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A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing
applications is proposed.The IoT device including the proposed sensor processor performs the event-driven sensor data processing
based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a
sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing
unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data
transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal
is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection
level with a microcontroller using a 0.18 𝜇m CMOS embedded-flash process. For experimental results, we evaluated the proposed
sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully
demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case
of allowing 10% accuracy error.

1. Introduction

In recent years, rare-event sensing systems [1] have been used
in IoT-driven applications [2]. These systems feature internet
connectivity, low-cost, very slow event-to-event duration,
and long-lasting requirements. The IoT devices are used for
activity monitoring [3], human sense interface [4], security
monitoring, and medical applications [5]. The requirement
for an extremely long lifetime is a critical issue in battery-
operated IoT devices with a wireless connectivity.

The general-purpose microcontroller (MCU) has been
widely used as a main processor of IoT-driven systems for
sensor signal acquisition and data processing, which are
not especially suited for rare-event sensing applications. The
inefficiency of conventionalMCUs in the sensing applications
has been introduced in various literature [1, 6, 7] that
reveal the key requirements of sensing application-specific
architecture and processing methods. The latest studies of
processor design for sensing applications are primarily based

on architectural approaches that consider an event-driven
nature [8] in extracting informative features from raw sen-
sory data by observing over long periods of time.

Figure 1 illustrates basic operation and power consump-
tion in a main sensor processor of the IoT device. A timely
sampling operation to measure the transition of the target
environment begins with activation of the sensor. An analog-
to-digital converter (ADC) and level comparators perform
analog data conversion, which generates digitized sample
data and an interrupt request to execute the user-defined
subroutines for digital signal processing. The CPU in the
MCU is woken up to execute user-programmed interrupt
service routines (ISRs), which are software code to analyze the
quantized sensor data. Finally, the gathered data is transferred
via internet connection to host systems.

The general-purpose MCU-based IoT device consumes
inefficiently operating power in an iterativemanner.Discrete-
time-based sampling and signal processing are executed
iteratively during the entire period of sensor signal transition,
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Figure 1: Power consumption for sensor signal sampling and
processing in long-term activity monitoring.

even during the period of long-term sleep. Although this
weakness in terms of the power consumption can be resolved
using several programming techniques where the interrupt
handlers consider the sensor signal behavior, this is not
formal approach that covers the general cases of signal
characteristics.

Several approaches [6, 9–11] regarding the behavior of
sensing applications have been introduced in sensor-based
application for low power operations, especially in activity
sensor, sensor processor, andwireless sensor nodes. However,
the use of the discrete-time-based operation is restricted
because the most feasible devices rely on commercial off the
shelf (COTS) MCUs attached with several sensors. These
devices attempt to control the ratio of the sleep mode to
the active mode by switching the operation mode to lower
the power consumption according to being with or without
the sensory data, which are continuously determined by the
discrete-time-based monitoring of the signal.

2. Motivation

To address this limitation of the conventional digital sys-
tem architecture by using the discrete-time-based sen-
sor data processing method, we propose an event-driven
system architecture that modifies traditional digital system
design. We present a theoretical framework to implement an
event-driven sensor processor for general rare-event sensing
applications by analyzing the system operations.

2.1. Event-Space Signal Representation. Our main research
begins with an event-space representation of the sig-
nal, instead of the digital data space domain. Figure 2(a)

illustrates fundamental signal elements using attributes
of interest, and Figure 2(b) shows the event data space
transition-based representation, which describes in detail the
relationship between the featured points of the sensed signal.

The extracted features of the sensed signal are encoded
into the elapsed time between events and informative value
such as voltage level and edge phase crossing the trigger point
of the signal.The fundamental event defined, which is defined
as an atomic event with the most important information,
provides a signal representation on an abstract level and
reduces the computational complexity in performing basic
data processing for extracted informative features of interest.
The collected atomic events include partial information in
the original signal that specifies whether the desired featured
points of the signal are present.

