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We have proved in details that the dielectric friction remains the principal frictional effect for a stretched polyionmodeled as a chain
of charged spheres, whereas, in the case of Manning’s model (infinite thread with a continuous distribution of charge), this friction
effect is nonexistent. According to this chain model, it is therefore possible to detect by conductivity measurements any transition
from a coiled configuration (ellipsoidal model) to a stretched configuration during dilution process. We have also underlined the
important interdependence between the dielectric friction and the ionic condensation of the counterions, in order to distinguish
between the Ostwald regime and the Manning regime for which the degree of condensation is practically constant in a large range
of concentrations.

1. Introduction

It was generally assumed that, when the concentration 𝐶
𝑃
of

a polyelectrolyte is sufficiently low, screen effect due to free
counterions of ionic atmosphere is relatively weak so that
the intrarepulsion between charged monomers inside each
flexible chain of structural length 𝐿

𝑆
prevents the collapse

of the polyion and consequently the stretched configuration
becomes the most probable at high dilution. This prevention
is enhanced in the case of polyelectrolytes which present a
concentration regime satisfying the Ostwald dilution princi-
ple, since in this case the degree of ionic condensation (1−𝛼)
of counterions on charged monomers (partial neutralization
of the structural charge 𝑒𝑍

𝑆
of the polyion) decreases with

dilution [1–4]. It follows that continuous transition from
stretched (or rod-like) conformation to coiled shape could
be observed by increasing the concentration of counterions:
𝐶
𝑖
= (𝑍

𝑆
/𝑍
𝑖
)𝐶
𝑃
, or by decreasing the permittivity 𝜀 of the

solvent. Indeed, since the concentration effect changes the
apparent charge, 𝑒𝑍app = 𝑒𝛼𝑍𝑆, the shape, and the size of
polyions and since, in their turn, these parameters govern the
different frictional processes, it therefore results in more or
less sharp variation of the mobility of the polyions with the
concentration. In previous studies [3, 5], the various friction

effects on polyions have been classified to five types: (a) the
hydrodynamic friction which depends on the viscosity of
the solvent, 𝜂, the size and the shape of the polyion, and
it is quantitatively evaluated by the value of the hydrody-
namic equivalent conductivity of the polyion, 𝜆

𝑃

∘HD; (b) the
electrophoretic friction which expresses the hydrodynamic
friction on the ionic atmosphere of the polyion, and it is
quantified by the electrophoretic conductibility increment,
Δ𝜆
𝑃

el; (c) the ionic friction (or ionic relaxation effect) due
to the local field ΔXir caused by the polarization of the ionic
atmosphere by the external fieldE during its relaxation so that
the frictional force acting on the polyion is equal to ΔFir =
𝑒𝑍app ⋅ ΔXir, the intensity of this effect is evaluated by the
ionic friction coefficient 𝛽ir

𝑃
= |ΔXir

/E|; (d) the translational
dielectric friction effect [3, 6] due to the perturbation of
the polarization of solvent molecules around the moving
polyion. This effect is evaluated by the coefficient 𝛽df

𝑃
=

|ΔΧ
dr
/E|, where ΔΧdr is the local dielectric field. Note that

𝛽
df
𝑃
is proportional to the square power of the degree 𝛼 of

dissociation: 𝛽df
𝑃
= 𝛼

2
𝛽
∘

𝑃

df.
The relative importance of each friction contribution

depends on the concentration regime and on the conforma-
tion of the polyion. However, it is possible to express formally,
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in the general case, the equivalent conductivity of the polyion
𝜆
𝑃
in terms of the different friction contributions as follows

[3, 6]:

𝜆
𝑃
≈ (1 + 𝛽

ir
)
−1

[

(𝛼𝜆
𝑃

∘HD
− Δ𝜆

𝑃

el
)

(1 + 𝛼2𝛽∘
𝑃

df
)

] . (1)

For ellipsoidal polyions (see Figure 1) of focuses 𝐴 and 𝐵, of
interfocuses distance: 𝐿 = 𝐴𝐵 ≤ 𝐿

𝑆
, of minor axis 𝑅, and

major axis 𝑎
𝑅
= (𝑅

2
+ 𝐿
2
/4)
1/2, obeying Ostwald regime,

so that 𝛼 → 1, when 𝐶
𝑃
→ 0, we have generalized the

Debye-Onsager theory concerning simple electrolytes for the
calculation of the electrophoretic increment Δ𝜆

𝑃

el and the
ionic friction coefficient 𝛽ir [6]. On the other hand, we have
generalized the Boyd-Zwanzig’s approach [7] concerning
simple spherical ions, to the case of ellipsoidal polyions
[6], in order to evaluate the dielectric friction coefficient
at infinite dilution 𝛽∘

𝑃

df. The different contributions have
been expressed in terms of the degree of dissociation of
counterions 𝛼, the geometric parameters of the ellipsoidal
polyion 𝑅 and 𝐿, the effective radius of the counterions
𝑅
𝑘
, the charge numbers of the polyion and the counterions

respectively,𝑍
𝑆
,𝑍
𝑘
, and also in terms of the minor axis of the

ellipsoidal ionic atmosphere surrounding the polyion, 𝑑, (see
Figure 1) which depends on the concentration 𝛼𝐶∘

𝑘
of free

counterions and therefore on the Debye-MSA [8–11] screen
parameters ΓMSA and 𝜒

𝐷
(in Å−1):

𝑑 = 𝑅 +
1

2ΓMSA
, (2)

2ΓMSA =
[−1 + (1 + 4𝜒

𝐷
𝑅
𝑘
)
1/2
]

2𝑅
𝑘

,

𝜒
𝐷
= (410

−27
𝜋𝐿
𝐵
𝑍
𝑘

2
𝛼𝐶
∘

𝑘
𝑁
𝐴
)
1/2

.

(3)

𝑁
𝐴
is the Avogadro number and 𝐿

𝐵
= 𝑒
2
/𝜀𝑘
𝐵
𝑇 is the Bjerrum

length, so that the hydrodynamic and the electrophoretic
contributions are respectively given by

𝜆
𝑃

∘HD
= (

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 𝐹𝑒

6𝜋𝜂 ⟨𝑅⟩
) , (4)

Δ𝜆
el
𝑃
= (
𝛼
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 𝐹𝑒

6𝜋𝜂 ⟨𝑑⟩
) . (5)

𝐹 = 𝑒𝑁
𝐴

is the Faraday, ⟨𝑅⟩ and ⟨𝑑⟩ are, respectively,
the mean radius of the polyion and of its ionic atmosphere
defined as follows:

⟨𝑅⟩ =
𝐿

𝐿
𝑛
[𝑔 (𝑅, 𝐿)]

; ⟨𝑑⟩ =
𝐿

𝐿
𝑛
[𝑔 (𝑑, 𝐿)]

, (6)

where 𝑔(𝑥, 𝐿) is the so-called “generating function,” char-
acterizing the conformation of the polyion (and its ionic

·
O

BA
R

d = R + 1/2Γ

aR

D

Figure 1: The polyion is equivalent to an ellipsoidal capacitor of
(1/2Γ) thickness. is a condensed counterion and is a free
counterion. D is the displacement field due to both the polyion and
the condensed counterions.

atmosphere) which can vary from the spherical shape (𝐿 = 0)
to the cylindrical configuration (𝐿 = 𝐿

𝑆
) [3, 6]:

𝑔 (𝑥, 𝐿) =

[(4𝑥
2
+ 𝐿
2
)
1/2

+ 𝐿]

[(4𝑥2 + 𝐿2)
1/2
− 𝐿]

. (7)

Note that ⟨𝑅⟩measures also the electrostatic capacitance 𝐶ap

of the ellipsoidal polyion in c.g.s.u.e units [6] and (𝐶ap
󸀠
)
−1

=

(⟨𝑅⟩
−1
− ⟨𝑑⟩

−1
)measures also the inverse of the electrostatic

capacitance 𝐶ap
󸀠 of the ellipsoidal capacitor constituted by

the polyion and its ionic atmosphere “Gouy capacitance” (see
Figure 1).

The ionic friction due to the perturbation of the ionic
atmosphere during its relaxation is expressed in terms of the
coefficient 𝛽P

ir as follows:

𝛽P
ir
=

𝛼
󵄨󵄨󵄨󵄨𝑍𝑆𝑍𝑖

󵄨󵄨󵄨󵄨 𝐿𝐵 (3𝑑
2
+ 𝐿
2
/4)

[18(𝑑2 + 𝐿2/4)
3/2
]

. (8)

Note that in the limiting case of Manning’s model (i.e., 𝐿 →
∞, 𝛼 = 𝛼

𝑀
= 𝐿

𝑆
/(|𝑍

𝑆
𝑍
𝑘
|𝐿
𝐵
)), the ionic friction coefficient

𝛽P
ir
→ (1/9).
It follows according to (2), (3), (5), and (8) that the

contributions Δ𝜆el
𝑃
and 𝛽

𝑃

ir, relative to ellipsoidal polyions,
vanish at infinite dilution 𝐶

𝑃
→ 0, 𝛼 → 1, 𝑑 → ∞, so that

𝜆
𝑃
󳨀→

𝜆
𝑃

∘HD

(1 + 𝛽∘
𝑃

df
)

. (9)

The general expression of the dielectric friction coefficient
𝛽
∘

𝑃

df is [6]

𝛽
∘

𝑃

df
= (
2

3
)
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

2
(
𝑅
𝑤

𝑅app
)

3

(
𝐿
𝐵

⟨𝑅⟩
) [1 −

𝜀
∞

𝜀
] . (10)

𝜀 and 𝜀
∞

are, respectively, the static and the high-frequency
dielectric constants of the solvent. The apparent radius 𝑅app
is a function of the eccentricity of the polyion 𝛾 = 𝐿/2𝑅
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so that 𝑅app ≈ ⟨𝑅⟩ for 𝛾 < 1 and 𝑅app ≈ 𝐿/2 for 𝛾 > 1
[6]. For spherical polyion (𝛾 = 0), 𝑅app = 𝑅, and (10)
becomes in this case identical to Boyd-Zwanzig’s equation.
Note that the dielectric friction coefficient at infinite dilution
𝛽
∘

𝑃

df is in general of the order of few percent and decreases
with elongation 𝐿 of the polyion so that the conductibility of
the polyion is essentially governed by the ionic condensation
process and the hydrodynamic friction 𝜆Poly ≈ 𝛼𝜆𝑃

∘HD.
In the case of stretched polyions obeying Manning’s

regime (𝑅/𝐿) → 0, 𝛽∘
𝑃

df is negligible, whereas 𝛼
and 𝛽P

ir remain relatively important and especially
quasi-independent on the concentration so that
𝜆
𝑃
≈ 𝛼𝜆

𝑃

∘HD
(1 + 𝛽

ir
)
−1

[1 − (⟨𝑅⟩/⟨𝑑⟩)].
However, in a recent work we have observed a sharp

increase of the dielectric friction due to the elongation of
some polyions during the dilution process [12–16]. We have
concluded that (10) predicting the decrease of the dielectric
friction coefficient 𝛽∘

𝑃

df with the elongation 𝐿 is only valid
for stretched polyions characterized by a continuous linear
distribution of their apparent charge 𝑒𝑍app.

