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This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally
stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This
numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The
numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is
efficient and reliable.

1. Introduction

One of the modern financial theory’s biggest successes in
terms of both approach and applicability has been the Black-
Scholes option pricingmodel developed by Black and Scholes
in 1973 [1] and previously by Merton [2]:
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where 𝑟 > 0 and 𝜎
0
are given real constants that represent

the interest rate and the volatility, respectively, 𝑠 is the price
of the underlying asset, and 𝑇 is the maturity date. The
celebrated Black-Scholes model is based on several restric-
tive assumptions such as liquid, frictionless, and complete
markets. In recent years, nonlinear Black-Scholes models
have been used to build transaction costs, market liquidity,
or volatility uncertainty into the celebrated Black-Scholes
concept.

In this paper, we are interested in the option pricing
model with transaction costs proposed by Barles and Soner
[3] that are motivated by Hodges and Neuberger [4]. In
practice, transaction costs arise when trading securities.

Recent studies of their influence reveal that they result in
a nonnegligible increase in the option price, although they
are generally small for institutional investors. To show this
increase, in Barles and Soner’s model, the constant volatility
𝜎
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where 𝑎 = 𝜇√𝛾𝑃with the proportional transaction cost being
𝜇, the risk aversion factor being 𝛾, and the number of options
to be sold being 𝑃, and Ψ(𝑥) is the solution of the following
ordinary differential equation:
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, 𝑥 ̸= 0, Ψ (0) = 0. (3)

Barles and Soner’s option pricing model now reads
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with the terminal condition

𝑉 (𝑠, 𝑇) = 𝑓 (𝑠) , 𝑠 ∈ Ω := (0, +∞) . (5)

The payoff function 𝑓(𝑠) is assumed to be a continuous
piecewise linear function.

Many results have been reported for the numerical
solutions of linear Black-Scholes equations (see, e.g., [5–9]).
On the other hand, because of the nonlinear nature of this
model, numericalmethods aremandatory to price derivatives
and portfolios.The strong nonlinearity of problem (4) makes
it difficult to obtain the reliable numerical solutions. Implicit
numerical schemes have been used for numerically solving
nonlinear option pricing PDEs [10], and an iterative approach
is required to solve the nonlinear algebraic equation resulting
from the discretization, which results in more computational
cost. Consequently, some high-order compact semi-implicit
difference schemes are proposed for numerically solving the
nonlinear option pricing model [11, 12]. Some researchers
(see, e.g., [3, 13–15]) have also constructed explicit finite
difference schemes for (4)-(5) and investigated their con-
sistency and stability. However, these explicit schemes have
the disadvantage that strictly restrictive conditions on the
discretization parameters are needed to guarantee stability
and positivity. To relax the restrictive conditions, in [16],
Zhou et al. proposed an unconditionally stable explicit finite
difference scheme based on a nonstandard approximation
of the second partial derivative. However, this scheme is
conditionally consistent, and the truncation error depends
on the ratio of the time stepsize and the square of the space
stepsize.

In this paper, we will consider a splitting method with
inhomogeneous boundary conditions. This method pro-
posed here is unconditionally stable, monotone, and positiv-
ity preserving. It is also consistent and essentially a “limit”
version of the LOD-Backward Euler method (see Chapter IV
on splitting methods in [17]) and therefore allows us to solve
the discrete equation explicitly.

The paper is organized as follows: we begin by trans-
forming the original equations into nonlinear heat equations
and considering the spatial semidiscretization. The splitting
scheme will be discussed in Section 3 after linearization
of semidiscrete system. The stability, the monotonicity, the
positivity-preserving property, and the convergence of this
scheme are analysed in Section 4. To illustrate our method,
we present some numerical experiments in Section 5. Finally,
we give a summary.

2. Transformation and
Spatial Semidiscretization

2.1. Preliminaries. We first consider the properties of the
functionΨ appearing in (2), whichwill play an important role
in the following numerical analysis.

Lemma 1 (see [14, 15]). The solution Ψ of ODE (3) exists and
is unique, and it satisfies the following:

(1) Ψ is an increasing function mapping the real line onto
the interval (−1, +∞);

(2) Ψ = Ψ(𝑥) is implicitly defined by

𝑥 = (−
arcsinh√Ψ
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+ √Ψ)

2
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2
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(6)

(3) if 𝑥 > 0, then the function Ψ(𝑥) is bounded and
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) ≈ 2.62.

(9)

Lemma 2 (see [14, 15]). The function 𝑔(𝑥) = 𝑥Ψ(𝑥) is
continuously differentiable at 𝑥 = 0 and satisfies
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2
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2
are given by (8) and (9), respectively, and
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36
.

(11)

Combining Lemma 2 and the results obtained in [3] leads
to the following lemma.