2.2. Event-Quantization with Accuracy Error. The event-
quantization concept extends the time-quantization method
for signal representation that uses elapsed time to enhance the
conventional data sampling and processing method. Time-
quantization monitors only the specific conditions of the
signal transition and captures the time-stamps. The event-
quantization method also determines whether the specified
characteristics of the signal exist. Figures 2(c) and 2(d)
illustrate the difference between the time-sampling and
event-quantization methods with an accuracy error, which
monitors only the presence of the featured points of interest.

In terms of accuracy, there are two types of operations:
timing accuracy and data resolution accuracy [12]. The
former is dependent on the sampling frequency compared
to the received signal bandwidth, and the latter is derived
from the representative resolution of the sampled data. The
timing resolution is dependent on the clock-duty resolution
to resolve the timing window of the processing operations
accurately.

Higher timing resolution for the duration measurement
requires the accurate data processing in the time domain.
However, inmost cases, the data value resolution of the target
system is tightly required, but time—related specification
including the response time is relatively allowable in a certain
range of error. In particular, in rare-event sensing applica-
tions, we assume that the timing measurement accuracy for
the elapsed time between the arrived signal events can be
performed with inaccurate operating clock relatively.

Although the events contain inaccurate time information,
the final event receiver (for example, a human interface) is
unable to identify the error differences compared to the ideal
data within a certain error range [13].

2.3. Accuracy Configurable Signal-to-Event Conversion. The
event-based approach, with a certain amount of accuracy
error, is described by the proposed event-driven sensor data
processing flow, as shown in Figure 2(e). The input signal
is monitored with specified interest-of-signal characteristics
𝑊(𝑘) to generate the specific atomic events aev

𝑖
of the signal.

The set of atomic events during the specified region of the
signal are traced into the tracer memory as an event vector
→AEV, which contains the sequence of the atomic events and
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Figure 2: Event-space quantization and accuracy-configurable event-driven sensor processing flow.

the time distance relationship between the atomic events.The
traced event vector identifies the approximate result𝑍(𝑘) as a
final event by comparing it to the expected rules of the atomic
events.

These approximation approaches enable us to reduce the
computational complexity in order to manipulate a large
amount of collected sensing data. As a result, power con-
sumption will be reduced. For applications related to human

interaction, an approximation approach enables developers
to design the computational block using smaller hardware
resources, while providing sufficient performance in limited
resolution of the accuracy.

In accuracy-controlling approaches defined from the
specifications, our study focused on the data-representation
resolution, the timing resolution of the sampling frequency,
and the response time as a delay time [14]. This enables
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Figure 3: Category according to sampled target and its accuracy.

the configuration of the operation accuracy in the processor
architecture level according to the abstraction level of the
proposed event-quantization approach.

3. Related Work and Constraints

To overcome the weakness of the frequent CPU wake-
up in the discrete-time sampling, continuous time signal
processing techniques [15, 16] have been proposed. If a certain
condition of the signal status, such as the voltage level at
a specific time, is matched with the user-defined condition
[17, 18], the time value at the triggered condition is sampled
and quantized [19] by the selective method, which also helps
to reduce operational power [20].

The continuous time sampling method illustrated in the
second graph of Figure 3(a) requires additional hardware

resources, including a dedicated oscillator and high-accurate
timer block, tomeasure the elapsed time value instead of data
sampling in high resolution. Event-driven signal processing
based on the time-quantization method requires hardware
overhead andmore computational time for the time-distance
calculation, which gives rise to additional power consump-
tion. The required power and hardware resource overhead,
which are needed to compensate for reduced wake-up power
consumption,must be considered in order to achieve benefits
in total energy efficiency due to hardware-energy trade-off.

The hybrid method, which uses a level triggered system
wake-up and continuous time sampling scheme, monitors
important signal transitions and performs detailed analysis
using the discrete-time sampling method, which involves
digital signal processing for second detail signal analysis.The
proposed event-driven sensor data processing method tries
to capture the signal shape instead of the elapsed time-stamp
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at the triggered point, as illustrated in the third graph of
Figure 3(a).