In fact, the real structure of a stretched polyion is rather
similar to a chain of charged spheres than to a rod uniformly
charged. In other terms, the stretched polyion could be
modeled as a succession of |𝑍

𝑆
| charged rigid spherical

monomers “pearls” or “groups” of 𝑅
𝑔
radius and ±𝑒 charge.

The charge distribution of the polyion is therefore discon-
tinuous “necklace.” The distance separating two successive
groups is equal to 𝑏

𝑆
= 𝐿

𝑆
/|𝑍
𝑆
| ≥ 2𝑅

𝑔
. Note that this

model converges toward the rod-like Manning’s model when
the ratio 𝐿

𝑆
/𝑅
𝑔
→ ∞. On the other hand, for coiled

conformation, the polyion could be treated as a rigid ellipsoid
uniformly charged of𝐴 and𝐵 focuses, 𝐿 length,𝑅minor axis,
and (𝑍

𝑆
𝑒) charge.

The essential difference between the chain configuration
and the ellipsoidal conformation concerns the importance
of the dielectric friction. In the first case, the total dielectric
friction results from the superposition of the various dielec-
tric frictions acting on the successive |𝑍

𝑆
| charged groups so

that the corresponding dielectric friction coefficient 𝛽∘
𝑃

df is
proportional to the ratio (|𝑍

𝑆
|𝑒
2
)/𝑅
𝑔

3, whereas, in the second
case, the friction coefficient is proportional to (𝑒𝑍

𝑆
)2/𝑅app

3.
Consequently, an important variation of the dielectric fric-
tion is expected during this conformation transition.

The main objective of the present work is therefore to
explain in details why the transition from coiled config-
uration to completely stretched chain is accompanied by
a sharp increase of the dielectric friction on the moving
polyion, whereas such variation is undetectable according to
the model of Manning.

In order to achieve this objective progressively and com-
pletely we have organized the rest of the paper as follows. In
Section 2 we present an new simplified (heuristic) derivation
of the expression of the dielectric frictional forceFdr acting on
a moving spherical charge, different from those of Zwanzig
[7], Hubbard and Douglas [17], and Hubbard and Onsager
[18] which has the advantage of underlining the physical
significance of the process of dielectric friction. In Section 3

we give a brief recall of the general expression ofFdr according
to the time-correlation function formalism [6] in terms of the
displacement field D(r󸀠, 𝑡) created by the polyion, the mem-
ory function 𝜁(𝑡) relating the polarization P(r󸀠, 𝑡) around the
polyion to D(r󸀠, 𝑡), and the key integral 𝐼

𝑧
(𝑡) allowing the

direct calculation of Fdr via 𝜁(𝑡) and D(r󸀠, 𝑡). In Section 4 we
apply the previous approach to calculate in details the explicit
expression of 𝐼

𝑧
(𝑡) and therefore the frictional force Fdr in the

case of a chain of charged spheres. In Section 5 we discuss the
coupling between the dielectric friction effect and the ionic
condensation processes on the basis of a generalization of the
Fuoss’s approach. Section 6 gives the explicit expression of
the variation of the conductibility of a polyion with dilution.
Section 7 concludeswith a brief discussion of the results using
some experiments.

2. A Simplified Derivation of the
Expression of the Dielectric Frictional Force
on a Moving Charged Rigid Sphere

Figure 2 represents a moving rigid sphere along the 𝑧-axis,
of 𝑅 radius, 𝑄 charge, and velocity V. 𝑂 represents its center
at time “𝑡” and 𝑂󸀠 its center at a previous instant (𝑡 − 𝑡

1
)

so that the distance 𝑂𝑂󸀠 is equal to V𝑡
1
. The moving charge

𝑄 creates at each point r of the dielectric medium, a time
dependent electric displacement D(r, 𝑡) which in its turn
polarizes the solvent molecules. We design by P(𝑅, 𝜃, 𝑡) the
induced polarization at the surface of the sphere 𝑂 and by
P󸀠(𝑅, 𝜃󸀠, 𝑡 − 𝑡

1
) the induced polarization at the surface of

the sphere 𝑂󸀠 at 𝑡 − 𝑡
1
. Now, according to the theory of

dielectricmediums, the superficial charge density 𝜎(𝑅, 𝜃, 𝑡) of
the dielectric molecules at the interface between the solvent
and the charged sphere𝑂 at time 𝑡 is related to the orthogonal
component𝑃

𝑛
(𝑅, 𝜃, 𝑡) of the induced polarization P(𝑅, 𝜃, 𝑡) at

the surface of the sphere 𝑂 as follows:

𝜎 (𝑅, 𝜃, 𝑡) = −𝑃𝑛 (𝑅, 𝜃, 𝑡) . (11)

On the same way the charge density 𝜎󸀠(𝑅, 𝜃󸀠, 𝑡 − 𝑡
1
) is equal

to

𝜎
󸀠
(𝑅, 𝜃

󸀠
, 𝑡 − 𝑡

1
) = −P󸀠

𝑛
(𝑅, 𝜃

󸀠
, 𝑡 − 𝑡

1
) . (12)

On the other hand, according to time-correlation function
formalism, 𝑃

𝑛
(𝑅, 𝜃, 𝑡) can be expressed via a temporal convo-

lution integral, as a sum of linear responses to the successive
orthogonal components𝐷

𝑛
(𝑅, 𝜃, 𝑡−𝑡

1
) ofD(𝑅, 𝜃, 𝑡−𝑡

1
) at the

different anterior instants (𝑡 − 𝑡
1
):

−𝜎 (𝑅, 𝜃, 𝑡) = 𝑃𝑛 (𝑅, 𝜃, 𝑡)

= (
1

4𝜋
)∫

∞

0

𝜁 (𝑡
1
)𝐷
𝑛
(𝑅, 𝑡 − 𝑡

1
) 𝑑𝑡

1
.

(13)
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Figure 2: Representation of a moving spherical polyion at time 𝑡 and time (𝑡 − 𝑡
1
).

According to Figure 2,

𝐷
𝑛
(𝑅, 𝜃, 𝑡 − 𝑡

1
) = (

𝑄

𝑑2
) cos (𝛼) , (14)

𝑑
2
= 𝑅

2
[1 +

2V𝑡
1
cos (𝜃)
𝑅

+ (
V𝑡
1

𝑅
)

2

] ,

cos (𝛼) =
[𝑅 + V𝑡

1
cos (𝜃)]
𝑑

.

(15)

𝜁(𝑡) is the associated after-effect function representing both
electronic relaxation and rotational diffusion of dipolar
molecules [7]:

𝜁 (𝑡) = [1 − (
1

𝜀
∞

)] 𝛿 (𝑡)

+ [(𝜀 − 𝜀
∞
) (𝜏𝜀

∞

2
)
−1

exp(− 𝜀𝑡
𝜀
∞
𝜏
)] .

(16)

𝜏 is the relaxation time of the solvent molecules and 𝜀 and
𝜀
∞

are the static and high-frequency dielectric constants of
the solvent. For water at 25∘C, 𝜀 = 78.3 and 𝜀

∞
= 1.77.

Notice that as the ratio 𝜀/𝜀
∞
≫ 1, the exponential function

exp(−𝜀𝑡/𝜀
∞
𝜏) decreases sharply with time and therefore the

temporal correlation between 𝑃
𝑛
and 𝐷

𝑛
vanishes rapidly

when 𝑡
1
→ 𝜏.

The expression of 𝜎󸀠(𝑅, 𝜃󸀠, 𝑡−𝑡
1
) is more ordinary because

it is induced by the displacement field𝐷󸀠
𝑛
(𝑅) = (𝑄/𝑅

2
)which

is constant for all 𝜃󸀠 so that

𝜎
󸀠
(𝑅, 𝜃

󸀠
, 𝑡 − 𝑡

1
) ∼ − (

𝑄

4𝜋𝑅2
) . (17)

Slowly moving particle is characterized by the condition V𝜏 <
𝑅, so that V𝑡

1
≤ 𝑅 during the period of correlation (𝑡

1
<

𝜏). Now, according to (15), cos(𝛼) is always > 0; it follows
therefore from (13) that for 𝑡

1
< 𝜏, 𝜎(𝑅, 𝜃, 𝑡) ∼ −𝑄 for all

cos(𝜃). In the case of speedy particle so that V𝑡
1
> 𝑅, (13) and

(14) imply that𝜎(𝑅, 𝜃, 𝑡) ∼ −𝑄 for all 𝜃 < 𝜋/2 and𝜎(𝑅, 𝜃, 𝑡) ∼
+𝑄 for all 𝜃 > 𝜋/2. Note also that 𝜎󸀠(𝑅, 𝜃󸀠, 𝑡 − 𝑡

1
) ∼ −𝑄 for

all 𝜃󸀠.
In both cases, the dielectric superficial charges 𝜎(𝑅, 𝜃, 𝑡)

and 𝜎󸀠(𝑅, 𝜃󸀠, 𝑡 − 𝑡
1
) present an axial symmetry around the

𝑧-axis, and consequently they are created at the center 𝑂
of the moving sphere, and, at time 𝑡, a reacting dielectric
relaxation field ΔΧdr is directed along the 𝑧-axis. According
to the principle of superposition, its 𝑧 component Δ𝑋

𝑧

dr can
be expressed as a sum of two local fields, respectively, Δ𝑋

𝜎𝑧

dr

and Δ𝑋
𝜎
󸀠
𝑧

dr:

Δ𝑋
𝑧

dr
= Δ𝑋

𝜎𝑧

dr
+ Δ𝑋

𝜎
󸀠
𝑧

dr
. (18)
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The relation between the 𝑧 component Δ𝑋
𝜎𝑧

dr and 𝜎(𝑅, 𝜃, 𝑡)
is obviously

Δ𝑋
𝜎𝑧

dr
= −(

1

𝑅2
)∫ [𝜎 (𝑅, 𝜃, 𝑡) 𝑑𝑆] cos (𝜃) ;

𝑑𝑆 = 2𝜋𝑅
2 sin (𝜃) 𝑑𝜃.

