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We study, in the radial symmetric case, the finite time life span of the compressible Euler or Euler-Poisson equations in 𝑅𝑁. For
time 𝑡 ≥ 0, we can define a functional 𝐻(𝑡) associated with the solution of the equations and some testing function 𝑓. When
the pressure function 𝑃 of the governing equations is of the form 𝑃 = 𝐾𝜌

𝛾, where 𝜌 is the density function, 𝐾 is a constant, and
𝛾 > 1, we can show that the nontrivial 𝐶1 solutions with nonslip boundary condition will blow up in finite time if 𝐻(0) satisfies
some initial functional conditions defined by the integrals of 𝑓. Examples of the testing functions include 𝑟𝑁−1ln(𝑟 + 1), 𝑟𝑁−1𝑒𝑟,
𝑟
𝑁−1

(𝑟
3
− 3𝑟
2
+ 3𝑟 + 𝜀), 𝑟𝑁−1sin((𝜋/2)(𝑟/𝑅)), and 𝑟𝑁−1sinh 𝑟. The corresponding blowup result for the 1-dimensional nonradial

symmetric case is also given.

1. Introduction

The compressible isentropic Euler (𝛿 = 0) or Euler-Poisson
(𝛿 = ±1) equations for fluids can be written as

𝜌
𝑡
+ ∇ ⋅ (𝜌𝑢) = 0,

𝜌 [𝑢
𝑡
+ (𝑢 ⋅ ∇) 𝑢] + ∇𝑃 = 𝜌∇Φ,

ΔΦ (𝑡, 𝑥) = 𝛿𝛼 (𝑁) 𝜌,

(1)

where 𝛼(𝑁) is a constant related to the unit ball in 𝑅
𝑁.

As usual, 𝜌 = 𝜌(𝑡, 𝑥) ≥ 0 and 𝑢 = 𝑢(𝑡, 𝑥) ∈ R𝑁 are
the density and the velocity, respectively. 𝑃 = 𝑃(𝜌) is the
pressure function. The 𝛾-law for the pressure term 𝑃(𝜌) can
be expressed as

𝑃 (𝜌) = 𝐾𝜌
𝛾
, (2)

for which the constant 𝛾 ≥ 1. If 𝐾 > 0, it is a system with
pressure. If 𝐾 = 0, it is a pressureless system.

When 𝛿 = −1, the system is self-attractive. The system
(1) is the Newtonian description of gaseous stars (cf. [1,
2]). When 𝛿 = 1, the system comprises the Euler-Poisson

equations with repulsive forces and can be applied as a
semiconductor model [3].When 𝛿 = 0, the system comprises
the compressible Euler equations and can be applied as a
classical model in fluid mechanics [4, 5].

The solutions in radial symmetry are expressed by

𝜌 = 𝜌 (𝑡, 𝑟) , 𝑢 =
𝑥

𝑟
𝑉 (𝑡, 𝑟) =:

𝑥

𝑟
𝑉, (3)

with the radius 𝑟 = (∑𝑁
𝑖=1
𝑥
2

𝑖
)
1/2

.
The Poisson equation (1)

3
becomes

Φ
𝑟 (𝑡, 𝑟) =

𝛼 (𝑁) 𝛿

𝑟𝑁−1
∫

𝑟

0

𝜌 (𝑡, 𝑠) 𝑠
𝑁−1

𝑑𝑠. (4)

The equations in radial symmetry can be expressed in the
following form:

𝜌
𝑡
+ 𝑉𝜌
𝑟
+ 𝜌𝑉
𝑟
+
𝑁 − 1

𝑟
𝜌𝑉 = 0,

𝜌 (𝑉
𝑡
+ 𝑉𝑉
𝑟
) + 𝑃
𝑟
= 𝜌Φ
𝑟
.

(5)

The blowup phenomena have attracted the attention
of many mathematicians. Regarding the Euler equations
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(𝛿 = 0), Makino et al. [6] first investigated the blowup
of “tame solutions.” In 1990, Makino and Perthame further
analyzed the corresponding solutions for the equations with
gravitational forces (𝛿 = −1) [7]. Subsequently, Perthame [8]
studied the blowup results for the 3-dimensional pressureless
system with repulsive forces (𝛿 = 1). Additional results of the
Euler system can be found in [9–12].