The trade-offs in terms of energy and accuracy have
been studied widely [21, 22]. To obtain long lifetime oper-
ations under limited battery power [23], the latest research
introduces inaccurate computation techniques [12, 24] with
approximation-based hardware designs, as described in the
second graph of Figure 3(b).

The proposed sensing processor for the rare-event sens-
ing applications adopts the event-driven approach of the
continuous time-based sampling method. Inaccurate time-
datamanipulation, as shown in the third graph of Figure 3(b),
reduces computational complexity and sampling resolution
by determining the presence of featured events in the specific
range. The level that allows an accuracy error in the time-
stamp measurement is depicted in Figure 3(c). The level can
be adjusted by making the trade-off between the processing
energy consumption and the operating specification.

Figure 4, shows the difference between the discrete-time
samples and the featured events of interest, with the common
shape of the rare-event sensor signal. Event sources, such as
hand gesture, proximity, and object activity, generate signal
pulses for which the distance between featured points of the
signal is very long. The number of data samples (𝑛) is greater
than the number of events (𝑚). In this work, we assumed an
application-specific constraint of rare-event characteristics,
which result in a small number of events compared to the
number of data samples.

The event-quantization accuracy depending on the res-
olution of the elapsed time-stamp is described as 𝑒

𝑚

,𝑚

in
Figure 4. The rare-event sensing applications for which the
event-to-event duration is relatively larger than the accuracy
error have the following applications-specific constraints:

𝑑
𝑚,𝑘

≫ 𝑒
𝑚

,𝑚
. (1)

With these application-specific constraints, the event
identification accuracy error caused by the inaccurate time-
stamp measurement clock is relatively insensitive derived

from (1). The recognized event observer, such as human
eye, allows a certain amount of inaccuracy in identifying a
meaning of the events, which are constructed by the proposed
inaccurate event-driven sensor processor.

The proposed sensor processor is designed with these
application-specific constraints by reducing the accuracy
of the time-stamp measurement clock, decreasing the bit
width of the timer block to capture the time-stamps, and
decreasing the operational complexity of the time-to-time
distance measurement blocks, which are specially imple-
mented as a dedicated accelerator for event recognition in the
implemented hardware.

4. Proposed Architecture

4.1. Data-Time Sampling with Accuracy Error. The first stage
of the sensor processor is a sampler that gathers the time-
variant information from the received signal. The conven-
tional sampling method in Figure 5(a) attempts to collect all
information in discrete-time from the target signal. There is
no need to hold the time-stamp data.The uniformly sampled
set in the timedomain is described in the following definition.

Definition 1. Given continuous signal 𝑠(𝑡), let 𝑡
𝑠
be a fixed

sampling time and 𝑆unitime = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
} a uniformly

sampled set in time domain 𝑇 = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
}. A sampled

data 𝑠
𝑖
∈ 𝑆 and its data quantization result with error Δ

𝑑
by

data quantization function DQ are defined as follows:

𝑑
𝑖
± Δ
𝑑
= DQ (𝑠

𝑖
= 𝑠 (𝑡
𝑠
∗ 𝑖)) . (2)

From this, the sampling time 𝑡
𝑠
in turn is defined as

follows:

𝑡
𝑠
= 𝑡
𝑖+1

− 𝑡
𝑖
. (3)

The quality of the data sampling toward zero Δ
𝑑
is

dependent on the accuracy of the function DQ, which is
usually implemented with ADCs or a comparator, and the
resolution of sampling time 𝑡

𝑠
.

The level-triggered interrupt-based sampling, as shown
in Figure 5(b), tries to capture the time-stampwhen it crosses
a predefined condition with the parameterized value (such as
the voltage level) and its transition edge phase.