(19)

The integration is done over the surface 𝑆 of the moving
sphere at time 𝑡, that is, for 0 ≤ 𝜃 ≤ 𝜋.

On the other hand, the expression of the 𝑧 component
Δ𝑋

𝜎
󸀠
𝑧

dr due to 𝜎󸀠(𝑅, 𝜃󸀠, 𝑡 − 𝑡
1
) is more subtle and depends on

the movement of the charge. Indeed, if V𝑡
1
< 𝑅, 𝑂󸀠 is inside

the sphere of center 𝑂 and of 𝑅 radius; therefore, the image
of the charge 𝜎󸀠 (which is a punctual charge concentrated in
𝑂
󸀠) is situated inside the cavity of center 𝑂 and of radius 𝑅,

and consequently:

Δ𝑋
𝜎
󸀠
𝑧

dr
= 0, for V𝑡

1
< 𝑅. (20)

In contrast, for V𝑡
1
> 𝑅,𝑂󸀠 is outside the cavity, and therefore

Δ𝑋
𝜎
󸀠
𝑧

dr
= −𝑄∫

∞

𝑅/V
𝜁 (𝑡
1
) (V𝑡

1
)
−2
𝑑𝑡
1
. (21)

Now, the 𝑧 component of the resulting dielectric frictional
force 𝐹

𝑧

dr acting on the moving charged sphere due to the
superficial charges 𝜎 and 𝜎󸀠 is therefore equal to

𝐹
𝑧

dr
= 𝑄 (Δ𝑋

𝜎𝑧

dr
+ Δ𝑋

𝜎
󸀠
𝑧

dr
) = 𝐹

𝜎𝑧

dr
+ 𝐹
𝜎
󸀠
𝑧

dr
. (22)

Calculation of 𝐹
𝑧

dr according to the different above equations
leads to the following expressions which depend on the
condition imposed on the velocity of the polyion.

(a) For V𝑡
1
< 𝑅,

𝐹
𝜎
󸀠
𝑧

dr
= 0. (23)

Therefore, 𝐹
𝑧

dr
= 𝐹

𝜎𝑧

dr, and according to (19) and (22),

𝐹
𝑧

dr

= (
𝑄
2

2𝑅3
)∫

𝑅/V

0

𝜁 (𝑡
1
) 𝑑𝑡

1

× ∫

𝜋

0

cos (𝜃)sin (𝜃) [𝑅+V𝑡1 cos (𝜃)]

[1+2V𝑡
1
cos (𝜃) /𝑅+(V𝑡1/𝑅)

2
]
3/2
𝑑𝜃.

(24)

The denominator 𝑑3 = 𝑅3[1 + 2V𝑡
1
cos(𝜃)/𝑅 + (V𝑡

1
/𝑅)
2
]
3/2

must be always > 0, so that when cos(𝜃) = −1, 𝑑 = 𝑅 − V𝑡
1
,

because V𝑡
1
< 𝑅. If we substitute the function cos(𝜃) by the

new variable 𝑥 = cos(𝜃), we get

𝐹
𝑧

dr
= (

𝑄
2

2𝑅3
)∫

𝑅/V

0

𝜁 (𝑡
1
) 𝑑𝑡

1

× ∫

+1

−1

𝑥 [𝑅 + 𝑥V𝑡
1
]

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥.

(25)

Now the integral

∫

+1

−1

𝑥 [𝑅 + 𝑥V𝑡
1
]

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥 (26)

can be decomposed as a sum of two integrals:

𝑅∫

+1

−1

𝑥

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥

+ V𝑡
1
∫

+1

−1

𝑥
2

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥.

(27)

The integration over 𝑥 involves elementary functions so that
the above integrals exist in the literature. Since for V𝑡

1
< 𝑅

and 𝑥 = −1, we have 𝑑 = 𝑅 − V𝑡
1
, the integration leads to the

following exact results:

𝑅∫

+1

−1

𝑥

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥

= −
2V𝑡
1

[1 − (V𝑡
1
/𝑅)

2
]

,

V𝑡
1
∫

+1

−1

𝑥
2

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥

= 2V𝑡
1

[1 + 2(V𝑡
1
/𝑅)

2
]

3 [1 − (V𝑡
1
/𝑅)

2
]

,

(28)

so that

(
𝑄
2

2𝑅3
)∫

+1

−1

𝑥 [𝑅 + 𝑥V𝑡
1
]

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥

= −(
2

3
)(
𝑄
2

𝑅3
) V𝑡

1
.

(29)

Consequently, (25) can be simplified as follows:

𝐹
𝑧

dr
= −(

2

3
)(
𝑄
2

𝑅3
)∫

𝑅/V

0

𝜁 (𝑡
1
) V𝑡
1
𝑑𝑡
1
. (30)

(b) For V𝑡
1
> 𝑅.

In this case, when 𝑥 = −1 we have 𝑑 = V𝑡
1
− 𝑅, and

integration leads to the following exact results:

𝐹
𝜎𝑧

dr
= (

𝑄
2

2𝑅3
)∫

∞

𝑅/V
𝜁 (𝑡
1
) 𝑑𝑡

1

× ∫

+1

−1

𝑥 [𝑅 + 𝑥V𝑡
1
]

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥,

(31)
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with

𝑅∫

+1

−1

𝑥

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥

=
2𝑅

{(V𝑡
1
/𝑅)

2
[1 − (V𝑡

1
/𝑅)

2
]}

,

V𝑡
1
∫

+1

−1

𝑥
2

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥

= −

2𝑅 [2 + (V𝑡
1
/𝑅)

2
]

{3(V𝑡
1
/𝑅)

2
[1 − (V𝑡

1
/𝑅)

2
]}

,

(32)

so that

(
𝑄
2

2𝑅3
)∫

+1

−1

𝑥 [𝑅 + 𝑥V𝑡
1
]

[1 + 2𝑥V𝑡
1
/𝑅 + (V𝑡

1
/𝑅)

2
]
3/2
𝑑𝑥

= (
𝑄
2

3
) (V𝑡

1
)
−2
.

(33)

Consequently, (31) can be simplified as follows:

𝐹
𝜎𝑧

dr
= (
𝑄
2

3
)∫

∞

𝑅/V
𝜁 (𝑡
1
) (V𝑡

1
)
−2
𝑑𝑡
1
. (34)

On the other hand, the use of (21), (22), and (34) leads to

𝐹
𝜎
󸀠
𝑧

dr
= −𝑄

2
∫

∞

𝑅/V
𝜁 (𝑡
1
) (V𝑡

1
)
−2
𝑑𝑡
1
. (35)

And therefore

𝐹
𝑧

dr
= −(

2𝑄
2

3
)∫

∞

𝑅/V
𝜁 (𝑡
1
) (V𝑡

1
)
−2
𝑑𝑡
1
. (36)

Finally, the general expression of the resulting dielectric force:
𝐹
𝑧

dr which is valid for V𝑡
1
< 𝑅 and for V𝑡

1
> 𝑅 is

𝐹
𝑧

dr
= − (

2

3
)(
𝑄
2

𝑅3
)∫

𝑅/V

0

𝜁 (𝑡
1
) V𝑡
1
𝑑𝑡
1

− (
2𝑄
2

3
)∫

∞

𝑅/V
𝜁 (𝑡
1
) (V𝑡

1
)
−2
𝑑𝑡
1
.

(37)

This result is identical to original Zwanzig’s result [7].
In the limit of low velocity that is 𝑅/V ∼ ∞, that is, for a

slow particle

𝐹
𝑧

dr
≈ −(

2

3
)(
𝑄
2

𝑅3
)∫

∞

0

𝜁 (𝑡
1
) V𝑡
1
𝑑𝑡
1

= −(
2

3
) (V𝜏) (𝜀 − 𝜀∞) 𝜀

−2
(𝑄)

2
(𝑅)
−3
,

(38)

it is interesting to note that we can physically interpret this
last result according to the linear response theory combined

to a dimensional analysis as follows. Indeed, first, frictional
effect is absent for immobile particle (V = 0); therefore, we
expect that 𝐹

𝑧

dr must be proportional to V; second, there
is no dielectric friction if the depolarization of the solvent
molecules around the particle is instantaneous (𝜏 = 0);
consequently, 𝐹

𝑧

dr is also proportional to the relaxation time
𝜏; on the other hand, there is no relaxation effect if the solvent
is dielectrically saturated (𝜀 = 𝜀

∞
); consequently, 𝐹

𝑧

dr must
be proportional to (𝜀 − 𝜀

∞
)𝜀−1; finally, 𝐹

𝑧

dr is an electric force
acting on a sphere of charge 𝑄 and radius 𝑅, and it is in
principle proportional to (𝑄)2𝜀−1(𝑅)−2; now as 𝐹

𝑧

dr is also
proportional to the length V𝜏, it follows that 𝐹

𝑧

dr must be
proportional to (𝑅)−3 so that it sharply decreases with the size
of the particle.

More rigorous derivations of 𝐹
𝑧

dr taking into account
hydrodynamic motion of the solvent were performed suc-
cessively by Zwanzig [7], Hubbard and Douglas [17], and
Hubbard andOnsager [18]. More recent approach taking into
account molecular correlation between solvent molecules
andmoving particle was presented byWolynes [19]. However,
if the charged sphere is assumed to be a conductor of large
radius 𝑅, then hydrodynamic effects become small and all
theories converge to Zwanzig’s original result.