Lemma 3. The function 𝑤(𝑥) = 𝑥 + 𝑥Ψ(𝑥) is a nondecreasing
function of 𝑥 and continuously differentiable at 𝑥 = 0. This
implies that

1 + Ψ (𝑥) + 𝑥Ψ
󸀠
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𝑑
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[𝑥 + 𝑥Ψ (𝑥)] ≥ 0. (12)

2.2. The Transformed Problem. After considering the change
of variable

𝑆 = 𝑒
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𝑠, 𝑡 = 𝑇 − 𝜏, 𝑈 (𝑆, 𝑡) = 𝑒
𝑟(𝑇−𝜏)

𝑉 (𝑠, 𝜏) ,

(13)

we transform the problem (4)-(5) into the following initial
value problem
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The boundary conditions take the form of

𝑈 (0, 𝑡) = 0, 𝑈 (𝑆, 𝑡) = 𝛼 (+∞, 𝑡) , 𝑡 ∈ [0, 𝑇] , (16)

where the second boundary condition in (16) is derived by
asymptotic considerations in (𝑠, 𝜏) coordinates for extreme
value 𝑠 → ∞ and subsequent transformation. For example,
the boundary conditions for a vanilla call are given by

𝑈 (0, 𝑡) = 0, lim
𝑆→+∞

𝛼 (𝑆, 𝑡)

𝑆
= 1, 𝑡 ∈ [0, 𝑇] , (17)

and the boundary conditions for a butterfly spread are given
by

𝑈 (0, 𝑡) = 0, lim
𝑆→+∞

𝛼 (𝑆, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] . (18)

2.3. The Semidiscrete Nonlinear System. To numerically ap-
proximate the solution of (14)–(16), we should consider a
bounded numerical domain (𝑆, 𝑡) ∈ [0, 𝑏] × [0, 𝑇]. Then, the
problem (14)-(15) is equipped with the boundary conditions

𝑈 (0, 𝑡) = 0, 𝑈 (𝑏, 𝑡) = 𝛼 (𝑏, 𝑡) , 𝑡 ∈ [0, 𝑇] . (19)

Note that the second equality in (19) derives from the
second equality in (16). Taking these into consideration, the
boundary conditions for a vanilla call are given by

𝑈 (0, 𝑡) = 0, 𝑈 (𝑏, 𝑡) = 𝛼 (𝑏) = max {0, 𝑏 − 𝐸} ,

𝑡 ∈ [0, 𝑇] ,

(20)

where 𝐸 is the strike price, and the boundary conditions for
a butterfly spread are given by

𝑈 (0, 𝑡) = 0, 𝑈 (𝑏, 𝑡) = 𝛼 (𝑏) = 𝑓 (𝑏) , 𝑡 ∈ [0, 𝑇] . (21)

We introduce the spatial grid Ω
ℎ
with step ℎ by the nodes

𝑆
𝑖
= 𝑖ℎ, 𝑖 = 0, 1, . . . ,𝑀, so that 𝑀ℎ = 𝑏. After performing

the second-order central finite difference approximation of
the partial derivative (𝜕2𝑈/𝜕𝑆
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2
) ,

(22)

we obtained the correspondingODEs system for the semidis-
crete solution 𝑢(𝑡) = [𝑈

1
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2
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(24)

where 𝑔 ∈ R𝑀−1 is a vector, generated by the boundary
conditions,

𝑔 (𝑢 (𝑡)) =
1

ℎ2
[0, 0, . . . , 0, 𝛽

𝑀−1
𝛼 (𝑏)]

𝑇

. (25)

Obviously, the semidiscrete difference scheme (23) is
consistent. For the stability, we have the following theorem.

Theorem 4. For system (23), the following maximum norm
contractivity holds:

‖𝑢(𝑡) − 𝑢̃(𝑡)‖∞ ≤ ‖𝑢(0) − 𝑢̃(0)‖∞, ∀𝑡 ∈ [0, 𝑇] , (26)

where 𝑢̃ is the solution of the perturbation problem

𝑢̃
󸀠
(𝑡) = 𝐴 (𝑢̃ (𝑡)) 𝑢̃ (𝑡) + 𝑔 (𝑢̃ (𝑡)) , 𝑡 ∈ [0, 𝑇] , (27)

with the initial data 𝑢̃(0).

Proof. To obtain the stability of the semidiscrete difference
scheme (23), we first calculate
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Now, let nonlinear operator 𝐹(𝑢) be defined by 𝐹(𝑢) =

𝐴(𝑢)𝑢 + 𝑔(𝑢). For system (23), we have
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Δ
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by Lemma 3, we obtain

𝜕𝐹
𝑖
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𝑖
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𝑖
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𝑖
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𝑖+1
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Then, inequality (26) follows from 𝜇
∞
[𝐽
𝐹
(𝑢)] = 0 [18], where

𝐽
𝐹
(𝑢) is the Jacobian matrix of 𝐹 and 𝜇

∞
[⋅] is the logarithmic

maximum norm.



4 The Scientific World Journal

3. Splitting Time-Stepping Method

In this section, we will focus on the time integrationmethods
of system (23). The implicit numerical schemes are generally
viewed as stable methods, but [10] showed that the stability of
the BDF schemeswith orders 1 and 2 and theCrank-Nicolson
scheme is still restricted by a condition. Additionally, for the
implicit schemes, the nonlinear iteration will be required and
will produce the additional computational cost in each time
step. Fully explicit finite difference schemes for the PDEs (14)-
(15) are also constructed in [3, 13–15].However, these schemes
are stable only for the severe restriction on the time stepsize
Δ𝑡. For example, in [14], the condition reads

Δ𝑡

ℎ3
[(1 + 𝑑

2
) ℎ + 4𝑎

2
𝐸
2
Ψ
󸀠
(𝑥
2
)] ≤

1

8𝐸2
. (32)

To relax the condition, in this paper, we will propose an
unconditionally stable method, which allows us to solve the
discrete equation explicitly, based on the LOD-Backward
Euler method (see Chapter IV on splitting methods in [17]).