Definition 2. Given continuous signal 𝑠(𝑡), let 𝐿 =

{𝐿
1
, 𝐿
2
, . . . , 𝐿

𝑛
} be a set of all levels of interest tomonitor data

from 𝑠(𝑡), TE a set of all pairs of the triggered level type and
its elapsed time, TE = {te

𝑖
| te
𝑖
= ⟨type, et⟩, 𝑖 = 1, 2, . . . , 𝑛},

and 𝑇
𝑐𝑙𝑘

a fixed minimum period of the timer to measure
the time-stamp at a triggered point. For the event te

𝑖
∈ TE,

sampled time 𝑡
𝑘
is elapsed time after the previous event

te
𝑖−1

occurs, and its quantization result error Δ
𝑡
by the

time-quantization function TQ is defined as follows:

𝑡
𝑘
± Δ
𝑡
= TQ (te

𝑖
⋅ et) = te

𝑖−1
⋅ et + 𝑇

𝑐𝑙𝑘
∗ 𝑘,

(1 ≤ 𝑘 < ∞) .

(4)
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The elapsed time for the 𝑖th triggered event is recursively
determined by searching the meet condition “𝑘” of the
following equation:

te
𝑖
⋅ et = te

𝑖−1
⋅ et + 𝑡

𝑘
,

∀DQ (𝐿
𝑚
) = DQ (𝑠 (𝑡

𝑘
)) , 𝐿

𝑚
∈ 𝐿.

(5)

The time-stamp te
𝑖
⋅ time resolution toward zero Δ

𝑡
is

dependent on the minimum value of the time advance (𝑇
𝑐𝑙𝑘
)

and the number-of-bits representation of (𝑘) value to encode
the time value. Higher resolution of the time value requires
continuous operations of the oscillator and timer unit with
higher accuracy and large size of a timer counter unit to
measure the time-stamp, which leads to energy consumption
overhead as a side effect.

Figure 5(c) describes our approach to capture the signal
shape as an atomic event crossing a certain range of arrival
time. To more formally define our approach, we begin our
explanation by first presenting the following definitions.

Definition 3. Given continuous signal 𝑠(𝑡), let AEV = {aev
𝑖
|

aev
𝑖
= (aev

𝑖−1
, value, phase, et)} be a sequence of an atomic

event aev
𝑖
crossing the specific level and time condition with

a relationship of previous atomic event aev
𝑖−1

, where aev
𝑖
⋅

value is a result of the approximation-based data quantization

function ADQ and aev
𝑖
⋅ et is a result of the approximation-

based time-quantization function ATQ, described as follows:

𝑑
𝑘
= ADQ (𝑠 (𝑡

𝑘
) , 𝐿
𝑚
, Δ
𝑑
, 𝑢, V) ,

∀Δ
𝑑
∗ 𝑢 <

𝐿𝑚 − 𝑑
𝑘

 < Δ
𝑑
∗ V,

𝑡
𝑘
= ATQ (aev

𝑖
⋅ et, 𝑇
𝑐𝑙𝑘
) ,

where 𝑇
𝑐𝑙𝑘

= 𝑇
𝑐𝑙𝑘

+ Δ
𝑡
.

(6)

The meet condition 𝑘, when the expected crossing is
present, is described in the following equation:

𝑡
𝑘
= et + 𝑇

𝑐𝑙𝑘
∗ 𝑘, ∀DQ (𝑠 (𝑡

𝑘
)) = 𝑑

𝑘
. (7)

The atomic event generator (AEG) builds an element with
the attributes, which are encoded with the digitized signal
level, elapsed time, and edge phase in the following equation:

AEG (𝑠 (𝑡) , 𝐿) = {aev
𝑖
| aev
𝑖
= ⟨aev

𝑖−1
, 𝑑
𝑘
, 𝜙edge, 𝑡𝑘⟩} . (8)

From (8), the extracted information, as an atomic event,
is encoded with the approximation value of the signal level,
the reduced time-quantization value of the elapsed time, and
the relationship of the previous atomic event aev

𝑘−1
.

Figure 5(d) shows the proposed hardware data path for
the atomic-event sampling in Figure 5(c), including the level
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comparators, timer, oscillator, and atomic event generator
(AEG) implementing operations from (2) to (8).

4.2. Atomic Event Segmentation. Atomic event generation is a
method to represent a certain range of the continuous signal
pattern with an abstract event. The signal representation
is classified by a user-defined set of signal segments. We
provide an example in Figure 6. The feature scan window
in Figure 6(a), which is used to capture the atomic event of
the signal, is configured with a specific voltage level, time
window, and elapsed time at the feature point.The configured
scan window determines if the featured points are monitored
in the snapshot of the signal passing through the configured
scan window and generates an element of a set of atomic
events in Figure 6(b).