Note finally that (38) has been generalized to the case of
ellipsoidal polyion of 𝑒𝑍

𝑆
charge characterized by an apparent

radius 𝑅app which depends on the eccentricity 𝛾 so that
𝑅app → 𝑅 when 𝛾 → 0 [6]; the result is

𝐹
𝑧

dr
= −(

2

3
) (V𝜏) (𝜀 − 𝜀∞) 𝜀

−2
(𝑒𝑍

𝑆
)
2
(𝑅app)

−3

. (39)

3. General Expression of the Dielectric
Frictional Force

The previous expression giving the dielectric frictional force
𝐹
𝑧

dr acting on an ellipsoidal (or spherical) polyion of center
𝑂,𝐴 and 𝐵 focuses,𝑅minor axis, 𝑎

𝑅
major axis, 𝐿 length (𝐿 =

𝐴𝐵), and 𝑒𝑍
𝑆
charge, can be found by applying the following

general method [6, 14].
As explained above, the time dependent polarization

P(r󸀠, 𝑡) at a position r󸀠 around the polyion (𝑀 point; see
Figure 3) is induced by the displacement fieldD(r󸀠, 𝑡−𝑡

1
) due

to the (𝑒𝑍
𝑆
) charge of the moving polyion. In its turn, this

induced polarization creates a reacting dielectric relaxation
field ΔΧdr in 𝑂 and therefore exerts a dielectric frictional
force (Fdr = 𝑒𝑍

𝑆
ΔΧ

dr) back on the polyion directed along the
𝑂𝑍 axis. Indeed, according to the dielectric theory, the local
charge density of the dielectric molecules into the element of
volume 𝑑𝑥 𝑑𝑦𝑑𝑧 at𝑀 is equal to −∇ ⋅ P(r󸀠, 𝑡) so that

Δ𝑋
dr
=∭

∇ ⋅ P (r󸀠, 𝑡) 𝜌
𝜌3

𝑑𝑥 𝑑𝑦𝑑𝑧; with : ( ⃗𝜌 = 𝑂𝑀) ,

(40)

with

P (r󸀠, 𝑡) = ( 1
4𝜋
)∫

∞

0

𝜁 (𝑡
1
)D (r󸀠, 𝑡 − 𝑡

1
) 𝑑𝑡

1
. (41)
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Figure 3: Representation of a moving ellipsoidal polyion, surrounded by its dielectric medium.

The explicit development of the previous relations according
to adequate boundary conditions enables us to reduce the
expression of the dielectric frictional force Fdr to the follow-
ing general formwhich is in fact valid for a chargedmacroion
of any shape:

𝐹
𝑧

dr
= (𝑒𝑍

𝑆
) Δ𝑋

𝑧

dr

= (
𝑒𝑍
𝑆

4𝜋
)∫

∞

0

𝜁 (𝑡
1
) 𝐼
𝑂

𝑧
(𝑡
1
) 𝑑𝑡

1
.

(42)

𝐼
𝑂

𝑧
(𝑡
1
) is the so-called key integral [6] related to the compo-

nents𝐷
𝑥
,𝐷
𝑦
, and𝐷

𝑧
ofD(r󸀠, 𝑡 − 𝑡

1
) as follows:

𝐼
𝑂

𝑧
(𝑡
1
)

=∭[−
𝐷
𝑧
(𝑡 − 𝑡

1
)

𝜌3
+
3𝑍
2
𝐷
𝑧
(𝑡 − 𝑡

1
)

𝜌5

+
3𝑥𝑍𝐷

𝑥
(𝑡 − 𝑡

1
)

𝜌5
+
3𝑦𝑍𝐷

𝑦
(𝑡 − 𝑡

1
)

𝜌5
]𝑑𝑥𝑑𝑦𝑑𝑧.

(43)

According to Figure 3, 𝑥, 𝑦 and 𝑧 are the Cartesian coordi-
nates of the vector radius r󸀠 of module 𝑂󸀠𝑀; 𝜌 is the vector
radius of module 𝜌 = 𝑂𝑀. 𝑂󸀠𝑂 = V𝑡 is the distance covered

by the center 𝑂 of the moving polyion during the time 𝑡 with
the velocity V, and 𝑍 = 𝑧 − V𝑡 = 𝜌 cos(𝛼).

The above triple integration is effectuated over the whole
volume of the dielectric medium; consequently, the main
mathematical difficulty comes from the limiting conditions
imposed on the interdependent lower boundaries of integra-
tion (𝑥∘, 𝑦∘, 𝑧∘) defining the finite surface region surrounding
the volume from which the dielectric medium must be
excluded.

Demonstration of (42) and (43) was first achieved by
Zwanzig in its original work [7] in the case of a moving
spherical charge and then by the authors of [6] in the case
of a moving ellipsoidal polyion.

As indication, we give below the explicit formulas corre-
sponding to the components 𝐷

𝑥
, 𝐷
𝑦
, and 𝐷

𝑧
, created by an

ellipsoidal polyion:

𝐷
𝑥
(𝑡 − 𝑡

1
)

= −𝜆𝑟
−1 cos 𝜃

×
{

{

{

[𝑍 + (V𝑡
1
− 𝐿/2)]

[𝜌2 + 2𝑍(V𝑡
1
− 𝐿/2) + (V𝑡

1
− 𝐿/2)

2
]
1/2



8 The Scientific World Journal

−
[𝑍 + (V𝑡

1
+ 𝐿/2)]

[𝜌2 + 2𝑍(V𝑡
1
+ 𝐿/2) + (V𝑡

1
+ 𝐿/2)

2
]
1/2

}

}

}

,

𝐷
𝑦
(𝑡 − 𝑡

1
)

= −𝜆𝑟
−1 sin 𝜃

×
{

{

{

[𝑍 + (V𝑡
1
− 𝐿/2)]

[𝜌2 + 2𝑍(V𝑡
1
− 𝐿/2) + (V𝑡

1
− 𝐿/2)

2
]
1/2

−
[𝑍 + (V𝑡

1
+ 𝐿/2)]

[𝜌2 + 2𝑍(V𝑡
1
+ 𝐿/2) + (V𝑡

1
+ 𝐿/2)

2
]
1/2

}

}

}

,

𝐷
𝑧
(𝑡 − 𝑡

1
)

= 𝜆
{

{

{

1

[𝜌2 + 2𝑍(V𝑡
1
− 𝐿/2) + (V𝑡

1
− 𝐿/2)

2
]
1/2

−
1

[𝜌2+2𝑍(V𝑡
1
+𝐿/2)+(V𝑡

1
+𝐿/2)

2
]
1/2

}

}

}

.

(44)

The parameters V𝑡, 𝐿, 𝑟, 𝑍, 𝜌, 𝛼, and 𝜃 are defined in Figure 3;
and 𝜆 = (𝑒𝑍

𝑆
)𝐿
−1 is the linear charge density of the polyion.

The introduction of the explicit expressions of 𝐷
𝑥
, 𝐷
𝑦
, and

𝐷
𝑧
, into (43) leads to the following expression of the key

integral:

𝐼
𝑂

𝑧
(𝑡
1
) = − (

8𝜋

3
)(

𝑒𝑍
𝑆

𝑅app
3
) V𝑡

1
. (45)

Therefore, integration of 𝐼𝑂
𝑧
(𝑡
1
) according to (42) leads to the

same results obtained in paragraph 2 ((38) and (39)).
In the next paragraph, we will generalize this approach

based on the notion of the key integral 𝐼, in order to calculate
in details the dielectric frictional force acting on a moving
chain of charged spheres.

4. Expression of the Dielectric Frictional Force
on a Moving Chain of Charged Spheres

Figure 4 represents a moving polyion as a succession of
|𝑍
𝑆
| identical charged rigid spheres (or “groups”) of centers

𝑀
1
,𝑀
2
, . . . ,𝑀

𝑖
, . . . ,𝑀

|𝑍
𝑆
|
of𝑅

𝑔
radius and 𝑞

𝑖
charge.The dis-

tance of separation between two successive charged spheres is
defined by 𝑏

𝑆
= 𝐿

𝑆
/|𝑍
𝑆
| ≥ 2𝑅

𝑔
.

𝑂
󸀠
𝑋
󸀠
𝑌
󸀠
𝑍
󸀠 indicates the fixedCartesian reference frame so

that the chain moves along𝑂𝑍󸀠 with a velocity V. The relative
position Δ𝑧

𝑖
of a charged sphere “𝑖” of center 𝑀

𝑖
is defined

compared to an arbitrary origin𝑂
𝑚
which coincides with the

center of an unspecified sphere “𝑚” so that

Δ𝑧
𝑖
≡ 𝑧
𝑂
𝑚

− 𝑧
𝑀
𝑖

. (46)

𝑧
𝑀
𝑖

and 𝑧
𝑂
𝑚

are, respectively, the 𝑧 coordinates of𝑀
𝑖
and𝑂

𝑚
.

Now, if Δ𝑧
𝑖
> 0, we can write

Δ𝑧
𝑖
≡ Δ𝑧

𝑛
= 𝑛𝑏

𝑆
, with 𝑛 = 1, 2, 3, . . . , 𝑁. (47)

If Δ𝑧
𝑖
< 0, then

Δ𝑧
𝑖
≡ Δ𝑧

𝑛
󸀠 = −𝑛

󸀠
𝑏
𝑆
, with 𝑛󸀠 = 1, 2, 3, . . . , 𝑁󸀠, (48)

with the obvious condition

𝑁 +𝑁
󸀠
=
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 − 1.

(49)

𝑀(𝑥
󸀠
, 𝑦
󸀠
, 𝑧
󸀠
) is an arbitrary point inside the dielectric

medium and 𝜌
𝑂
𝑚

(𝑡) and 𝜌
𝑖

𝑚
(𝑡) are the distances of separation

between 𝑀 and, respectively, 𝑂
𝑚
and 𝑀

𝑖
at time 𝑡. On the

other hand, 𝜌
𝑖

𝑚
(𝑡 − 𝑡

1
) is the distance of separation between

𝑀 and𝑀
𝑖
at time (𝑡 − 𝑡

1
) (i.e., the center of the red sphere

represented in Figure 4), so that V𝑡
1
is equal to the distance of

separation between the center of the sphere “𝑖” at time 𝑡 and
its center at (𝑡 − 𝑡

1
).

According to Figure 4, in which Δ𝑧
𝑖
> 0, the distance

𝜌
𝑖

𝑚
(𝑡 − 𝑡

1
) is equal to

[𝜌
𝑖

𝑚
(𝑡 − 𝑡

1
)]
2
= 𝜌

𝑂
𝑚

2
+ (V𝑡

1
+ 𝑛𝑏

𝑠
)
2

+ 2𝜌
𝑂
𝑚

(V𝑡
1
+ 𝑛𝑏

𝑠
) cos (𝛼

𝑂
𝑚

)

≡ [𝑎𝑢 + 𝑏] .

