the chromosome. Also, the
random numbers for 𝐺𝑒𝑛𝑒(𝑗) and Value(𝑗) are
exchanged in the chromosome.

(II) Between “selected genes from chromosome”
and “nonselected genes from chromosome,”
customers for 𝐺𝑒𝑛𝑒(𝑖) and Value(𝑖) are
exchanged. And similarly customers for
𝐺𝑒𝑛𝑒(𝑗) and Value(𝑗) are exchanged.
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Figure 7: An example for the calibration of the random numbers on the chromosome for intervehicle type interchanges.
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Figure 8: An example for the calibration of the random numbers on the chromosome for intravehicle type exchanges.

(III) After the exchange, it must be checked if
there is a random number in the “nonselected
genes from chromosome” for𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 →

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 that is smaller than the random
number of 𝐺𝑒𝑛𝑒(𝑗) (equal to 0.84) or other
selected value of𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴 (equal to 0.34). For
example, 0.41 is smaller than 0.84. Therefore,
another random number (bigger than 0.84) will
be randomly generated (as 0.95) and changed to
0.41.

(IV) It must also be checked if there is a random
number in the “nonselected genes from chro-
mosome” for 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 → 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶

that is smaller than the random number of
𝐺𝑒𝑛𝑒(𝑖) (equal to 0.40) or other selected value
of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐶 (equal to 0.62). For example,
0.61 is smaller than 0.62. Thus, another random
number (bigger than 0.62) will be randomly
generated (as 0.87) and changed to 0.61.

As mentioned before, we consider a real-world MCHF/
OVRP/SDMP problem. We first model the real system with
mixed-integer programming, and then we develop a hybrid
genetic-local search algorithm. We determine the required
parameters and their values for the algorithms. We compare
these algorithms with randomly generated problems using
real-world parameters and detail the computational results in
the next section.

4. Computational Results

4.1. Dataset. We consider the distribution network of a
production company in Turkey. The company produces two
types of products and uses a fleet of vehicles of a 3PL provider
for distribution of goods to customers. In order to evaluate
the performance of MIP and GA, we use the real-world
data which are supplied from the 3PL provider. We gather
the information of transportation costs, vehicle types and
specialties, and properties of products from the 3PL provider,
which are presented in Tables 5, 6, and 7, respectively.
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Table 5: Stopping and transportation costs for the customers.

Vehicle type Truck TIR
Stopping cost 40$ 80$
Transportation cost 1000$ 1500$

Table 6: Volume and weight coefficient for each type of vehicle.

Capacity Weight (kg) Volume (m3)
𝑇𝑟𝑢𝑐𝑘𝑠 15,500 45
𝑇𝐼𝑅𝑠 25,000 84

We investigate the real-world demands and determine
the distribution of them for two products as seen in Table 8.
We represent the connections between customers with a 0-
1 “Route (𝑅𝑖𝑗)” matrix as in MIP model. The 𝑅𝑖𝑗 matrix is
defined by the 3PL provider considering various constrains
such as highway conditions or experiences of drivers. To
generate different problems, we determine the 𝑅𝑖𝑗 matrix
randomly for each problem. We develop 𝑛 × 𝑛 matrix for 𝑛

customers and define the cells by 𝑈(0, 1) distribution. If the
𝑅𝑎𝑏 value of customer 𝑎 and customer 𝑏 is 1, it means that
there is a connection between the customer 𝑎 and customer
𝑏. We also correct the diagonal of the matrix which should be
1. The generated examples can be found in [18].

4.2. Experimental Results. We generate different sizes of
problems with different number of customers (varies from 10
to 90) which can be found in [18]. All experiments are run on
a personal computer with an Intel Core i7-3612QM processor
running at 2.10GHz. We use C# for the GA implementation
and CPLEX 12.4 for the MIP model. Before comparing MIP
and GA, we first analyze the performance of MIP with
different time limits. We limit MIP with 1800, 3600, and
7200 seconds and represent the results as MIP 18, MIP 36,
and MIP 72, respectively. In the real-world application, the
company has more than 50 customers. Although we prepare
samples up to 90 customers, we could not use all of them
since MIP 7200 could not find any feasible solution within
time limits for the problem with 60 customers. Therefore,
we restrict Table 9 with the samples up to 50 customers. We
increase the number of samples for small-size problem, but
the gap% gets bigger after 30 customers and problems get
harder to solve; thus we generate only one problem for more
than 30 customers.The gap% for theMIPmodels is calculated
by the branch and bound algorithm in CPLEX 12.4 as in
(11), where the best solution is represented by 𝑧

󸀠 and the best
integer solution is represented by 𝑧∗.The experimental results
are detailed in Table 9,

Gap% =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
󸀠
− 𝑧

∗󵄨󵄨
󵄨
󵄨
󵄨

𝑒
−10

+ |𝑧
∗
|

. (11)

The first part of Table 9 gives the information about samples,
the second part presents the objective function values found
within different time limits, the third part shows the required
time for solutions, and the fourth part indicates the gap%
values which are calculated by CPLEX 12.4. The last part

Table 7: Volume and weight coefficient for each product.