Definition 4. Given the configured feature scanning window
to extract the atomic events from 𝑠(𝑡), let 𝑇start be a start time
monitoring the signal, let 𝑇end be the end of monitoring the
signal, let 𝐿

𝑟
be a rising signal level at which the time-stamp

is 𝑇
𝑟
, let 𝐿

𝑓
be a falling signal level at which the time-stamp

is 𝑇
𝑓
, let the pair of 𝐿

𝑥
and 𝑇

𝑦
be featured point, and let𝐷max

be a maximum time value in which the featured points are
present. The set of signal segments described by the config-
uration Ω = {Ω

𝑖
| Ω
𝑖
= (𝑇start, 𝑇end, 𝐿𝑟, 𝐿𝑓, 𝑇𝑟, 𝑇𝑓, 𝐷max)}

of the featured scanning window is defined as Ω and is used
to extract the atomic events of interest for the AEG function,
which is defined as follows:

{aev
𝑖
} = AEG (𝑠 (𝑡) , Ω) . (9)

Ωup defines a signal segment of the feature scanning
window as an example showed in “Up-Pulse” shape of
Figure 6(c). In our applications, {Ωtype | type = “up”, “su”,
“ sd ”, “dp”, “isu”, “isd”} is used.

Figure 6(c) shows examples of the user-defined signal
shape as an atomic event, which is determined by the
configured feature scan window.The “up-pulse” pattern rises
at recognized time 𝑅

𝑟
and falls at recognized time 𝑅

𝑓
for

the 𝐿probe level during maximum timer window 𝐷max. The
continuous signal shape during a configured time range of
𝑇start and 𝑇end is represented as abstract event 𝑅up with the
following equation:

AEV (𝑠 (𝑡) , Ωup) ≃ aevup = ⟨Ωup, 𝐿probe, (𝑅𝑟, 𝑅𝑓)⟩ . (10)

The expected rule to identify aevup atomic event pattern,
allowing time error margin Δ, is represented by the following
equation:

𝑅
up
= (aevup, Δ) . (11)

The “step-up” pattern rises at time 𝑅
𝑟
and does not fall

within the timer window 𝐷max. The continuous “step-up”
pattern signal can be also represented by the abstract atomic
event view in the following equation:

AEV (𝑠 (𝑡) , Ωsu) ≃ aevsu = ⟨Ωsu, 𝐿probe, (𝑅𝑟, −)⟩ . (12)

The ∞-step-up pattern includes the specific range of no
signal transition crossing the specified voltage level 𝐿probe
within maximum timer window 𝐷max and a rise at any
time. The continuous ∞-step-up pattern signal can be also
represented by the abstract atomic event in the following
equation:

AEV (𝑠 (𝑡) , Ωisu)

≃ aevisu = ⟨Ωisu, 𝐿probe, (∞,∞, 𝑅
𝑟
)⟩ .

(13)

The aevisu atomic event pattern is also represented by the
expected atomic event pattern rule and its time error margin
using the following equation:

𝑅
isu

= (aevisu, Δ) . (14)

The∞-step-up pattern is a powerful method to simplify
the representation of the long-term signal shape with no
activity, which leads to a reduction in the capacity of the
information.

Figure 6(d) shows the capability to represent various sig-
nal shape by the configuration of 𝐿

𝑟
,𝐷max, 𝑇𝑟, 𝑇start, and 𝑇end

in the feature scan window. One signal shape can be divided
into the several slices by user-defined signal segmentation.
If the time window for signal segmentation is the same as
the fixed width 𝑡

𝑠
in the discrete-time sample method, the

result of the atomic event generation is equivalent to that
of the discrete-timed sampling. The proposed atomic event
generation approach enables a trade-off between the signal
extraction accuracy and its processing power consumption.