In this paper, we introduce the nonslip boundary condi-
tion [13], which is expressed by

𝜌 (𝑡, 𝑅) = 0, 𝑉 (𝑡, 𝑅) = 0, (6)

for all 𝑡 ≥ 0 and with the constant 𝑅 > 0.
In 2011, Yuen used the integration method to show the

𝐶
1 blowup phenomenon with a “radial dependent” initial

functional:

𝐼
0
= ∫

𝑅

0

𝑟
𝑛
𝑉
0
𝑑𝑟 > 0, (7)

for 𝑛 = 1 [14] and 𝑛 > 0 [15].
Following the integration method, we observe that the

functional (7) could be generalized to have the following
result.

Theorem 1. Define the functional associated with the testing
function 𝑓 by

𝐻(𝑡) = ∫

𝑅

0

𝑓 (𝑟) 𝑉 (𝑡) 𝑑𝑟 (8)

and denote the initial functional 𝐻(0) by 𝐻
0
. Consider the

Euler or Euler-Poisson equations (1) in 𝑅𝑁. For pressureless
fluids (𝐾 = 0) or 𝛾 > 1, and the nontrivial classical𝐶1 solutions
(𝜌, 𝑉) with radial symmetry and the first boundary condition
(6), we have the following results.

(a) For the attractive forces (𝛿 = −1), if 𝐻
0
satisfies the

following initial functional condition:

𝐻
2

0

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫

𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟 > 0, (9)

with a total mass𝑀 of the fluid and an arbitrary nonnegative
and nonzero 𝐶

1
[0, 𝑅] testing function 𝑓(𝑟) satisfying the

following properties:

(1) lim
𝑟→0

(𝑓(𝑟)/𝑟
𝑁−1

) exists,
(2) 𝑓(𝑟)/𝑟 is increasing,

then the solutions blow up in finite time.
(b) For the nonattractive forces (𝛿 = 0 or 1), if𝐻

0
satisfies

the following initial functional condition:

𝐻
0
= ∫

𝑅

0

𝑓 (𝑟) 𝑉0𝑑𝑟 > 0, (10)

then the solutions blow up on or before the finite time 𝑇 =

(2𝑅∫
𝑅

0
𝑓(𝑟)𝑑𝑟)/𝐻

0
.

2. The Generalized Integration Method

The key ideas in obtaining the above results are (i) to design
the right form of generalized functional and find the right
class of testing functions and (ii) to transform the nonlinear
partial differential equations into the Riccati inequality.

Proof. The density function 𝜌(𝑡, 𝑥(𝑡; 𝑥)) conserves its non-
negative nature.

The mass equation (1)
1

𝐷𝜌

𝐷𝑡
+ 𝜌∇ ⋅ 𝑢 = 0, (11)

with the material derivative
𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ (𝑢 ⋅ ∇) , (12)

could be integrated as

𝜌 (𝑡, 𝑥
0
)

= 𝜌
0
(𝑥
0
(0, 𝑥
0
)) exp(−∫

𝑡

0

∇ ⋅ 𝑢 (𝑡, 𝑥
0
(𝑡; 𝑥
0
)) 𝑑𝑡) ≥ 0

(13)

for 𝜌
0
(𝑥
0
(0, 𝑥
0
)) ≥ 0.

For the nontrivial density initial condition in radial
symmetry, 𝜌

0
(𝑟) ̸= 0, we have

𝑉
𝑡
+ 𝑉𝑉
𝑟
+ 𝐾𝛾𝜌

𝛾−2
𝜌
𝑟
= Φ
𝑟

𝑉
𝑡
+
𝜕

𝜕𝑟
(
1

2
𝑉
2
) + 𝐾𝛾𝜌

𝛾−2
𝜌
𝑟
= Φ
𝑟

𝑓 (𝑟) 𝑉𝑡 + 𝑓 (𝑟)
𝜕

𝜕𝑟
(
1

2
𝑉
2
) + 𝐾𝛾𝑓 (𝑟) 𝜌

𝛾−2
𝜌
𝑟
= 𝑓 (𝑟)Φ𝑟.