(50)

For simplification we have used the new parameters

𝑟 = 𝜌
𝑂
𝑚

sin (𝛼
𝑂
𝑚

) ; 𝑢 = cos (𝛼
𝑂
𝑚

) ;

𝑎 = 2𝜌
𝑂
𝑚

(V𝑡
1
+ 𝑛𝑏

𝑆
) ; 𝑏 = 𝜌

𝑂
𝑚

2
+ (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
.

(51)

Now, the sphere “𝑖” of charge 𝑞
𝑖
creates in the point𝑀 at (𝑡 −

𝑡
1
) an electrical displacement field

D
𝑖

𝑚
(𝑡 − 𝑡

1
) = 𝑞

𝑖
{
𝜌
𝑖

𝑚
(𝑡 − 𝑡

1
)

𝜌
𝑖
𝑚 (𝑡 − 𝑡

1
)
} [𝜌

𝑖

𝑚
(𝑡 − 𝑡

1
)]
−2
. (52)

Therefore, the expressions of the components 𝐷
𝑥𝑖

𝑚
(𝑡 − 𝑡

1
),

𝐷
𝑦𝑖

𝑚
(𝑡 − 𝑡

1
) and𝐷

𝑧𝑖

𝑚
(𝑡 − 𝑡

1
) are

𝐷
𝑥𝑖

𝑚
(𝑡 − 𝑡

1
) =

𝑞
𝑖
𝑟 cos (𝜃)

[𝜌
𝑖
𝑚 (𝑡 − 𝑡

1
)]
3
= 𝑞
𝑖
𝑟 cos (𝜃) [𝑎𝑢 + 𝑏]−3/2,

(53)

𝐷
𝑦𝑖

𝑚
(𝑡 − 𝑡

1
) =

𝑞
𝑖
𝑟 sin (𝜃)

[𝜌
𝑖
𝑚 (𝑡 − 𝑡

1
)]
3
= 𝑞
𝑖
𝑟 sin (𝜃) [𝑎𝑢 + 𝑏]−3/2,

(54)

𝐷
𝑧𝑖

𝑚
(𝑡 − 𝑡

1
) =

𝑞
𝑖
𝜌
𝑖

𝑚
(𝑡 − 𝑡

1
) cos (𝛼󸀠

𝑖

𝑚

)

[𝜌
𝑖
𝑚 (𝑡 − 𝑡

1
)]
3

= 𝑞
𝑖

𝑚
[𝜌
𝑂
𝑚

𝑢 + V𝑡
1
− 𝑛𝑏

𝑠
] [𝑎𝑢 + 𝑏]

−3/2
.

(55)

It is also important to note that the denominator [𝑎𝑢 + 𝑏]
which appears in (53)–(55) must be strictly positive.
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Figure 4: Representation of a moving polyion as a chain of successive charged spheres.

According to the principle of superposition, the total
displacement fieldD(𝑥󸀠, 𝑦󸀠, 𝑧󸀠, 𝑡−𝑡

1
)due to total charge of the

moving polyion in𝑀 at (𝑡−𝑡
1
) is equal to the sum of the local

fields D
𝑖

𝑚
(𝑡 − 𝑡

1
) created by the successive spherical charges

𝑞
𝑖
:

D (𝑥󸀠, 𝑦󸀠, 𝑧󸀠, 𝑡 − 𝑡
1
) = ∑

𝑖

D
𝑖

𝑚
(𝑡 − 𝑡

1
) . (56)

It is clear that the components of D
𝑂
𝑚

(𝑡 − 𝑡
1
) created by the

reference charge 𝑂
𝑚
in𝑀 at 𝑡 − 𝑡

1
are calculated from (52)–

(55) by imposing Δ𝑧
𝑖
= 0. We can also develop the equation

of superposition given by (52) as follows:

D (𝑥󸀠, 𝑦󸀠, 𝑧󸀠, 𝑡 − 𝑡
1
) = D

𝑂
𝑚

(𝑡 − 𝑡
1
) +

𝑁

∑

𝑛=1

D
𝑛

𝑚
(𝑡 − 𝑡

1
)

+

𝑁
󸀠

∑

𝑛
󸀠
=1

D
𝑛
󸀠

𝑚
(𝑡 − 𝑡

1
) .

(57)

Now, in order to simplify calculations of the dielectric
frictional force according to the general method exposed in
Section 3 on the basis of (42) and (43), we will define for each

number 𝑛 (or 𝑛󸀠) a corresponding cross key integral 𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
)

as follows:

𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
)

=∭{−
𝐷
𝑧𝑛

𝑚
(𝑡 − 𝑡

1
)

𝜌
𝑂
𝑚

3
+
3𝑍
2
𝐷
𝑧𝑛

𝑚
(𝑡 − 𝑡

1
)

𝜌
𝑂
𝑚

5

+
3𝑥
󸀠
𝑍𝐷

𝑥𝑛

𝑚
(𝑡 − 𝑡

1
)

𝜌
𝑂
𝑚

5

+
3𝑦
󸀠
𝑍𝐷

𝑦𝑛

𝑚
(𝑡 − 𝑡

1
)

𝜌
𝑂
𝑚

5
}𝑑𝑥

󸀠
𝑑𝑦
󸀠
𝑑𝑧
󸀠
,

(58)

with 𝑍 = 𝜌
𝑂
𝑚

𝑢. The triple integration in this equation
is done over the whole volume except the volume of the
spherical charge 𝑂

𝑚
. The explicit expression of this inte-

gral in terms of the spherical coordinates 𝜌
𝑂
𝑚

and 𝑢 =

cos(𝛼
𝑂
𝑚

) is obtained after replacing the volume element of
the dielectric 𝑑𝑥󸀠𝑑𝑦󸀠𝑑𝑧󸀠 by −𝜌

𝑂
𝑚

2
𝑑𝑢 𝑑𝜌

𝑂
𝑚

𝑑𝜃. The result is

𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
) = 2𝜋∫

∞

𝑅
𝑔

𝜌
𝑂
𝑚

−1
𝑑𝜌
𝑂
𝑚

∫

+1

−1

𝑓
𝑛

∘
(𝜌
𝑂
𝑚

, 𝑢) 𝑑𝑢,
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𝑓
𝑛

∘
(𝜌
𝑂
𝑚

, 𝑢)

= {−𝐷
𝑚

𝑧𝑛
(𝑡 − 𝑡

1
) +
3𝑍
2
𝐷
𝑚

𝑧𝑛
(𝑡 − 𝑡

1
)

𝜌
𝑂
𝑚

2

+
3𝑥
󸀠
𝑍𝐷

𝑚

𝑥𝑛
(𝑡 − 𝑡

1
)

𝜌
𝑂
𝑚

2
+
3𝑦
󸀠
𝑍𝐷

𝑚

𝑦𝑛
(𝑡 − 𝑡

1
)

𝜌
𝑂
𝑚

2
} .

(59)

The insertion of the expressions of𝐷
𝑥𝑛

𝑚
(𝑡 − 𝑡

1
),𝐷

𝑦𝑛

𝑚
(𝑡 − 𝑡

1
),

and 𝐷
𝑧𝑛

𝑚
(𝑡 − 𝑡

1
) given by (53)–(55) into the above relations

leads to

𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
)

= 2𝜋𝑞
𝑛
∫

∞

𝑅
𝑔

𝜌
𝑂
𝑚

−1
𝑑𝜌
𝑂
𝑚

× ∫

+1

−1

[𝑎𝑢 + 𝑏]
−3/2
{2𝜌

𝑂
𝑚

𝑢 + (V𝑡
1
+ 𝑛𝑏

𝑆
) (3𝑢

2
− 1)} 𝑑𝑢.

(60)

We can decompose the second integral over the variable 𝑢 as
a sum of three elementary integrals:

∫

+1

−1

[𝑎𝑢 + 𝑏]
−3/2
{2𝜌

𝑂
𝑚

𝑢 + (V𝑡
1
+ 𝑛𝑏

𝑆
) (3𝑢

2
− 1)} 𝑑𝑢

= [𝐼
𝑜

1
(𝜌
𝑂
𝑚

) + 𝐼
𝑜

2
(𝜌
𝑂
𝑚

) + 𝐼
𝑜

3
(𝜌
𝑂
𝑚

)] ,

𝐼
𝑜

1
(𝜌
𝑂
𝑚

) = − (V𝑡
1
+ 𝑛𝑏

𝑠
) ∫

+1

−1

[𝑎𝑢 + 𝑏]
−3/2
𝑑𝑢,

𝐼
𝑜

2
(𝜌
𝑂
𝑚

) = 2𝜌
𝑂
𝑚

∫

+1

−1

[𝑎𝑢 + 𝑏]
−3/2
𝑢𝑑𝑢,

𝐼
𝑜

3
(𝜌
𝑂
𝑚

) = 3 (V𝑡
1
+ 𝑛𝑏

𝑠
) ∫

+1

−1

[𝑎𝑢 + 𝑏]
−3/2
𝑢
2
𝑑𝑢.

(61)

At this stage, we must distinguish two conditions.
(a) 𝜌

𝑂
𝑚

≥ V𝑡
1
± 𝑛𝑏

𝑆
, so that (𝑎 + 𝑏)1/2 = 𝜌

𝑂
𝑚

+ (V𝑡
1
+ 𝑛𝑏

𝑆
)

and (𝑏 − 𝑎)1/2 = 𝜌
𝑂
𝑚

− (V𝑡
1
+ 𝑛𝑏

𝑆
); thus,

𝐼
𝑜

1
(𝜌
𝑂
𝑚

) = −2𝜌
𝑂
𝑚

−1
(V𝑡
1
+ 𝑛𝑏

𝑆
) [𝜌

𝑂
𝑚

2
− (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
]
−1

,

𝐼
𝑜

2
(𝜌
𝑂
𝑚

) = −4𝜌
𝑂
𝑚

−1
[𝜌
𝑂
𝑚

2
− (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
]
−1

(V𝑡
1
+ 𝑛𝑏

𝑆
) ,

𝐼
𝑜

3
(𝜌
𝑂
𝑚

) = 2𝜌
𝑂
𝑚

−3
(V𝑡
1
+ 𝑛𝑏

𝑆
) [𝜌

𝑂
𝑚

2
− (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
]
−1

× [𝜌
𝑂
𝑚

2
+ 2(V𝑡

1
+ 𝑛𝑏

𝑆
)
2
] .