3.1. Linearization System. Let us set 𝑡
𝑛
= 𝑛Δ𝑡, 𝑛 = 1, 2, . . . , 𝑁,

for the temporal stepsize Δ𝑡 = 𝑇/𝑁. To linearize the
nonlinear system (23), we allow the nonlinearities in (23) to
lag one step behind and obtain the following linear system:

𝑢
󸀠
(𝑡) = 𝐴 (𝑢 (𝑡

𝑛
)) 𝑢 (𝑡) + 𝑔 (𝑢 (𝑡

𝑛
)) = 𝐴

𝑛
𝑢 (𝑡) + 𝑔

𝑛
,

𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] ,

(33)

with

𝐴
𝑛
=
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ℎ2
tridiag (𝛽𝑛

𝑖
, −2𝛽
𝑛

𝑖
, 𝛽
𝑛

𝑖
) ,

𝑔
𝑛
=

1

ℎ2
[0, 0, . . . , 0, 𝛽

𝑛

𝑀−1
𝛼 (𝑏)]

𝑇

,

(34)

where

𝛽
𝑛

𝑖
= 𝜎
2

𝑖,𝑛
𝑆
2

𝑖
, 𝜎

2

𝑖,𝑛
=

1

2
𝜎
2

0
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𝑛

𝑖
) ,

Ψ
𝑛

𝑖
= Ψ (𝑎

2
𝑆
2

𝑖
Δ
𝑖
𝑈
𝑛
) ,

Δ
𝑖
𝑈
𝑛
=

𝑈
𝑛

𝑖−1
− 2𝑈
𝑛

𝑖
+ 𝑈
𝑛

𝑖+1

ℎ2
, 𝑈
𝑛
= [𝑈
𝑛

1
, 𝑈
𝑛

2
, . . . , 𝑈

𝑛

𝑀−1
]
𝑇

.

(35)

For this linearized system, we have

𝑢 (𝑡) = 𝑒
(𝑡−𝑡
𝑛
)𝐴
𝑛𝑢 (𝑡
𝑛
) + ∫

𝑡

𝑡
𝑛

𝑒
(𝑡−𝑠)𝐴

𝑛𝑔
𝑛
𝑑𝑠, (36)

and therefore

𝑢 (𝑡) = 𝑒
(𝑡−𝑡
𝑛
)𝐴
𝑛𝑢 (𝑡
𝑛
) + [𝑒

(𝑡−𝑡
𝑛
)𝐴
𝑛 − 𝐼]𝐴

−1

𝑛
𝑔
𝑛
. (37)

3.2. Numerical Method Construction. In this subsection, we
construct a splitting time-stepping method based on (37). In
this paper, for matrices 𝐶

𝑖
, we define

𝑀−1

∏

𝑖=1

𝐶
𝑖
:= 𝐶
𝑀−1

𝐶
𝑀−2

⋅ ⋅ ⋅ 𝐶
2
𝐶
1
. (38)

Then, the following is not true in general:

𝑀−1

∏

𝑖=1

𝐶
𝑖
= 𝐶
1
𝐶
2
⋅ ⋅ ⋅ 𝐶
𝑀−2

𝐶
𝑀−1

. (39)

Let us consider the following splitting:

𝐴
𝑛
=

𝑀−1

∑

𝑖=1

𝐴
𝑛,𝑖
, 𝑔

𝑛
=

𝑀−1

∑

𝑖=1

𝑔
𝑛,𝑖
, (40)

with

𝐴
𝑛,1

=
1

ℎ2

[
[
[
[

[

−2𝛽
𝑛

1
𝛽
𝑛

1
⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

]

,

𝐴
𝑛,𝑀−1

=
1

ℎ2

[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 𝛽
𝑛

𝑀−1
−2𝛽
𝑛

𝑀−1

]
]
]
]
]
]

]

,

𝐴
𝑛,𝑖

=
1

ℎ2

[
[
[
[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

...
... d

...
...

...
...

0 ⋅ ⋅ ⋅ 𝛽
𝑛

𝑖
−2𝛽
𝑛

𝑖
𝛽
𝑛

𝑖
⋅ ⋅ ⋅ 0

...
...

...
... d

...
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑖 = 2, 3, . . . ,𝑀 − 2,

𝑔
𝑛,𝑖

= 0, 𝑖 = 1, 2, . . . ,𝑀 − 2,

𝑔
𝑛,𝑀−1

=
1

ℎ2
[0, 0, . . . , 0, 𝛽

𝑛

𝑀−1
𝛼 (𝑏)]

𝑇

,

(41)

where 0 ∈ R𝑀−1 is the zero vector. Obviously, other choices
for 𝑔
𝑛,𝑖

are possible; for example, 𝑔
𝑛,1

= 𝑔
𝑛
, 𝑔
𝑛,𝑖

= 0, 𝑖 =

2, 3, . . . ,𝑀 − 1.
With the splitting (40), we solve the𝑀 − 1 subproblems:

𝑑𝑢
𝑖
(𝑡)

𝑑𝑡
= 𝐴
𝑛,𝑖
𝑢
𝑖
(𝑡) + 𝑔

𝑛,𝑖
, 𝑢
𝑖
(𝑡
𝑛
) = 𝑢
𝑖−1

(𝑡
𝑛
) ,

𝑖 = 1, 2, . . . ,𝑀 − 1,

(42)

starting from𝑢
0
(𝑡
𝑛
) = 𝑢(𝑡

𝑛
), andwe take𝑢(𝑡

𝑛+1
) = 𝑢
𝑀−1

(𝑡
𝑛+1

)

to complete the splitting integration step.
Then, if the Backward Euler method is used to solve every

subproblem, we get

𝑢
𝑖

𝑛
= [𝐼 − Δ𝑡𝐴

𝑛,𝑖
]
−1

𝑢
𝑖−1

𝑛
+ [𝐼 − Δ𝑡𝐴

𝑛,𝑖
]
−1

Δ𝑡𝑔
𝑛,𝑖
, (43)
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where 𝑢𝑖
𝑛
is an approximation of 𝑢𝑖(𝑡

𝑛
). It is easily verified that

thematrix 𝐼−Δ𝑡𝐴
𝑛,𝑖
is𝑀-matrix and therefore is nonsingular.