(14)

(Here we multiplied the function 𝑓(𝑟) on both sides.)
Subsequently, we take integration with respect to 𝑟 from

0 to 𝑅 for 𝛾 > 1 or𝐾 = 0:

∫

𝑅

0

𝑓 (𝑟) 𝑉𝑡𝑑𝑟 + ∫

𝑅

0

𝑓 (𝑟)
𝑑

𝑑𝑟
(
1

2
𝑉
2
)

+ ∫

𝑅

0

𝐾𝛾𝑓 (𝑟) 𝜌
𝛾−2
𝜌
𝑟
𝑑𝑟 = ∫

𝑅

0

𝑓 (𝑟)Φ𝑟𝑑𝑟.

(15)

(a) For 𝛿 = −1, we have

∫

𝑅

0

𝑓 (𝑟) 𝑉𝑡𝑑𝑟 + ∫

𝑅

0

𝑓 (𝑟)
𝑑

𝑑𝑟
(
1

2
𝑉
2
)

+ ∫

𝑅

0

𝐾𝛾𝑓 (𝑟)

𝛾 − 1
𝑑𝜌
𝛾−1

= −∫

𝑅

0

[
𝛼 (𝑁)𝑓 (𝑟)

𝑟𝑁−1
∫

𝑟

0

𝜌 (𝑡, 𝑠) 𝑠
𝑁−1

𝑑𝑠] 𝑑𝑟,

∫

𝑅

0

𝑓 (𝑟) 𝑉𝑡𝑑𝑟 + ∫

𝑅

0

𝑓 (𝑟)
𝑑

𝑑𝑟
(
1

2
𝑉
2
)

+ ∫

𝑅

0

𝐾𝛾𝑓 (𝑟)

𝛾 − 1
𝑑𝜌
𝛾−1

≥ −∫

𝑅

0

[
𝑓 (𝑟)𝑀

𝑟𝑁−1
] 𝑑𝑟,

(16)
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with the total mass

𝑀 = 𝛼 (𝑁)∫

𝑅

0

𝜌 (𝑡, 𝑠) 𝑠
𝑁−1

𝑑𝑠. (17)

Then we apply the integration by parts to deduce

∫

𝑅

0

𝑓 (𝑟) 𝑉𝑡𝑑𝑟 −
1

2
∫

𝑅

0

𝑉
2
𝑑𝑓 (𝑟)

+
1

2
[𝑓(𝑟)𝑉

2
(𝑡, 𝑟)]



𝑟=𝑅

𝑟=0

− ∫

𝑅

0

𝐾𝛾𝑓

(𝑟)

𝛾 − 1
𝜌
𝛾−1
𝑑𝑟

+
𝐾𝛾

𝛾 − 1
[𝑓(𝑟)𝜌

𝛾−1
(𝑡, 𝑟)]



𝑟=𝑅

𝑟=0

≥ −∫

𝑅

0

[
𝑓 (𝑟)𝑀

𝑟𝑁−1
] 𝑑𝑟.

(18)

Inequality (18) with the first boundary condition (6) becomes

𝑑

𝑑𝑡
∫

𝑅

0

𝑉𝑑𝐹 (𝑟) ≥
1

2
∫

𝑅

0

𝑉
2
𝑓

(𝑟) 𝑑𝑟 − ∫

𝑅

0

[
𝑓 (𝑟)𝑀

𝑟𝑁−1
] 𝑑𝑟,

(19)

with 𝑑𝐹(𝑟) = 𝑓(𝑟)𝑑𝑟 and 𝛾 > 1 or𝐾 = 0.
Note that 𝑓(0) = 0 by property 1 and 𝑓 is increasing by

property 2.
Now, we define the assistant functional:

𝐻(𝑡) = ∫

𝑅

0

𝑓 (𝑟) 𝑉𝑑𝑟 = ∫

𝑅

0

𝑉𝑑𝐹 (𝑟) . (20)

We then use the Cauchy-Schwarz inequality to obtain


∫

𝑅

0

𝑉 ⋅ 1𝑑𝐹 (𝑟)



≤ (∫

𝑅

0

𝑉
2
𝑑𝐹(𝑟))

1/2

(∫

𝑅

0

1𝑑𝐹(𝑟))