(62)

Therefore

∫

+1

−1

[𝑎𝑢 + 𝑏]
−3/2
{2𝜌

𝑂
𝑚

𝑢 + (V𝑡
1
+ 𝑛𝑏

𝑆
) (3𝑢

2
− 1)} 𝑑𝑢

= −4𝜌
𝑂
𝑚

−3
(V𝑡
1
+ 𝑛𝑏

𝑆
) .

(63)

(b) 𝜌
𝑂
𝑚

≤ V𝑡
1
± 𝑛𝑏

𝑆
, so that (𝑎 + 𝑏)1/2 = 𝜌

𝑂
𝑚

+ (V𝑡
1
+ 𝑛𝑏

𝑆
)

and (𝑏 − 𝑎)1/2 = −𝜌
𝑂
𝑚

+ (V𝑡
1
+ 𝑛𝑏

𝑆
); thus,

𝐼
𝑜

1
(𝜌
𝑂
𝑚

) = 2[𝜌
𝑂
𝑚

2
− (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
]
−1

,

𝐼
𝑜

2
(𝜌
𝑂
𝑚

) = 4𝜌
𝑂
𝑚

2
(V𝑡
1
+ 𝑛𝑏

𝑆
)
−2
[𝜌
𝑂
𝑚

2
− (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
]
−1

,

𝐼
𝑜

3
(𝜌
𝑂
𝑚

) = − 2 {2𝜌
𝑂
𝑚

2
+ (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
}

× (V𝑡
1
+ 𝑛𝑏

𝑆
)
−2
[𝜌
𝑂
𝑚

2
− (V𝑡

1
+ 𝑛𝑏

𝑆
)
2
]
−1

.

(64)

Therefore

∫

+1

−1

[𝑎𝑢 + 𝑏]
−3/2
{2𝜌

𝑂
𝑚

𝑢 + (V𝑡
1
+ 𝑛𝑏

𝑆
) (3𝑢

2
− 1)} 𝑑𝑢 = 0.

(65)

This last equation means that polarized solvent molecules
inside the sphere of radius 𝜌

𝑂
𝑚

= (V𝑡
1
+𝑛𝑏

𝑆
) do not participate

in the dielectric friction. (Note thatwe have obtained a similar
result in the case of an ellipsoidal polyion of center 𝑂 and
length𝐿 [6]. All occur as if during its translationalmotion, the
polyion turns around its center so that the solvent molecules
inside the sphere of center 𝑂 and 𝐿/2 radius do not take part
in the process of dielectric friction).

Finally, by introducing (63) and (65) into (60) and after
simple integration we obtain the following final expression of
the cross key integral 𝐼

𝑧

𝑂
𝑚

𝑛
(𝑡
1
):

𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
) = −8𝜋𝑞

𝑛
(V𝑡
1
+ 𝑛𝑏

𝑆
) ∫

∞

V𝑡
1
+𝑛𝑏
𝑠

𝑑𝜌
𝑂
𝑚

𝜌
𝑂
𝑚

4

= −(
8𝜋

3
) 𝑞
𝑛
(V𝑡
1
+ 𝑛𝑏

𝑆
)
−2
.

(66)

It is important to underline that 𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
) represents a cross

(𝑛,𝑚) effect. Indeed, it is proportional to the dielectric
frictional force (𝐹

𝑧

dr
)
𝑂
𝑚

𝑛
acting on the reference charge 𝑂

𝑚
,

due to the polarizationof the solvent by the field D
𝑛

𝑚
(𝑡 − 𝑡

1
)

created by the spherical charge “𝑞
𝑛
”:

(𝐹
𝑧

dr
)
𝑂
𝑚

𝑛
= (
𝑞
𝑂
𝑚

4𝜋
)∫

∞

0

𝜁 (𝑡
1
) 𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
) 𝑑𝑡

1
. (67)

In the case of a spherical charge “𝑞
𝑛
󸀠” characterized by the

condition Δ𝑧
𝑛
󸀠 = −𝑛

󸀠
𝑏
𝑆
< 0, we define in the same way

a key integral 𝐼
𝑧

𝑂
𝑚

𝑛
󸀠(𝑡1) related to its corresponding force

(𝐹
𝑧

dr
)
𝑂
𝑚

𝑛
󸀠 :

𝐼
𝑧

𝑂
𝑚

𝑛
󸀠 (𝑡1) = −8𝜋𝑞𝑛󸀠 (V𝑡1 − 𝑛

󸀠
𝑏
𝑆
)∫

∞

𝑛
󸀠
𝑏
𝑠
−V𝑡
1

𝑑𝜌
𝑂
𝑚

𝜌
𝑂
𝑚

4

= (
8𝜋

3
) 𝑞
𝑛
󸀠(V𝑡

1
− 𝑛
󸀠
𝑏
𝑆
)
−2

(68)

with the condition 𝑛󸀠𝑏
𝑆
> V𝑡

1
.
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In contrast, the self -key integral 𝐼
𝑧

𝑂
𝑚

𝑚
(𝑡
1
) is proportional

to the self -dielectric frictional force (𝐹
𝑧

dr
)
𝑂
𝑚

𝑚
acting on the

reference charge 𝑂
𝑚
which is induced by its own charge 𝑞

𝑂
𝑚

.
𝐼
𝑧

𝑂
𝑚

𝑚
(𝑡
1
) is therefore Zwanzig’s integral relative to a moving

sphere of 𝑞
𝑂
𝑚

charge and𝑅
𝑔
radius; its expression is therefore

analogous to (45):

𝐼
𝑧

𝑂
𝑚

𝑚
(𝑡
1
) = − (

8𝜋

3
)(
𝑞
𝑂
𝑚

𝑅
𝑔

3
) V𝑡

1
. (69)

Consequently, the total dielectric force (𝐹
𝑧

dr
)
𝑂
𝑚 acting on

the reference spherical charge 𝑂
𝑚
which is induced by the

different spherical charges of the chain is given by

(𝐹
𝑧

dr
)
𝑂
𝑚

= (
𝑞
𝑂
𝑚

4𝜋
)∫

∞

0

𝜁 (𝑡
1
) [

[

𝐼
𝑧

𝑂
𝑚

𝑚
(𝑡
1
) +

𝑁

∑

𝑛=1

𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
)

+

𝑁
󸀠

∑

𝑛
󸀠
=1

𝐼
𝑧

𝑂
𝑚

𝑛
󸀠 (𝑡1)

]

]

𝑑𝑡
1
.

(70)

The resulting dielectric force 𝐹
𝑧

dr acting on the polyion is
obtained via the total key integral 𝐼

𝑧
(𝑡
1
) by a summation over

the |𝑍
𝑆
| reference spherical charges 𝑂

𝑚
:

(𝐹
𝑧

dr
) ≡ (

𝑞
𝑂
𝑚

4𝜋
)∫

∞

0

𝜁 (𝑡
1
) 𝐼
𝑧
(𝑡
1
) 𝑑𝑡

1
=

|𝑍
𝑆
|

∑

𝑚=1

(𝐹
𝑧

dr
)
𝑂
𝑚

, (71)

𝐼
𝑧
(𝑡
1
) =

|𝑍
𝑆
|

∑

𝑚=1

[

[

𝐼
𝑧

𝑂
𝑚

𝑚
(𝑡
1
) +

𝑁

∑

𝑛=1

𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
)

+

𝑁
󸀠

∑

𝑛
󸀠
=1

𝐼
𝑧

𝑂
𝑚

𝑛
󸀠 (𝑡1)

]

]

.

(72)

Recall that 𝑁 and 𝑁󸀠 are related by the condition 𝑁 +

𝑁
󸀠
= |𝑍

𝑆
| − 1. According to (66), (68), and (69), the key

integrals 𝐼
𝑧

𝑂
𝑚

𝑚
(𝑡
1
), 𝐼
𝑧

𝑂
𝑚

𝑛
(𝑡
1
), and 𝐼

𝑧

𝑂
𝑚

𝑛
󸀠(𝑡1) are, respectively,

proportional to −V𝑡
1
/𝑅
𝑔

3, −(V𝑡
1
+ 𝑛𝑏

𝑆
)
−2, and (V𝑡

1
− 𝑛
󸀠
𝑏
𝑆
)
−2;

one can therefore regroup the different terms of the above
sums over 𝑛 and 𝑛󸀠 in order to transform them into a sum
of couples (𝑛 = 𝑝, 𝑛󸀠 = 𝑝) of the form [(V𝑡

1
+ 𝑝𝑏

𝑆
)
−2
−

(V𝑡
1
− 𝑝𝑏

𝑆
)
−2
]; each couple has a “degeneracy” equal to (|𝑍

𝑆
|−

𝑝). Consider

𝐼
𝑧
(𝑡
1
)

= −(
8𝜋𝑞

𝑂
𝑚

3
)

× {

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 V𝑡1
𝑅
𝑔

3
+

(|𝑍
𝑆
|−1)

∑

𝑝=1

(
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨−𝑝)

×[(V𝑡
1
+𝑝𝑏

𝑆
)
−2
−(V𝑡

1
−p𝑏

𝑆
)
−2
]} .

(73)

Table 1 gives as an example the matrix of the various terms of
the key integral 𝐼

𝑧
(𝑡
1
) of a chain of eight (|𝑍

𝑆
| = 8) charged

spheres.
In the approximation of the linear response, 𝐼

𝑧
(𝑡
1
) must

be proportional to (V𝑡
1
) with the condition 𝑝𝑏

𝑆
> V𝑡

1
; its

expression can therefore be simplified as follows:

𝐼
𝑧
(𝑡
1
)

= −(
8𝜋𝑞

𝑂
𝑚

3
) V𝑡

1
{

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

𝑅
𝑔

3
− 4𝑏

𝑆

−3

(|𝑍
𝑆
|−1)

∑

𝑝=1

𝑝
−3
(
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 − 𝑝)} .