Coefficient Weight (kg) Volume (m3)
𝑃𝑟𝑜𝑑𝑢𝑐𝑡1 10.75 0.28
𝑃𝑟𝑜𝑑𝑢𝑐𝑡2 1131 1.67

Table 8: Uniform distribution of demands of customers.

Product type Distribution
𝑃𝑟𝑜𝑑𝑢𝑐𝑡1 𝑈 (5; 250)
𝑃𝑟𝑜𝑑𝑢𝑐𝑡2 𝑈 (2; 16)

shows the improvements in percentage between time limits;
the first column (18–36) presents the improvement in total
cost if we run the MIP model within 3600 seconds instead
of 1800 seconds, the second column (18–72) presents the
improvement in total cost if we run the MIP model within
7200 seconds instead of 1800 seconds, and the last column
(36–72) presents the improvement in total cost if we run the
MIP model within 7200 seconds instead of 3600 seconds.

Table 9 indicates that theMIPmodel solves the small-size
problems (10 customers) optimally withinminutes.When the
number of customers increases to 15, MIP generates similar
results with all time limits, but it could not prove the optimal-
ity of solutions within time limits. Considering the problems
that contain 20–50 customers, the difference between time
limits becomes clear, and MIP 7200 performs better than
the other compared options. In addition, MIP 7200 reaches
solutions with smaller gap which are close to optimality as
seen in the gap% part. Although the solutions look similar
with different time limits, the improvement part clarifies the
contribution of 7200 time limits to model results. If we use
3600 seconds instead of 1800 seconds, we improve the results
with an average of 1.15%. However, if we use 7200 seconds,
we improve the results with an average of 2.38%. Moreover,
the real-world applications usually contain more than 50
customers, and the MIP 7200 model would provide better
feasible results for larger examples; thus we limit MIP within
7200 seconds for next comparisons.

We compare the MIP model with the GA by using
same randomly generated samples in previous experiment
[18]. We limit MIP within 7200 seconds and determine the
generation limits for GA as 500 generations. We detail the
comparison between MIP and GA in Table 10. The first
column shows the number of customers in each problem,
the second column indicates the number of problems, the
third part demonstrates the objective/fitness function of the
MIP and GA, and the fourth part indicates the solution time
of algorithms. We calculate the gap% for GA similar with
the branch and bound algorithm by using the MIP result
as the best solution in (12). The last two parts demonstrate
the number of vehicles used by the algorithms. We define
an upper bound for the vehicles in order to limit the vehicle
index in theMIPmodel; however, the GA does not need such
an upper bound:

Gap% =

𝑀𝑒𝑡ℎ𝑜𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

∗ 100. (12)
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Table 9: Comparison of MIP models with different time limits.

Customers Problem Total cost Elapsed time Gap% Improvement%
MIP 18 MIP 36 MIP 72 MIP 18 MIP 36 MIP 72 MIP 18 MIP 36 MIP 72 18–36 18–72 36–72

10

1 9,400 9,400 9,400 340 340 340 0.00 0.00 0.00 0 0 0
2 11,360 11,360 11,360 82 82 82 0.00 0.00 0.00 0 0 0
3 10,700 10,700 10,700 131 131 131 0.00 0.00 0.00 0 0 0
4 8,900 8,900 8,900 107 107 107 0.00 0.00 0.00 0 0 0
5 11,820 11,820 11,820 100 100 100 0.00 0.00 0.00 0 0 0

15

1 18,180 18,140 18,140 1800 3600 7200 37.14 28.54 26.79 0.22 0.22 0
2 14,140 14,100 14,100 1800 3600 7200 29.15 20.81 19.56 0.28 0.28 0
3 13,600 13,600 13,600 1800 3600 7200 29.19 21.34 19.98 0 0 0
4 16,180 16,100 16,100 1800 3600 7200 31.00 24.84 23.54 0.49 0.49 0
5 15,020 15,020 15,020 1800 3600 7200 31.03 23.50 22.32 0 0 0

20

1 19,840 19,760 19760 1800 3600 7200 34.78 6.40 6.37 0.40 0.40 0
2 22,540 21,960 21,880 1800 3600 7200 42.35 5.19 4.77 2.57 2.93 0.36
3 20,420 19,380 19,380 1800 3600 7200 35.58 6.50 6.47 5.09 5.09 0
4 21,220 20,800 20,800 1800 3600 7200 36.51 6.92 6.88 1.98 1.98 0
5 19,380 18,260 18,260 1800 3600 7200 33.43 5.75 5.75 5.78 5.78 0