By induction, we have

𝑢
𝑛+1

= 𝑢
0

𝑛+1
= 𝑢
𝑀−1

𝑛
=

𝑀−1

∏

𝑖=1

[𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1

𝑢
𝑛

+

𝑀−1

∑

𝑗=1

𝑀−1

∏

𝑖=𝑗+1

[𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1

[𝐼 − Δ𝑡𝐴
𝑛,𝑗
]
−1

Δ𝑡𝑔
𝑛,𝑗
,

(44)

which implies that for the splitting (41)

𝑢
𝑛+1

=

𝑀−1

∏

𝑖=1

[𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1

𝑢
𝑛
+ [𝐼 − Δ𝑡𝐴

𝑛,𝑀−1
]
−1

Δ𝑡𝑔
𝑛,𝑀−1

.

(45)

For other choices of 𝑔
𝑛,𝑖
, we can similarly obtain correspond-

ing splitting schemes.
By brief calculation, one can obtain an explicit expression

of matrix [𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1:

[𝐼 − Δ𝑡𝐴
𝑛,1

]
−1

=

[
[
[
[
[
[

[

ℎ
2

ℎ2 + 2Δ𝑡𝛽𝑛
1

Δ𝑡𝛽
𝑛

1

ℎ2 + 2Δ𝑡𝛽𝑛
1

⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]

]

,

[𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅
Δ𝑡𝛽
𝑛

𝑖

ℎ2+2Δ𝑡𝛽𝑛
𝑖

ℎ
2

ℎ2+2Δ𝑡𝛽𝑛
𝑖

Δ𝑡𝛽
𝑛

𝑖

ℎ2+2Δ𝑡𝛽𝑛
𝑖

⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑖 = 2, 3, ⋅ ⋅ ⋅ ,𝑀 − 2,

[𝐼 − Δ𝑡𝐴
𝑛,𝑀−1

]
−1

=

[
[
[
[
[
[
[
[

[

1 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 1 0

0 0 ⋅ ⋅ ⋅
Δ𝑡𝛽
𝑛

𝑀−1

ℎ2 + 2Δ𝑡𝛽𝑛
𝑀−1

ℎ
2

ℎ2 + 2Δ𝑡𝛽𝑛
𝑀−1

]
]
]
]
]
]
]
]

]

.

(46)

Then, we get the following explicit formula for computing
𝑢
𝑛+1

= [𝑈
𝑛+1

1
, 𝑈
𝑛+1

2
, . . . , 𝑈

𝑛+1

𝑀−1
]
𝑇, where 𝑈

𝑛

𝑖
is an approxima-

tion of 𝑈(𝑆
𝑖
, 𝑡
𝑛
):

𝑈
𝑛+1

1
=

ℎ
2

ℎ2 + 2Δ𝑡𝛽𝑛
1

𝑈
𝑛

1
+

Δ𝑡𝛽
𝑛

1

ℎ2 + 2Δ𝑡𝛽𝑛
1

𝑈
𝑛

2
,

𝑈
𝑛+1

𝑖
=

Δ𝑡𝛽
𝑛

𝑖

ℎ2 + 2Δ𝑡𝛽𝑛
𝑖

𝑈
𝑛+1

𝑖−1
+

ℎ
2

ℎ2 + 2Δ𝑡𝛽𝑛
𝑖

𝑈
𝑛

𝑖
+

Δ𝑡𝛽
𝑛

𝑖

ℎ2 + 2Δ𝑡𝛽𝑛
𝑖

𝑈
𝑛

𝑖+1
,

𝑖 = 2, 3, . . . ,𝑀 − 2,

𝑈
𝑛+1

𝑀−1
=

Δ𝑡𝛽
𝑛

𝑀−1

ℎ2 + 2Δ𝑡𝛽𝑛
𝑀−1

𝑈
𝑛+1

𝑀−2
+

ℎ
2

ℎ2 + 2Δ𝑡𝛽𝑛
𝑀−1

𝑈
𝑛

𝑀−1

+
Δ𝑡𝛽
𝑛

𝑀−1

ℎ2 + 2Δ𝑡𝛽𝑛
𝑀−1

𝛼 (𝑏) .

(47)

For the finite-dimensional discrete system (33), the split-
ting in the numerical scheme (45) is such that all com-
putations become effectively “truly” one-dimensional. The
numerical scheme (45) can be viewed as a “limit” version of
LOD-Backward Euler method (see Chapter IV on splitting
methods in [17]).

4. Properties of the Numerical Scheme

In this section, we investigate some properties of the numer-
ical scheme proposed here.

4.1. Stability. In [17], the stability of LOD-Backward Euler
method is provided. The following theorem shows the stabil-
ity of the numerical scheme (45).