(74)

As the sums ∑𝑝−2 and ∑𝑝−3 converge rapidly, respectively,
to

∞

∑

𝑝=1

𝑝
−2
=
𝜋
2

6
≈ 1.645;

∞

∑

𝑝=1

𝑝
−3
≈ 1.202, (75)

the final result for large |𝑍
𝑆
| is therefore

𝐼
𝑧
(𝑡
1
) ≈ − (

8𝜋𝑞
𝑂
𝑚

3
) V𝑡

1

× {
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 𝑅𝑔

−3
− 4𝑏

𝑆

−3
[1.202

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 − 1.645]} .

(76)

We now define the “interference factor” 𝑓 as follows:

𝑓 = (
𝑏
𝑆

𝑅
𝑔

) ≥ 2,

𝐼
𝑧
(𝑡
1
) ≈ − (

8𝜋𝑞
𝑂
𝑚

3
) V𝑡

1
𝑏
𝑆

−3

× {
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 𝑓
3
− 4 [1.202

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 − 1.645]} .

(77)

The final expression of the dielectric force 𝐹
𝑧

dr acting on the
charged chain of the polyion is obtained according to (76),
(71), and (16) and by using the relation

∫𝜁 (𝑡
1
) V𝑡
1
𝑑𝑡
1
= (V𝜏) (𝜀 − 𝜀∞) 𝜀

−2
,

(𝐹
𝑧

dr
) = (

𝑞
𝑂
𝑚

4𝜋
)∫

∞

0

𝜁 (𝑡
1
) 𝐼
𝑧
(𝑡
1
) 𝑑𝑡

1

= −(
2

3
) (𝑞

𝑂
𝑚

)
2

(V𝜏) 𝑏𝑆
−3
(𝜀 − 𝜀

∞
) 𝜀
−2

× {
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 (𝑓

3
− 4.808) + 6.58} .

(78)

Note that when the distance of separation 𝑏
𝑆
between two

successive charges is large compared to the radius 𝑅
𝑔
of the
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Table 1

−(�t1 + 2bs)−2
−(�t1 + 2bs)−2 −(�t1 + bs)−2
−(�t1 + bs)−2

−(�t1 + 4bs)−2
−(�t1 + 4bs)−2

−(�t1 + 5bs)−2
−(�t1 + 5bs)−2

−(�t1 + 6bs)−2
−(�t1 + 6bs)−2

−(�t1 + 3bs)−2
−(�t1 + 3bs)−2

−(�t1 + 2bs)−2
−(�t1 + bs)−2

−(�t1 + 4bs)−2
−(�t1 + 5bs)−2

−(�t1 + 3bs)−2 −(�t1 + 2bs)−2
−(�t1 + bs)−2

−(�t1 + 4bs)−2
−(�t1 + 3bs)−2 −(�t1 + 2bs)−2

−(�t1 + bs)−2

−(�t1 + 2bs)−2
−(�t1 + bs)−2

−(�t1 + bs)−2−(�t1 + 3bs)−2−(�t1 + 7bs)−2

(�t1 + 2bs)−2

(�t1 + 2bs)−2

(�t1 + 2bs)−2
(�t1 + bs)−2

(�t1 + bs)−2

(�t1 + bs)−2

(�t1 + bs)−2

(�t1 + 4bs)−2
(�t1 + 5bs)−2
(�t1 + 6bs)−2

(�t1 + 3bs)−2

(�t1 + 2bs)−2

(�t1 + bs)−2

(�t1 + 4bs)−2
(�t1 + 5bs)−2
(�t1 + 6bs)−2
(�t1 + 7bs)−2

(�t1 + 3bs)−2

(�t1 + 3bs)−2

(�t1 + 2bs)−2

(�t1 + bs)−2

(�t1 + 4bs)−2
(�t1 + 5bs)−2

(�t1 + 3bs)−2(�t1 + 2bs)−2

(�t1 + bs)−2

(�t1 + 4bs)−2

(�t1 + 3bs)−2
−�t1/Rg

3

−�t1/Rg
3

−�t1/Rg
3

−�t1/Rg
3

−�t1/Rg
3

−�t1/Rg
3

−�t1/Rg
3

−�t1/Rg
3

⟩⟩

⟩⟩

⟩⟩

⟩⟩

charged groups (i.e., 𝑏
𝑆
≫ 𝑅

𝑔
and 𝑓 ≫ 2), the mutual

influence between charged spheres vanishes, so that the
solvent molecules surrounding each sphere “𝑖” are polarized
essentially by the displacement field D

𝑖

𝑚
(𝑡 − 𝑡

1
) caused by

its own charge 𝑞
𝑖
(no interference). Consequently, the dielec-

tric force: (𝐹
𝑧

dr
)
𝑖
undergone by each group “𝑖” is therefore

reduced to Zwanzig’s force −(2/3)(𝑞
𝑂
𝑚

)
2
(V𝜏)𝑅

𝑔

−3
(𝜀 − 𝜀

∞
)𝜀
−2,

and the total force 𝐹
𝑧

dr acting on the polyion is obtained by
superposition of these |𝑍

𝑆
| Zwanzig’s forces:

(𝐹
𝑧

dr
)
𝑓→∞

= (
𝑞
𝑂
𝑚

4𝜋
)∫ 𝜁 (𝑡

1
) 𝐼
𝑧
(𝑡
1
) 𝑑𝑡

1

= −
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 (
2

3
) (𝑞

𝑂
𝑚

)
2

(V𝜏)−3𝑅𝑔
−3
(𝜀 − 𝜀

∞
) 𝜀
−2
.

(79)

It is also important to realize that in all cases 𝐹
𝑧

dr
∼ −V,

which means that the total force 𝐹
𝑧

dr is always opposed by
the movement of the polyion; however, this braking effect is
attenuated by the effect of interference, as it is shown by the
ratio

(𝐹
𝑧

dr
)

(𝐹
𝑧

dr
)
𝑓→∞

= {(1 − 4.808𝑓
−3
) + 6.58

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

−1
𝑓
−3
} < 1;

𝑓 ≥ 2.

(80)

It is now possible to derive the expression of the dielectric
friction coefficient defined previously by 𝛽df

𝑃
= |ΔΧ

dr
|/|E|.

ΔΧ
dr is the local field caused by the polarization of the solvent

molecules around the moving polyion and it is related to the
frictional force Fdr as follows:

Fdr = (𝑒𝑍app) ΔX
dr
. (81)

(𝑒𝑍app) is the effective (apparent) electric charge of the
polyion equal to

(𝑒𝑍app) = 𝑞
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 . (82)

𝑞 ≡ 𝑞
𝑂
𝑚

is the effective charge of any charged sphere 𝑂
𝑚
of

the chain. On the other hand, the velocity V of the polyion

is related to its electrical mobility 𝑢
𝑃
= (𝜆

𝑃
/𝐹) and to the

external field E (directed along the 𝑧-axis), according to

V = 𝑢
𝑃
E. (83)

Introduction of (83) into (78)–(82) leads to the general
expression of the dielectric friction coefficient 𝛽df

𝑃
:

𝛽
df
𝑃
= (

2

3
)
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 (𝑢𝑃𝜏) 𝑏𝑆

−3
(𝜀 − 𝜀

∞
) 𝜀
−2

× {(𝑓
3
− 4.808) +

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

−1
6.58} .

(84)

5. Coupling between the Dielectric Friction
Effect and the Ionic Condensation Processes

Because of the ionic condensation effect, the charged groups
of the polyion are partially neutralized by the counterions
“𝑘” of 𝑒𝑍

𝑘
charge and 𝑅

𝑘
effective radius. The degree of

condensation (1 − 𝛼) depends on the configuration of the
polyion. Recall that according to Manning’s rod-like limiting
model (𝑅

𝐶
/𝐿
𝑆
→ 0) [5], the degree of ionic condensation

(1 − 𝛼
𝑀
) is independent of the counterions concentration

𝐶
𝑘
so that 𝛼

𝑀
= 𝑏

𝑆
/|𝑍
𝑘
|𝐿
𝐵
; where 𝐿

𝐵
= 𝑒

2
/𝜀𝑘
𝐵
𝑇

is the Bjerrum length, 𝑘
𝐵
is the Boltzmann constant. In

fact, experimental conductivity results are not in general in
conformity with Manning’s theory [1–5]. In particular, we
have proved that for more realistic polyelectrolyte models the
degree of dissociation 𝛼 obeys in general Ostwald’s principle
of dilution and consequently 𝛼 → 1 when 𝐶

𝑘
→ 0. The

degree 𝛼 was calculated on the basis of the two-state model
[6] (double layer) proposed byDobrynin and Rubinstein [20]
(see Figure 1) and by the generalization of the theory of ionic
association of Fuoss [8, 9], so that 𝛼 = 𝛼Fuoss for spherical
polyion (𝐿 → 0), and 𝛼 ≈ 𝛼

𝑀
for an infinite chain

(𝐿 → ∞). The result of an ellipsoidal polyion (𝐿 < 𝐿
𝑆
) of

concentration 𝐶
𝑃
and of volume 𝑉

𝑃
is [6, 12]

(1 − 𝛼)

𝛼
= (1 − 𝑉

𝑃
𝐶
𝑃
)
−1
𝑉
𝑃
𝐶
𝑃
[
𝑔 (𝑅, 𝐿)

𝑔 (𝑑, 𝐿)
]

{(𝛼+|𝑍
𝑖
/𝑍
𝑆
|)/𝛼
𝑀
}

.

(85)

The degree (1 − 𝛼) of ionic condensation on a charged chain
is obtained from this relation by replacing 𝐿 by the structural
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length 𝐿
𝑆
and 𝑅 by 𝑅

𝑔
. On the other hand, as (𝑒𝑍app) = 𝑒𝛼𝑍𝑆,

the charge 𝑞 is thus equal to

𝑞 = 𝑒𝛼(

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

𝑍
𝑆

) . (86)

As indicated in Section 1, the electrical mobility 𝑢
𝑃
= (𝜆

𝑃
/𝐹)

of the polyion is a complex function of 𝛼, and its expression
can be written in the following general form:

𝑢
𝑃
≈ 𝛼𝑢

𝑃

∘HD
(1 + 𝛽

ir
)
−1 [1 − (⟨𝑅⟩ / ⟨𝑑⟩ )]

(1 + 𝛽
𝑃

df
)

;

𝑢
𝑃

∘HD
= (

𝑒
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

6𝜋𝜂 ⟨𝑅⟩
) .