4.3. Event-Driven Data Processing. The atomic event genera-
tor (AEG) scans the continuous signal 𝑠(𝑡) passing through
the configured feature scan window to determine the pres-
ence of the signal shapes of interest, as shown in Figure 7(a).
The set of atomic events is generated with a pair of attributes
and time-stamps as a result of the time-quantization shown
in Figure 7(b). Consider

aev = {aev
𝑖
| aev
0
, aev
1
, . . . , aev

𝑖
= (“𝐿

𝑖
”, 𝑡𝑠
𝑖
)} . (15)

Figure 7(c) shows a signal representation by a set of
atomic events with a certain amount of error. This is denoted
in the following equation:

ãe = {ãe
𝑖
| ãe
0
, ãe
1
, . . . , ãe

𝑖
= (“𝐿

𝑖
”, 𝑡𝑠
𝑖
± Δ)} . (16)

aev
𝑖
, which is matched with the configured scan window

AE
𝑖
, is represented as an abstracted atomic event index in

Figures 7(d) and 7(e), which indirectly address the detailed
attributes in the constant dictionary. The continuous analog
signal is converted into a set of event quantized data ãev

𝑖
,

and its index value is traced only into the atomic event
tracer buffer. Therefore, the traced event data processing
manipulates the index value and its relationship to the rep-
resentative atomic events to generate the final event EV. The
proposed event-driven sensor data processing unit (EPU),
which is based on event-quantization, provides the following
advantages compared to conventional sensor data processing:
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Figure 7: Event-driven sensor data processing concept for macro-level signal analysis.

(i) representing the continuous analog signal with a
small number of atomic events for specially featured
points,

(ii) decreasing the number of pieces of processing data
with reduced atomic events,

(iii) allowing the accuracy error of the generated atomic
events for application-specific properties of the rare-
event sensing applications,

(iv) decreasing the complexity of the expected atomic
event comparison circuit, by comparing the time-
stamp range, instead of the accurate value,

(v) mapping the recognized atomic events into the repre-
sentative atomic event set with only index value,

(vi) transforming the raw data processing into the index
value.

Figure 7(f) illustrates the corresponding data path of the
event-driven sensor data processing, including the atomic

event generator, tracer, feature scan window, and the pattern
matcher (which is described as event-print window matcher
in Figure 8(b)).

4.4. Final Event Identification. The archived atomic events in
the tracer memory are evaluated as a similarity factor, which
is calculated by the total sum of the distance between the
collected events and the expected rule. We define this proce-
dure as 𝑅∗-plain projection, as illustrated in Figure 8(a). The
atomic event extraction procedure is described by the →AEV
in the following equation. The operation ⨂ describes the
atomic event conversion for the continuous sensor signal 𝑠(𝑡)
with the atomic event conversion rule, which is introduced in
Figure 6(c). Consider

𝑠 (𝑡)⨂𝐿
0
= ⃗AEV. (17)
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3 , ãesd
4 , ãesu
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Figure 8: Event-print identification for atomic event of interest.

In the signal example of Figure 8(a), the result of atomic
event generation is described by the following equation:

→AEV

= {ãevup
0
, ãevsu
1
, ãevsd
2
, ãevisu
3
, ãevsd
4
, ãevsu
5
, ãevisd
6
} .

(18)

Figure 8(b) shows the proposed event-print window
matcher implementing the 𝑅∗-plain projection to determine
the final event using the result based on the similarity factor.
The event-print matcher allows a certain error comparing
the arrived atomic events to the expected rule, which is
illustrated as blank holes in the punch card of Figure 8(b).
Multiple 𝑅∗-plain projections are performed simultaneously
to compare the archived atomic events with various pattern
rules. We define these matching operations ⨀ with the
following equation:

→AEV⨀{𝑅
∗

𝑖
}
𝑖=0,1,...,𝑚

. (19)

The extracted atomic event vector is described by the
following equation:
→
AEV∗

= {aev∗
𝑖
| aev
𝑖
∈ AEV, for (aev

𝑖
) ⋅ type == “∗”} .