30 1 29,780 29,740 29,740 1800 3600 7200 23.65 22.81 21.96 0.13 0.13 0
40 1 42,920 41,300 41,300 1800 3600 7200 30.05 30.05 27.27 3.77 3.77 0
50 1 68,200 68,200 53,380 1800 3600 7200 51.98 51.96 38.62 0 21.73 21.73

Avg. 24.77 8.47 3.02 1.15 2.38 1.23

Table 10: The comparison of MIP and GA.

Customers Problem Total cost Elapsed time Gap Number of trucks Number of TIRs
MIP GA MIP GA MIP GA MIP GA MIP GA

10

1 9,400 9,900 340 42 — 5.32 4 2 2 5
2 11,360 11,360 82 40 — 0.00 5 2 4 6
3 10,700 11,120 131 40 — 3.93 3 2 5 6
4 8,900 9,820 107 49 — 10.34 4 5 3 3
5 11,820 12,400 100 45 — 4.91 4 3 5 6

15

1 18,140 18,640 7200 110 26.79 2.76 6 3 8 10
2 14,100 14,940 7200 106 19.56 5.96 3 4 7 7
3 13,600 14,900 7200 112 19.98 9.56 4 7 6 5
4 16,100 17,520 7200 98 23.54 8.82 4 5 8 8
5 15,020 15,980 7200 120 22.32 6.39 3 8 8 5

20

1 19,760 21,720 7200 217 6.37 9.92 1 3 12 12
2 21,880 24,060 7200 209 4.77 9.96 0 7 13 11
3 19,380 22,220 7200 216 6.47 14.65 2 8 11 9
4 20,800 23,360 7200 204 6.88 12.31 2 5 12 12
5 18,260 20,760 7200 202 5.75 13.69 1 5 11 10

30 1 29,740 36,120 7200 636 21.96 21.45 9 8 13 18
40 1 41,300 46,020 7200 1309 27.27 11.43 5 10 23 23
50 1 53,380 65,360 7200 3314 38.62 22.44 17 33 24 21
60 1 ∗ 79,020 7200 4371 100.00 ∗∗ ∗ 21 ∗ 37
70 1 ∗ 81,920 7200 7724 100.00 ∗∗ ∗ 28 ∗ 34
80 1 ∗ 98,020 7200 9932 100.00 ∗∗ ∗ 30 ∗ 43
90 1 ∗ 118,440 7200 15146 100.00 ∗∗ ∗ 39 ∗ 50

Avg. 5598 2011 37.08 9.66
∗MIP could not find any feasible solution within time limits.
∗∗Gap% values for GA could not be calculated because of the deficiency of MIP cells.
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For all generations 𝐺
For the population 𝑃

For all chromosomes 𝐶
𝑖 = 0 to 𝑔

𝑗 = 𝑖 + 1 to 𝑔

If 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 (inter-Vehicle Types interchange)
(i) If 𝑗 = 𝑖 + 1 (adjacent customers)

(a) 𝑎 = 0; 𝑏 = 0; 𝑐 = 0;
(b) If 𝑖 > 0 & 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑖 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑎 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖−1,𝑗) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖−1,𝑖))

+ (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑖) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑗))

(c) If 𝑖 == 0 ‖ 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒! = 𝐺𝑒𝑛𝑒(𝑖 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑏 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑗) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑖))

+ (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑖) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑗))

(d) If 𝑗 < 𝑔 − 1 & 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑗 + 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑐 = 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑗+1) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑗+1)

(e) If 𝑎 + 𝑏 + 𝑐 < 0

(1) In this case 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 are interchanged
(2) Calibrate the random key numbers (Section 3.2.2 item (i))

(ii) If 𝑗 > 𝑖 + 1 (nonadjacent Customers)
(a) 𝑎 = 0; 𝑏 = 0; 𝑐 = 0;
(b) If 𝑖 > 0 & 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑖 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑎 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖−1,𝑗) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖−1,𝑖))

+ (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑖+1) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑖+1))

+ (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗−1,𝑖) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗−1,𝑗))

(c) If 𝑖 == 0 ‖ 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒! = 𝐺𝑒𝑛𝑒(𝑖 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑏 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑗) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑖))

+ (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑖+1) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑖+1))

+ (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗−1,𝑖) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗−1,𝑗))

(d) If 𝑗 < 𝑔 − 1 & 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑗 + 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑐 = 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑗+1) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑗+1)