1/2



∫

𝑅

0

𝑉 ⋅ 1𝑑𝐹 (𝑟)



≤ (∫

𝑅

0

𝑉
2
𝑓(𝑟)𝑑𝑟)

1/2

(∫

𝑅

0

𝑓(𝑟)𝑑𝑟)

1/2

0 ≤


∫
𝑅

0
𝑉𝑑𝐹 (𝑟)



(∫
𝑅

0
𝑓(𝑟)𝑑𝑟)

1/2
≤ (∫

𝑅

0

𝑉
2
𝑓(𝑟)𝑑𝑟)

1/2

(21)

for 𝑅 > 0,
𝐻
2
(𝑡)

∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

≤ ∫

𝑅

0

𝑉
2
𝑓 (𝑟) 𝑑𝑟, (22)

𝐻
2
(𝑡)

2𝑅 ∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

≤
1

2𝑅
∫

𝑅

0

𝑉
2
𝑓 (𝑟) 𝑑𝑟. (23)

In view of (23) and (19), we get

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

1

2
∫

𝑅

0

𝑉
2
𝑓

(𝑟) 𝑑𝑟 −𝑀∫

𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟

≥
1

2𝑅
∫

𝑅

0

𝑉
2
𝑓 (𝑟) 𝑑𝑟 −𝑀∫

𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟

≥
𝐻(𝑡)
2

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫

𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟,

(24)

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻(𝑡)
2

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫

𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟, (25)

as 𝑓(𝑟) ≥ (1/𝑟)𝑓(𝑟) by property 2.

It is well known that, with the initial condition

𝐻
2

0

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫

𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟 > 0, (26)

the Riccati inequality (25) will blow up on or before the finite
time 𝑇.

(b) For 𝛿 = 0 or 1, by a similar analysis, one can show that

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻(𝑡)
2

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

. (27)

Finally,

𝐻(𝑡) ≥
−𝐻
0

(𝐻
0
/ (2𝑅 ∫

𝑅

0
𝑓 (𝑟) 𝑑𝑟)) 𝑡 − 1

, (28)

if we set the initial condition

𝐻
0
= ∫

𝑅

0

𝑓 (𝑟) 𝑉0𝑑𝑟 > 0. (29)

Thus, the solutions blow up on or before the finite time 𝑇 =
(2𝑅∫
𝑅

0
𝑓(𝑟)𝑑𝑟)/𝐻

0
.

The proof is completed.

Remark 2. For the physical explanation of the functional
𝐻(𝑡), readers may refer to Sideris’ paper [16].

For the construction of testing functions 𝑓 with the
desired properties as required in Theorem 1, one recalls the
class of power series:

∞

∑

𝑖=0

𝑎
𝑖
𝑥
𝑖
, (30)

with the following properties:

(i) all 𝑎
𝑖
≥ 0 for all 𝑖 and 𝑎

𝑖
= 0 for 𝑖 < 𝑁 − 1,

(ii) the radius of convergence is not less than 𝑅.

Actually, power series (or real analytic functions) with the
above properties constitute a large class of examples for 𝑓.
Concrete examples include 𝑟𝑁−1𝑒𝑟 and 𝑟𝑁−1 sinh 𝑟. Moreover,
there are examples with some 𝑎

𝑖
< 0: 𝑟𝑁−1 ln(𝑟 + 1),

𝑟
𝑁−1 sin((𝜋/2)(𝑟/𝑅)), and 𝑟𝑁−1(𝑟3 − 3𝑟2 + 3𝑟 + 𝜀), where the
constant 𝜀 > 0 can be arbitrary.

3. The 1-Dimensional Nonradial
Symmetric Case

In the 1-dimensional case, we can apply a similar argument to
gain the result for the nonradial symmetric fluids.