(20)

The difference between the elapsed time stamp value and
expected event arrival value is calculated for the extracted
atomic events list using the following equation:

Δ
∗

𝑖
=
(aev
∗

𝑖
) ⋅ et − (𝑅

∗

𝑖
) ⋅ et . (21)

The operation ⨀ of the extraction rule 𝑅
∗

𝑖
for atomic

event vector →AEV can be considered as the 𝑅∗
𝑖
plane projec-

tion.

The total similarity factor, which is compared to the
expected event rules, is described as the summation of the
difference in the measured time-stamp:

𝜆 = ∑Δ
∗

𝑖
. (22)

If the final value 𝜆 is less than the minimum value of
the expected error range, the received atomic event →AEV
is identified as EV

𝑘
. The trade-off between the processing

accuracy and corresponding energy consumption can be
selected to satisfy the design specification, which is described
by the functional constraints and the required operating
lifetime.

5. Implementation and Experimental Results

The proposed event-driven sensor data processing unit
(EPU) is implemented as an accelerator to perform energy-
efficient event recognition from the incoming sensor signal,
as described in Figure 9(a). The regular case for sensing data
analysis can be covered by the proposed event processor,
which enables theMCU core to hibernate during sleepmode.
The user-defined software configured by the MCU core
allocates the configuration of the predefined atomic event
conversion conditions for the feature scan window.

The set of atomic events is redirected into the tracer buffer
via the dedicated DMA bus. Atomic event generation and
event vector construction are performed in silent background
mode, without waking up any of the main MCUs.

The newly designed event-driven sensor processor,
including the general-purpose MCU core and the EPU
core, is implemented using 0.18 𝜇m CMOS embedded-flash
process technology and has a die size of 1.2mm × 1.2mm,
as shown in Figure 9(b). The proposed method requires,
approximately, an additional 7500 logic gates using a 2-input
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Figure 9: VLSI IC implementation of microcontrollers with the proposed event signal processing unit (EPU).

NAND for the timer counter, signal-to-event converter (S2E)
including AEG blocks, event-print window matcher in EPU
unit, and 1-KB SRAM buffer for the atomic event vector
tracer.

Figure 10(a) shows the experimental design andmeasure-
ment method to validate the efficiency in processing energy
consumption by the proposed method and its implemented
hardware. The first step of the evaluation is performed at the
simulation level using the Matlab/Simulink models.

The physical sensor signal acquisition by the real activity
(such as gesture swipe, proximity, and human presence) is
performed off-line to save the raw dump file of time-variant
sensor signal. Then the raw file of the archived sensor signal
is loaded into the Matlab workspace. Figure 10(b) shows that
the proposed event processing flow is evaluated by themodel-
based designs using discrete-event design tool sets supported
by the Simulink.

The second step of the evaluation is performed by
the circuit-level simulation for the synthesizable hardware
design. The proposed method and its hardware architecture
are implemented with the fully synthesizable Verilog RTLs,
which can be physically mapped onto the FPGA or CMOS
silicon chip.

The implemented chip includes the test mode interface,
which requires about 1800 logic gates, to access the on-
chip registers and the bus transactions in supervisor mode.
If the predefined test sequences are forced into the input
ports on the power-up duration, the chip is entered into the
supervisor mode in which the important nodes of the system
can be accessed by the external interface. The user-driven

external trigger events are loaded into the on-chip via the test
mode interface to emulate the dynamic operation executing
user applications. The event detection timing in chip-level is
compared to the expected timing and the power consumption
is alsomeasured in the real environment by the user-triggered
events.Thehardware overhead for the testmode interfacewill
be excluded in a final chip for the mass production.

The third step compares the simulation results with the
electrical results, which are measured for the implemented
IoT sensor device, including the proposed sensor processor.
Because the gate-level synthesized design files are nearly
equivalent to the physical hardware, the power simulation
results show that the proposed sensor processor architecture
may reduce energy consumption.

The implemented IoT sensor device is a type of IR-
(infrared radio-) based standalone system that senses a
change in the movement of an object. The IR transmitter,
IR receiver, the proposed sensor processor, Bluetooth for the
wireless connectivity, and on-board battery are integrated on
a single tiny PCB board, as shown in the board screenshot of
Figure 10(a).