Theorem 5. The numerical scheme (45) is unconditionally
stable in both the spectral norm ‖ ⋅ ‖ and the maximum norm
‖ ⋅ ‖
∞
; that is, one has the following stability inequalities:

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢0 − 𝑢̃

0

󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 0, (48)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢̃

𝑛

󵄩󵄩󵄩󵄩∞ ≤
󵄩󵄩󵄩󵄩𝑢0 − 𝑢̃

0

󵄩󵄩󵄩󵄩∞, ∀𝑛 ≥ 0. (49)

It should be pointed out that (49) can be regarded as a discrete
version of maximum norm contractivity (26).

Proof. To obtain the spectral norm stability inequality (48),
we apply the Gerschgorin theorem to the matrix 𝐴

𝑛,𝑖
and get

that the nonzero matrix eigenvalues line in the disc
󵄨󵄨󵄨󵄨󵄨
𝑧 + 2𝜎

2

𝑖,𝑛
𝑆
2

𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 2𝜎
2

𝑖,𝑛
𝑆
2

𝑖
, (50)

and therefore they are nonpositive. Then, any of the eigen-
values 𝜁

𝑖
of the matrix [𝐼 − Δ𝑡𝐴

𝑛,𝑖
]
−1, corresponding to the

eigenvalues 𝜂
𝑖
of 𝐴
𝑛,𝑖
, satisfies

󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨 ≤

1
󵄨󵄨󵄨󵄨1 − Δ𝑡𝜂

𝑖

󵄨󵄨󵄨󵄨

≤ 1. (51)

Thus, it is easy to obtain ∏
𝑀−1

𝑖=1
|𝜁
𝑖
| ≤ 1 and 𝜌(∏

𝑀−1

𝑖=1
[𝐼 −

Δ𝑡𝐴
𝑛,𝑖
]
−1
) ≤ 1, where 𝜌(⋅) denotes the spectral radius of
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the matrix. The stability inequality (48) follows from this
estimate.

We note that

𝜇
∞

[𝐴
𝑛,𝑖
] ≤ 0, 𝑖 = 1, 2, . . . ,𝑀 − 1, (52)

which directly leads to the maximum norm stability inequal-
ity (49) (see [17]).

4.2. Positivity. A nice property of the numerical scheme for
the pricing equation is positivity preserving, since the value
of option is nonnegative.

Theorem 6. The numerical scheme (45) is unconditionally
positivity preserving; that is, the solution of (45) is positive on
each time level 𝑡

𝑛+1
, 𝑛 = 0, 1, . . . , 𝑁 − 1, if 𝑢

0
is positive.

Proof. Since all entries of the matrices [𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1, 𝑖 =

1, 2, . . . ,𝑀 − 1, are nonnegative, a nonnegative solution 𝑢
𝑛+1

of (45) on each time level can be obtained in view of the
nonnegative property of 𝑔

𝑛,𝑖
and 𝑢

0
. This completes the

proof.

4.3. Monotonicity. Let us now consider the monotonicity of
the numerical scheme (45). To do this, we note that scheme
(45) can be written as

𝑈
𝑛+1

𝑖
= 𝐻 (𝑈

𝑛

𝑖−1
, 𝑈
𝑛

𝑖
, 𝑈
𝑛

𝑖+1
) , 𝑖 = 1, 2, . . . ,𝑀 − 1. (53)

For scheme (53), we have the following definition of mono-
tonicity.

Definition 7 (see [19]; see also [20, 21]). Scheme (53) is said
to be monotone if and only if 𝐻 is nondecreasing in each
argument.

The following theorem shows the monotonicity of the
numerical scheme (45).

Theorem 8. The numerical scheme (45) is unconditionally
monotone.

Proof. From the proof of Theorem 6, it is known that all
entries of the matrices [𝐼 − Δ𝑡𝐴

𝑛,𝑖
]
−1, 𝑖 = 1, 2, . . . ,𝑀 − 1,

are nonnegative.Then,𝐻 is nondecreasing in each argument,
and therefore the scheme is monotone.

4.4. Maximum Principle. From (43) and (46), it is not diffi-
cult to obtain

min {𝑈
𝑛

𝑖−1
, 𝑈
𝑛

𝑖
, 𝑈
𝑛

𝑖+1
} ≤ 𝑈

𝑛+1

𝑖
≤ max {𝑈𝑛

𝑖−1
, 𝑈
𝑛

𝑖
, 𝑈
𝑛

𝑖+1
} ,

𝑖 = 1, 2, . . . ,𝑀 − 1.

(54)

Then, we have the maximum principle

min
𝑗

{𝑈
0

𝑗
} ≤ 𝑈

𝑛

𝑖
≤ max
𝑗

{𝑈
0

𝑗
} ,

𝑖 = 1, 2, . . . ,𝑀 − 1, ∀𝑛 ≥ 0,

(55)

which also impliesmaximumnorm estimate; that is, ‖𝑢
𝑛
‖
∞

≤

‖𝑢
0
‖
∞
.

4.5. Local Error Analysis and Consistency. Now, we consider
the error. Let 𝜖

𝑛
= 𝑢(𝑡
𝑛
) − 𝑢̃
𝑛
denote the local discretization

error, that is, the error introduced in one single step of the
method. To bound the local discretization errors 𝜖

𝑛
, we need

the following truncation error estimation.