Theorem 3. Suppose 𝑢 and 𝜌 have compact support on [𝑎, 𝑏]
and vanish at the boundaries:

𝑢 (𝑡, 𝑎) = 𝑢 (𝑡, 𝑏) = 𝜌 (𝑡, 𝑎) = 𝜌 (𝑡, 𝑏) = 0, (31)
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for all 𝑡 ≥ 0. By considering 𝑢(𝑡, 𝑥 − 𝑎) and 𝜌(𝑡, 𝑥 − 𝑎) instead,
onemay suppose 𝑎 ≥ 0. Let𝑓(𝑥) be a nonnegative and nonzero
𝐶
1
[𝑎, 𝑏] testing function, such that 𝑓(𝑥)/𝑥 is increasing for 𝑥 >

𝑎 and the functional is given by

𝐻(𝑡) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑢 (𝑥, 𝑡) 𝑑𝑥. (32)

(a) For 𝛿 = 1 or −1, if the initial functional𝐻
0
satisfies

𝐻
2

0

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

−
𝑀

2
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 > 0, (33)

then the solutions blow up in finite time.
(b) For 𝛿 = 0, if 𝐻

0
> 0, then the solutions blow up on or

before the finite time 𝑇 = (2𝑏 ∫𝑏
𝑎
𝑓(𝑥)𝑑𝑥)/𝐻

0
.

Proof. For the 1-dimensional case, (1)
2
becomes

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝐾𝛾𝜌

𝛾−2
𝜌
𝑥
= Φ
𝑥
. (34)

For 𝛾 ̸= 1, one has

𝑢
𝑡
+
1

2

𝜕𝑢
2

𝜕𝑥
+
𝐾𝛾

𝛾 − 1

𝜕𝜌
𝛾−1

𝜕𝑥
= Φ
𝑥
. (35)

Then, we multiply the above equation by 𝑓(𝑥) on both sides,
taking integration with respect to 𝑥 from 𝑎 to 𝑏 and using
integration by parts, to yield

𝑑

𝑑𝑡
𝐻 (𝑡) +

1

2
(𝑓(𝑥)𝑢

2
)



𝑥=𝑎

𝑥=𝑏

−
1

2
∫

𝑏

𝑎

𝑢
2
𝑓

(𝑥) 𝑑𝑥

+
𝐾𝛾

𝛾 − 1
[(𝑓(𝑥)𝜌

𝛾−1
)



𝑥=𝑎

𝑥=𝑏

− ∫

𝑏

𝑎

𝜌
𝛾−1
𝑓

(𝑥) 𝑑𝑥]

= ∫

𝑏

𝑎

𝑓 (𝑥)Φ𝑥𝑑𝑥.

(36)

As 𝑢(𝑡, 𝑎) = 𝑢(𝑡, 𝑏) = 𝜌(𝑡, 𝑎) = 𝜌(𝑡, 𝑏) = 0, for all 𝑡, we get

𝑑

𝑑𝑡
𝐻 (𝑡) =

1

2
∫

𝑏

𝑎

𝑢
2
𝑓

(𝑥) 𝑑𝑥

+
𝐾𝛾

𝛾 − 1
∫

𝑏

𝑎

𝜌
𝛾−1
𝑓

(𝑥) 𝑑𝑥 + ∫

𝑏

𝑎

𝑓 (𝑥)Φ𝑥𝑑𝑥

≥
1

2
∫

𝑏

𝑎

𝑢
2
𝑓

(𝑥) 𝑑𝑥 + ∫

𝑏

𝑎

𝑓 (𝑥)Φ𝑥𝑑𝑥.

(37)

Using the properties of 𝑓(𝑥) and the Cauchy-Schwarz
inequality (as in the proof of Theorem 1), we obtain

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻
2
(𝑡)

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

+ ∫

𝑏

𝑎

𝑓 (𝑥)Φ𝑥𝑑𝑥. (38)

On the other hand, by using the following explicit form ofΦ
𝑥
:

Φ
𝑥 (𝑡, 𝑥) =

𝛿

2
(∫

𝑥

𝑎

𝜌 (𝑡, 𝑥) 𝑑𝑦 − ∫

𝑏

𝑥

𝜌 (𝑡, 𝑥) 𝑑𝑦) (39)

and the following estimate:

Φ
𝑥
≥ −

|𝛿|

2
𝑀, (40)

we get the following.
(a) For 𝛿 = 1 or −1,

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻
2
(𝑡)

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

−
𝑀

2
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥. (41)

(b) For 𝛿 = 0,

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻
2
(𝑡)

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

. (42)

Thus, the result immediately follows.
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