The IR transmitter generates a specific pattern of signal
pulses. The IR receiver acquires the light signal reflected by
the target objects, and the implemented sensor processor
performs signal processing to analyze the meaning of the
signal.

Figure 11 shows the experimental results by the imple-
mented IoT device, comparing the operating lifetime accord-
ing to the number of sample differences by the processing
method in Figure 11(a). The S2D describes the result by the
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Figure 10: Experimental design and measurement of the implementation result.

conventional polling-based sensor data processing method.
The S2T shows a result from the level-triggered interrupt-
based signal processing method. The S2E shows the results
fromour proposedmethod.The improved results fromallow-
ing an accuracy error are also evaluated. These results, which
allow for a 25% error variation in the specific constraints in
our applications, are shown in Figures 11(a) and 11(b).

All building blocks in the implemented IoT sensor
device hibernate during sleep mode except that of the EPU
(including the signal-to-event converter), which is only active
in order to trace the transition of the incoming signal by
comparing the signal features of interest.When the final event
is identified by the event-print window matcher, the main
MCU wakes up to activate the subsequent building blocks
to transfer the recognized events to a host system using the
wireless connectivity.

As sensing applications of the implemented IoT sensor
device, the low-power recognition performance based on
the proposed method is evaluated in terms of its energy
consumption. Figure 11(c) shows the results for the specific
IR sensor signal recognition using a defined set of signal

segments Ω. The figure shows an 80% reduction when a 10%
accuracy error is allowed, compared to the original work.

Figure 11(d) shows the energy-efficient recognition of the
hand-swipe gestures, which are described by the two types
of signal segments Ω and show a 50% reduction when a
10% accuracy error is allowed, compared to the original
work. The reduction in energy consumption is achieved
by configuring the implemented architectural framework
with application-specific constraints that allow the required
recognition accuracy error.

Themargin of the acceptable accuracy error is dependent
on the application-driven requirement.The trade-off between
the event detection accuracy and low-power consumption
has to be considered in implementing the IoTdevice.Thepro-
posed chip architecture provides the configuration register
to allow the user-defined accuracy error for more long-term
operation of the IoT device. In the environmentalmonitoring
applications, such as proximity, hand gesture, temperature,
and light intensity, the response error in less than several
seconds for event detection is small enough to allow the 50%
accuracy error.
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(c) Energy consumption of proposed method for specific IR reflection signal pattern recognition
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Figure 11: Experimental results.
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6. Conclusion

The proposed event-driven sensor processor architecture for
sensing applications with rare-event constraints is proposed
and implemented as an accelerator. This enables the sensor
signal processing in an energy-efficient mode by allowing
for the accuracy error, which is caused by the abstraction
of the original signal as atomic events. All of the building
blocks, including atomic event generators and the EPU core,
are implemented as a single system-on-a-chip, which is
integrated into the IoT sensor device.

The proposed method uses the characteristics of rare-
event sensing applications, in which timing accuracy error is
relatively insensitive in sensor signal recognition and intro-
duces the concept of atomic event generation as a method
of event-quantization. The event-space representation of
the sensor signal by the extracted set of atomic events is
constructed with a user-defined event signal segmentation by
the configured feature scan window.

The event-quantization result is archived as a set of
unique indexes into the tracer buffer.The event-printmatcher
determines the presence of the featured signal points for the
collected atomic event vector, in order to identify the event
from the original sensor signal. The event-matching process
is based on the similarity factor calculation, named 𝑅∗-plain
projection that describes the expected rules of the signal
patterns.

The implementation results, which are evaluated for
an IR-based signal recognition system for object activity
monitoring applications, show a reduction in total energy
consumption by delaying the activation of themain processor
and the Bluetooth interface for the wireless connectivity.
The proposed sensor processor provides an architectural
framework by providing an application-specific configura-
tion of the event-quantization level for the energy-accuracy
trade-off. This results in additional benefit of the energy
consumption, which maximizes the operating lifetime of the
IoT sensor device.
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