Lemma 9 (see [22]). For splitting 𝐴
𝑛
= ∑
𝑀−1

𝑖=1
𝐴
𝑛,𝑖
, one has

[𝑒
Δ𝑡𝐴
𝑛 −

𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑖]𝑢 (𝑡

𝑛
)

=
Δ𝑡
2

2

𝑀−1

∑

𝑖=1

𝑀−1

∑

𝑗=𝑖+1

[𝐴
𝑛,𝑖
, 𝐴
𝑛,𝑗
] 𝑢 (𝑡
𝑛
) + 𝑂 (Δ𝑡

3
) ,

(56)

with

[𝐴
𝑛,𝑖
, 𝐴
𝑛,𝑗
] = 𝐴

𝑛,𝑖
𝐴
𝑛,𝑗

− 𝐴
𝑛,𝑗
𝐴
𝑛,𝑖

(57)

being the commutator of 𝐴
𝑛,𝑖
and 𝐴

𝑛,𝑗
, and

[𝑒
Δ𝑡𝐴
𝑛 −

1

2
(

𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑖 +

𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑀−𝑖)]𝑢 (𝑡

𝑛
) = 𝑂 (Δ𝑡

3
) .

(58)

Theorem 10. With the previous notation, the local discretiza-
tion error 𝜖

𝑛
of the numerical scheme (45) is given by

𝜖
𝑛
= 𝑂 (Δ𝑡

2
) . (59)

Proof. It follows from (37) that

𝑢 (𝑡
𝑛+1

) = 𝑒
Δ𝑡𝐴
𝑛𝑢 (𝑡
𝑛
) + [𝑒

Δ𝑡𝐴
𝑛 − 𝐼]𝐴

−1

𝑛
𝑔
𝑛

=

𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑖𝑢 (𝑡
𝑛
) + [𝑒

Δ𝑡𝐴
𝑛 −

𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑖]𝑢 (𝑡

𝑛
)

+ [𝑒
Δ𝑡𝐴
𝑛 − 𝐼]𝐴

−1

𝑛
𝑔
𝑛
.

(60)

Because of the expansion formula

𝑒
Δ𝑡𝐴
𝑛 =

∞

∑

𝑘=0

1

𝑘!
(Δ𝑡𝐴
𝑛
)
𝑘

= 𝐼 + Δ𝑡𝐴
𝑛
+

1

2
(Δ𝑡)
2
𝐴
2

𝑛
+ ⋅ ⋅ ⋅ , (61)

we have
[𝑒
Δ𝑡𝐴
𝑛 − 𝐼]𝐴

−1

𝑛
𝑔
𝑛

= Δ𝑡

∞

∑

𝑘=0

1

(𝑘 + 2)!
(Δ𝑡𝐴
𝑛
)
𝑘

𝑔
𝑛

= Δ𝑡

𝑀−1

∑

𝑖=1

(𝐼 +
1

2
Δ𝑡𝐴
𝑛
+

1

6
(Δ𝑡)
2
𝐴
2

𝑛
+ ⋅ ⋅ ⋅ ) 𝑔

𝑛,𝑖
.

(62)

We also have the following expansion formula similar to (61):

𝑒
Δ𝑡𝐴
𝑛,𝑖 =

∞

∑

𝑘=0

1

𝑘!
(Δ𝑡𝐴
𝑛,𝑖
)
𝑘

= 𝐼 + Δ𝑡𝐴
𝑛,𝑖

+
1

2
(Δ𝑡)
2
𝐴
2

𝑛,𝑖
+

1

6
(Δ𝑡)
3
𝐴
3

𝑛,𝑖
+ ⋅ ⋅ ⋅ ,

𝑖 = 1, 2, . . . ,𝑀 − 1.

(63)
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It is easy to obtain the expansion formula of [𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1,

𝑖 = 1, 2, . . . ,𝑀 − 1:

[𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1

= 𝐼 +

∞

∑

𝑘=1

(Δ𝑡𝐴
𝑛,𝑖
)
𝑘

= 𝐼 + Δ𝑡𝐴
𝑛,𝑖

+ (Δ𝑡)
2
𝐴
2

𝑛,𝑖
+ (Δ𝑡)

3
𝐴
3

𝑛,𝑖
+ ⋅ ⋅ ⋅ .

(64)

Comparing (63) with (64) yields, for 𝑖 = 1, 2, . . . ,𝑀 − 1,

𝑒
Δ𝑡𝐴
𝑛,𝑖 = [𝐼 − Δ𝑡𝐴

𝑛,𝑖
]
−1

−
1

2
(Δ𝑡)
2
𝐴
2

𝑛,𝑖
+ ⋅ ⋅ ⋅ , (65)

which implies that
𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑖 =

𝑀−1

∏

𝑖=1

[𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1

−
1

2

𝑀−1

∑

𝑖=1

(Δ𝑡)
2
𝐴
2

𝑛,𝑖
+ ⋅ ⋅ ⋅ .

(66)

From (63) and (62), one gets

[𝑒
Δ𝑡𝐴
𝑛 − 𝐼]𝐴

−1

𝑛
𝑔
𝑛

= Δ𝑡

𝑀−1

∑

𝑖=1

(

𝑀−1

∏

𝑗=𝑖

[𝐼 − Δ𝑡𝐴
𝑛,𝑗
]
−1

+

𝑖−1

∑

𝑗=1

1

2
Δ𝑡𝐴
𝑛,𝑗

−

𝑀−1

∑

𝑗=𝑖

1

2
Δ𝑡𝐴
𝑛,𝑗

+ 𝑂 (Δ𝑡
2
𝐴
2

𝑛
))𝑔
𝑛,𝑖
.