(87)

The insertion of these last equations into the expression of the
coefficient of dielectric friction 𝛽df

𝑃
leads after linearization

to

𝛽
df
𝑃
= (

2𝛼
2
𝜏

3
)(

𝑒
2 󵄨󵄨󵄨󵄨𝑍𝑆

󵄨󵄨󵄨󵄨

6𝜋𝜂 ⟨𝑅⟩
) 𝑏
𝑆

−3
(𝜀 − 𝜀

∞
) 𝜀
−2

× {(𝑓
3
− 4.808) +

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

−1
6.58} × [1 − (

⟨𝑅⟩

⟨𝑑⟩
)] .

(88)

Now, if we replace the relaxation time 𝜏 by its Debye’s
expression: 𝜏 = (6𝜋𝜂𝑅

𝑤

3
/𝑘
𝐵
𝑇), with 𝐿

𝐵
= 𝑒

2
/𝜀𝑘
𝐵
𝑇, the

general explicit expression of 𝛽df
𝑃
becomes

𝛽
df
𝑃
= (

2𝛼
2

3
)
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 (
𝑅
𝑤

𝑏
𝑠

)

3

(
𝐿
𝐵

⟨𝑅⟩
)

× [1 − (
⟨𝑅⟩

⟨𝑑⟩
)] [1 −

𝜀
∞

𝜀
]

× {(𝑓
3
− 4.808) +

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

−1
6.58} .

(89)

This equation shows that the coefficient of dielectric friction
𝛽
df
𝑃
corresponding to a chain of charged sphere is as expected

and in a first approximation proportional to number |𝑍
𝑆
| of

charged groups and to the square power of the degree 𝛼 of
dissociation 𝛽df

𝑃
= 𝛼

2
𝛽
∘

𝑃

df.
Comparison between the (𝛽df

𝑃
)chain given by (89) and

(𝛽
󸀠df
𝑃
)ellipsoid given by (10) leads to

(𝛽
df
𝑃
)
chain

(𝛽󸀠df
𝑃
)ellipsoide

∼ (
𝛼

𝛼󸀠
)

2
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

−1
(
𝑅
󸀠

app

𝑏
𝑠

)

3

(

⟨𝑅
󸀠
⟩

⟨𝑅⟩
)

× {(𝑓
3
− 4.808) +

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

−1
6.58} .

(90)

This ratio explains the important increase of the dielectric
friction during the transition from an ellipsoid configuration
toward the stretched chain configuration. Indeed, as 𝑓3 ∼
8 and 𝑅󸀠app ∼ (𝐿

𝑆
/2), |𝑍

𝑆
|
−1
(𝑅
󸀠

app/𝑏𝑠)
3

∼ (|𝑍
𝑆
|
2
/8), and

therefore
(𝛽

df
𝑃
)
chain

(𝛽󸀠df
𝑃
)ellipsoide

∼ (

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

2

2
) ≫ 1. (91)

Note finally that according to (89), 𝛽df
𝑃

increases with
dilution (𝑑 → ∞) in the case of polyions obeying Oswald’s
regime (𝛼 → 1) and it remains sensibly constant for polyions
obeying Manning’s regime for which 𝛼 is constant.

6. Variation of the Conductibility of a
Polyion with Dilution

As indicated in the previous sections, the dilution increases
the degree 𝛼 of ionic dissociation and the mean radius
⟨𝑑⟩ of the ionic atmosphere and modifies the configuration
of the polyion. However, for polyions obeying Manning’s
regime, the degree “𝛼” remains sensibly constant, so that
both frictional coefficients 𝛽

𝑃

df and 𝛽ir are also constants.
In this case, it is therefore easier to test the importance
of the dielectric friction effect on stretched polyions by
comparing the conductibility Λ poly of such polyelectrolytes
to the one calculated in absence of dielectric friction. Recall
that according to limiting Manning’s model the dielectric
friction is nonexistent, 𝛽

𝑃

df
= 0; indeed, the moving polyion

is assumed to be an infinite thread with a continuous dis-
tribution of charge, so that it seems immobile and therefore
the polarization of its surrounding solvent molecules is not
perturbed by the movement.

As an illustration, Figure 5 compares the variation
(with the total concentration 𝐶∘Na+) of the experimental
conductibility Λexp

NaChondro and (blue points) of sodium
chondroitin sulfate in water at 25∘C to the following three
theoretical conductibility types: ΛHy,El,R, ΛNaChondro and
Λ
𝑖

NaChondro. The first one is calculated in absence of dielectric
friction. The second is calculated by taking into account
the dielectric friction but in absence of interference. The
last one is calculated with dielectric friction in presence of
interference.

The structural characteristics of this polyion are [6, 7] as
follows. 𝑍

𝑆
= −75 ± 3 is the structural charge number. 𝐿

𝑆
=

435 ± 15 Å is the structural length. 𝑏
𝑆
= 5.8 ± 0.2 Å is the

charge-to-charge distance. 𝑅
𝐶
= 6 ± 0.5 Å is the cylindrical

radius of the polyion chain.
Sodium chondroitin sulfate is one of peculiar polyelec-

trolytes for which the behavior of ionic condensation in
aqueous solution is compatible to the model of Manning
[13, 14], so that 𝛼 remains practically constant equal to 𝛼 =
𝛼
𝑀
= 𝑏
𝑆
/𝐿
𝐵
= 0.81.

The equivalent conductivity Λ Poly of this polyelectrolyte
is therefore equal to

Λ Poly = 𝛼𝑀 (𝜆𝑃 + 𝜆Na+) . (92)

𝜆
𝑃
and 𝜆Na+ depend on the concentration of the free counte-

rions 𝛼
𝑀
𝐶
∘

Na+ because of the braking effects due to the ionic
atmosphere, giving rise to the electrophoretic effect (Δ𝜆el)
and to the ionic relaxation effect (𝛽ir).The explicit expressions
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Figure 5: Comparison between variations with 𝐶Na+ of experimen-
tal (Λexp

NaChondro, blue points) and theoretical equivalent conduc-
tivities (ΛHy,El,R without dielectric friction;ΛNaChondro with dielectric
friction in absence of interference;Λ𝑖NaChondro with dielectric friction
in presence of interference) of sodium chondroitin sulfate in water
at 25∘C.

of 𝜆Na+ and 𝜆𝑃 in terms of 𝛼 = 𝛼
𝑀
, Δ𝜆el, 𝛽ir, and 𝛽∘

𝑃

df are the
following:

𝜆Na+ =
(𝜆
∘

Na+ − Δ𝜆Na+
el
)

(1 + 𝛽Na+
ir
)

;

Δ𝜆Na+
el
= (

𝐹𝑒

6𝜋𝜂𝑑Na+
) ; 𝑑Na+ =

𝑅Na+ + 1

2ΓMSA
.

(93)

𝐹 = 𝑒𝑁
𝐴
is the Faraday. The screen parameter ΓMSA is given

by (3)

𝜆
𝑃
≈ (1 + 𝛽P

ir
)
−1

[

(𝛼𝜆
𝑃

∘HD
− Δ𝜆

𝑃

el
)

(1 + 𝛼2𝛽∘
𝑃

df
)

] ,

𝜆
𝑃

∘HD
= (

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 𝐹𝑒

6𝜋𝜂 ⟨𝑅⟩
) ,

Δ𝜆
el
P = (

𝛼
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 𝐹𝑒

6𝜋𝜂 ⟨𝑑⟩
) ,

⟨𝑅⟩ =
𝐿

𝐿
𝑛

[𝑔 (𝑅
𝑔
, 𝐿
𝑆
)] , ⟨𝑑⟩ =

𝐿
𝑆

𝐿
𝑛

[𝑔 (𝑑, 𝐿
𝑆
)] ,

𝑑 = 𝑅
𝑔
+

1

2ΓMSA
,

𝛽
∘df
𝑃
= (

2

3
)
󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨 (
𝑅
𝑤

𝑏
𝑠

)

3

(
𝐿
𝐵

⟨𝑅⟩
) [1 −

𝜀
∞

𝜀
]

× {(𝑓
3
− 4.808) +

󵄨󵄨󵄨󵄨𝑍𝑆
󵄨󵄨󵄨󵄨

−1
6.58} .

(94)

Calculations are effectuated with 𝐹𝑒/6𝜋 = 82, 𝜂 = 0.89 cp,
𝑅
𝑤
= 1.4 Å, 𝑅

𝑔
= 2.14±0.2, 𝜆∘Na+ = 50.1 cm

2
⋅Ω
−1
⋅ eqvNa+

−1,

𝜆
∘HD

Chondro = 136.1 cm
2
⋅ Ω
−1
⋅ eqvNa+

−1, ⟨𝑅⟩ = 50.8 Å, 𝑓 =
𝑏
𝑆
/𝑅
𝑔
= 2.7 ≥ 2, and 𝛽∘df

𝑃
= 1.47.

Note that the ionic relaxation coefficients 𝛽Na+
ir and 𝛽P

ir

are equal [3] and remain approximately constant (∼15%)
in the studied range of relatively low concentrations, in
conformity with the Manning prediction and (8).

Quantitative analysis shows that 𝛽
𝑃

dfi decreases with
concentration from 92% to 86%. Therefore, the dielectric
friction remains the principal frictional effect in comparison
to ionic relaxation effect and electrophoretic effect. On the
other hand, the interference effect has a moderation effect of
about 25%.

7. Conclusion

In order to explain the important negative deviations
observed at high dilution in the case of some polyelectrolytes
between their experimental conductivities and their theoret-
ical conductivities calculated according to Manning’s model
or ellipsoidalmodel, we developed in the present work amore
realisticmodel describing the polyions as chains of successive
charged spheres.Wehave proved that these deviations are due
to the dielectric friction effect which remains the principal
frictional effect undergone by a stretched polyion even if
we take into account the interference effect between the
inductions created by the different charged spheres, whereas
this effect is nonexistent in the case of Manning’s model
(infinite thread with a continuous distribution of charge),
and it is in general very weak for ellipsoidal polyions.
Consequently, it is therefore possible to detect by comparison
between conductivity measurements and theoretical results
any transition from a coiled configuration (ellipsoidal model)
to a stretched configuration (chains of successive charged
spheres), during dilution process. We have also underlined
the important interdependence between the dielectric fric-
tion and the ionic condensation of the counterions, in order
to distinguish between the Ostwald regime and the Manning
regime for which the degree of condensation is practically
constant in a large range ofconcentrations.
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