(e) If 𝑎 + 𝑏 + 𝑐 < 0

(1) In this case 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 are interchanged
(2) Calibrate the random key numbers (Section 3.2.2 item (i))

If 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 = 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒(intra-Vehicle Types exchanging)
(i) 𝑎 = 0; 𝑎1 = 0; 𝑎2 = 0; 𝑏 = 0; 𝑏1 = 0; 𝑏2 = 0;
(ii)𝑀𝑎𝑥𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝐷1 = 0;𝑀𝑎𝑥𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝐷2 = 0;
(iii) 𝑎 = 𝑇𝑇𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 + 𝑈𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗) − 𝑈𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖)

(iv) If 𝑖 > 0 & 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑖 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑎1 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖−1,𝑗) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖−1,𝑖))

(v) If 𝑖 == 0 ‖ 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒! = 𝐺𝑒𝑛𝑒(𝑖 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑎1 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑗) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑖))

(vi) If 𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑖 + 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑎2 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑖+1) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑖+1))

(vii) 𝑏 = 𝑇𝑇𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 + 𝑈𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖) − 𝑈𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗)

(viii) If 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑗 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑏1 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗−1,𝑖) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗−1,𝑗))

(ix) If 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒! = 𝐺𝑒𝑛𝑒(𝑗 − 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑏1 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑖) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑗))

(x) If 𝑗 < 𝑔 − 1 & 𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒 == 𝐺𝑒𝑛𝑒(𝑗 + 1)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒

𝑏2 = (𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑖,𝑗+1) − 𝑇𝐶𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑗,𝑗+1))

𝑎 = 𝑎 + 𝑎1 + 𝑎2

𝑏 = 𝑏 + 𝑏1 + 𝑏2

𝑀𝑎𝑥𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝐷1 = 𝑀𝑎𝑥 (𝑇𝑇𝐺𝑒𝑛𝑒(𝑖)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒; 𝑇𝑇𝐺𝑒𝑛𝑒(𝑗)𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑇𝑦𝑝𝑒)

𝑀𝑎𝑥𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝐷2 = 𝑀𝑎𝑥 (𝑎; 𝑏)

Algorithm 1: Continued.
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(xi) If𝑀𝑎𝑥𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝐷2 < 𝑀𝑎𝑥𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝐷1

(a) In this case 𝐺𝑒𝑛𝑒(𝑖)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐺𝑒𝑛𝑒(𝑗)𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 are exchanged
(b) Calibrate the random key numbers (Section 3.2.2 item (ii))

Algorithm 1: Local search.

Experimental results show that MIP is able to solve the
problems with 10 customers to optimality. However, for the
problems that contain 20–50 customers, MIP could not reach
the optimal solutions within time limits (2 hours). Moreover,
MIP could not provide any feasible solution in 2 hours
for large-size problems that contain 60–90 customers. On
the other hand, GA is able to reach similar results with a
9.66% gap. In addition, the GA provides feasible solutions
for larger problems which have similar size with real-world
applications. The last three results of GA’s elapsed time are
higher than 7200 seconds, which are shown in Italic. It is
possible to decrease the elapsed time via decreasing the
number of generations. For example, if the same algorithm
would run with 250 generations instead of 500 generations
for the problem of 70 customers, the elapsed time would be
3817.24 seconds and total cost would be 85.660. Therefore,
we can change the parameters of GA in order to catch the
flexibility of real-world applications, and we can arrange
them to reach feasible solutions within desirable times. In
conclusion, the number of customers increases, the problem
becomes harder to solve for both MIP and GA. However for
the real-world applications, GA is preferable rather thanMIP
to reach feasible solutions in short time periods, by arranging
the algorithm’s parameters.

5. Conclusions and Directions for
Future Research

In this paper, we introduce a vehicle routing problem, the
MCHF/OVRP/SDMP, which has not yet been investigated in
detail so far.With the aimofminimizing the total distribution
cost, we have formulated a MIP model for the problem
and developed a solution approach based on a genetic-local
search algorithm requiring much less computational time
than the MIP. Since the problem type discussed in this
paper is not exactly the same as those in the literature, we
randomly generated different problems with different routes
and demands. We used these problems to evaluate the MIP
model and the GA. The experimental results showed that
although MIP was able to find better solutions than GA
for small-size problems, it was not possible to obtain any
feasible solutions of large-size problems within time limits.
On the other hand, GA was able to reach feasible solutions
of large-size problems in shorter time periods. However, the
gap% between GA and MIP is greater than expected, and
therefore, we continue our research to improve GA and to
investigate new solution methods for this unique vehicle
routing problem. Generating hybrid algorithms through the
use of different metaheuristics might be a worthwhile avenue
of research.

Appendix

The pseudocode for the local search: for brevity, only the key
steps are detailed. C# notation is used see Algorithm 1.
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