(67)

For splitting (41), since 𝑔
𝑛,𝑖

= 0, 𝑖 = 1, 2, . . . ,𝑀 − 2, we have

[𝑒
Δ𝑡𝐴
𝑛 − 𝐼]𝐴

−1

𝑛
𝑔
𝑛

= ([𝐼 − Δ𝑡𝐴
𝑛,𝑀−1

]
−1

+

𝑀−2

∑

𝑗=1

1

2
Δ𝑡𝐴
𝑛,𝑗

−
1

2
Δ𝑡𝐴
𝑛,𝑀−1

+ 𝑂 (Δ𝑡
2
𝐴
2

𝑛
))Δ𝑡𝑔

𝑛,𝑀−1
.

(68)

Substituting (66) and (68) into (60) obtains

𝑢 (𝑡
𝑛+1

)

=

𝑀−1

∏

𝑖=1

[𝐼 − Δ𝑡𝐴
𝑛,𝑖
]
−1

𝑢 (𝑡
𝑛
) + [𝑒

Δ𝑡𝐴
𝑛 −

𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑖]𝑢 (𝑡

𝑛
)

+ [𝑒
Δ𝑡𝐴
𝑛 − 𝐼]𝐴

−1

𝑛
𝑔
𝑛
+ 𝑂 (Δ𝑡

2
)

= 𝑢̃
𝑛+1

−
1

2
Δ𝑡
2
𝐴
𝑛,𝑀−1

𝑔
𝑛,𝑀−1

+

𝑀−2

∑

𝑗=1

1

2
Δ𝑡
2
𝐴
𝑛,𝑗
𝑔
𝑛,𝑀−1

+ 𝑂 (Δ𝑡
2
)

+ [𝑒
Δ𝑡𝐴
𝑛 −

𝑀−1

∏

𝑖=1

𝑒
Δ𝑡𝐴
𝑛,𝑖]𝑢 (𝑡

𝑛
) .

(69)

Then, (59) follows from the above equation and (56).

We can now immediately conclude that the splitting
scheme (45) is consistent.

4.6. Viscosity Solutions and Convergence. The so-called vis-
cosity solutions are the meaningful solutions in financial
applications. This has been shown in [23, 24]. Putting all
results together, we can formulate the following convergence
result.

Theorem 11. The splitting Backward Euler scheme (45) uncon-
ditionally converges to the viscosity solution of (14)-(15).

Proof. The convergence of the fully-discrete scheme (45)
is a direct result of the consistency, the stability, and the
monotonicity of this scheme [25].

5. Numerical Experiments

In order to illustrate the stability and convergence properties
of our proposed scheme, in this section, we present several
numerical experiments in which the vanilla call option and
the European butterfly spread are considered. To obtain
the numerical solution of nonlinear Black-Scholes equations
(14)–(16), we should first solve the ODE (3). In this paper,
we use the symmetric midpoint scheme to solve numerically
the ODE (3). The utility function Ψ(𝑥) can be done by linear
interpolation.

Example 1. Let us consider a vanilla European call option
with

𝑓 (𝑠) = max (𝑠 − 𝐸, 0) . (70)

This example comes from [14]. The parameters are the
following: the strike price 𝐸 = 100, the volatility 𝜎

0
= 0.2,

the interest rate 𝑟 = 0.02, the maturity date 𝑇 = 1 year, and
the artificial boundary location 𝑏 = 200. We first consider
a small time stepsize Δ𝑡 = 1/𝑁 = 0.0002 and a spatial
stepsize ℎ = 200/𝑀 = 4 as done in [14].The numerical results
𝑉(𝑠, 𝜏) computed by the numerical scheme (45) are plotted in
Figure 1 in (𝑠, 𝜏) coordinate.The case of 𝑎 = 0 is linear model,
and the cases of 𝑎 = 0.015 and 𝑎 = 0.1 are nonlinear model.
The numerical results are the same as those showed in [14].

To further confirm that this scheme is unconditionally
stable, monotone, and positivity preserving, we also calculate
the numerical solutions, which are presented in Figures 2 and
3, by scheme (45) with larger time stepsizes Δ𝑡 = 0.002 and
Δ𝑡 = 0.02, respectively. From Figures 2 and 3, we observe that
there are no stability issues for scheme (45).We also note that
the scheme proposed in [14] produces the wrong numerical
solution when the stepsize Δ𝑡 = 0.00027027 such that the
stability condition (32) is not satisfied (see [14]). This reveals
that the numerical scheme (45) has better stability properties
than the scheme proposed in [14].

To illustrate the convergence of scheme (45), we show the
option value at 𝑆 = 𝐸 = 100 (or at 𝑠 = 98.01987 at time
to maturity being 1 year), the differences between successive
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Figure 1: Option pricing of a vanilla European call option for several
values of parameter 𝑎 at maturity time 𝑇 = 1 year, where ℎ = 4 and
Δ𝑡 = 0.0002.
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Figure 2:Optionpricing of a vanilla European call option for several
values of parameter 𝑎 at maturity time 𝑇 = 1 year, where ℎ = 4 and
Δ𝑡 = 0.002.

approximation processes, and the ratios between the differ-
ences in Table 1. Since scheme (45) is of order two in space
and order one in time, the number of spatial mesh points is
double, but the number of temporal grid points is quadruple.
Table 1 only shows the numerical results for the case 𝑎 =

0.015, which confirm our theoretical analysis results. The
numerical results for the cases of 𝑎 = 0 and 𝑎 = 0.1 are similar
and we omit these here.
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Figure 3:Option pricing of a vanilla European call option for several
values of parameter 𝑎 at maturity time 𝑇 = 1 year, where ℎ = 4 and
Δ𝑡 = 0.02.

From the data presented in Figures 1–3 and Table 1, the
conclusion can be drawn: scheme (45) is unconditionally
stable and convergent.

Example 2 (european butterfly spread). This example comes
from [16]. A butterfly spread consists of two long positions in
two calls with 𝐸

1
, 𝐸
2
and a short position in two calls at strike

𝑆 = (𝐸
1
+ 𝐸
2
)/2. The payoff function 𝑓(𝑆) is given by

𝑓 (𝑆) = max (𝑆 − 𝐸
1
, 0) − 2max (𝑆 − 𝐸, 0) +max (𝑆 − 𝐸

2
, 0) .

(71)

Let 𝐸
1
= 0.8, 𝐸

2
= 1.2, the volatility 𝜎

0
= 0.5, the interest

rate 𝑟 = 0.04, the maturity date 𝑇 = 0.5, and the artificial
boundary location 𝑏 = 10. We first compute the numerical
solution by scheme (45) with the time stepsize Δ𝑡 = 0.5/𝑁 =

0.0005 and the spatial stepsize ℎ = 10/𝑀 = 0.1 similar to
those in [16].The numerical results are presented in Figure 4.
These numerical data together with those in Figures 5 and
6 show that this scheme proposed here is unconditionally
stable.

In [16], the authors compared the numerical results
obtained by their nonstandard scheme and the schemes
proposed in [14, 15] and showed that their scheme produces
better numerical solutions than the schemes in [14, 15]
with the same stepsizes. To compare our scheme with the
nonstandard scheme proposed in [16], we first observe that
both of the numerical schemes are unconditionally stable.
Then, wewill investigate their convergence and compare their
convergence order. To this end, we calculate the discrete
maximum norms of the errors

𝐸
Sp
∞

= max
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑁,Sp
𝑖

− 𝑈̃
𝑁

𝑖

󵄩󵄩󵄩󵄩󵄩
, 𝐸

Ns
∞

= max
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑁,Ns
𝑖

− 𝑈̃
𝑁

𝑖

󵄩󵄩󵄩󵄩󵄩
,

(72)
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Table 1: Convergence results for the scheme (45) for the transaction costs model together with a vanilla call option, where 𝑎 = 0.015.

𝑀 𝑁 Value Difference Ratio
50 50 8.391857 — —
100 200 8.416984 0.025127 —
200 800 8.423089 0.006105 4.115806

400 3200 8.424567 0.001487 4.105581

where 𝑈
𝑁,Sp
𝑖

and 𝑈
𝑁,Ns
𝑖

denote the numerical solutions
computed by our splitting scheme (45) and the nonstandard
scheme proposed in [16] at the maturity date 𝑇 = 0.5, respec-
tively, and 𝑈̃

𝑁

𝑖
denotes the numerical reference solution

computed by the Backward Euler method with the standard
second-order finite differences on a finer grid with 𝑁 =

2560 and 𝑀 = 320. Numerical results of both schemes (45)
and the nonstandard scheme proposed in [16] are listed in
Table 2. This table shows the maximum norm of the errors
and the ratios between these errors. It is evident from the
numerical data obtained by the splitting scheme (45) that
this scheme is convergent with the temporal order one and
the spatial order two. This is consistent with the theoretical
results presented in this paper. For the nonstandard scheme
proposed in [16], however, a reduction in the error is
observed. This is not surprising since, as Zhou et al. pointed
out in [16], the nonstandard scheme is conditionally con-
sistent and the truncation error really depends on the ratio
Δ𝑡/ℎ
2.
From the theoretical analysis given in this paper and

the numerical results shown in this section, we come to
the following remark: the proposed scheme is efficient and
reliable.

6. Concluding Remarks

In this paper, an unconditionally stable splitting scheme
has been proposed to solve the nonlinear option pricing
model with transaction costs. This method can be viewed
as a “limit” version of LOD-Backward Euler method. This
“limit” property that all subproblems are one-dimensional
allows us to solve the discrete equation explicitly. As a
consequence, this method is computationally efficient. The
theoretical analysis carried out in this paper shows that this
method is unconditionally stable, monotone, and positivity
preserving. We also present several numerical experiments
in which the vanilla call option and the European butterfly
spread are considered.The theoretical analysis presented and
the numerical results shown in this paper confirm that the
proposed scheme here is efficient and reliable.
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Figure 4: Option pricing of a European butterfly spread for several
values of parameter 𝑎 at maturity time 𝑇 = 0.5, where ℎ = 0.1 and
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Table 2: Convergence results for the scheme (45) and the nonstandard scheme proposed in [16] for the transaction costs model together with
a butterfly spread, where 𝑎 = 0.05.

𝑀 𝑁 𝐸
Sp
∞

Ratio 𝐸
Ns
∞

Ratio
20 10 8.205076𝑒 − 002 — 8.209482𝑒 − 002 —
40 40 1.753266𝑒 − 002 4.679881 1.776302𝑒 − 002 4.621670

80 160 4.409681𝑒 − 003 3.975947 4.857916𝑒 − 003 3.656510

160 640 1.127720𝑒 − 003 3.910262 2.229942𝑒 − 003 2.178494
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Figure 6: Option pricing of a European butterfly spread for several
values of parameter 𝑎 at maturity time 𝑇 = 0.5, where ℎ = 0.1 and
Δ𝑡 = 0.05.
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