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The Kubo formula for the electrical conductivity of per stratum of few-layer graphene, up to five, is analytically calculated in both
simple and Bernal structures within the tight-binding Hamiltonian model and Green’s function technique, compared with the
single-layer one.The results show that, by increasing the layers of the graphene aswell as the interlayer hopping of the nonhybridized
𝑝
𝑧
orbitals, this conductivity decreases. Although the change in its magnitude varies less as the layer number increases to beyond

two,distinguishably, at low temperatures, it exhibits a small deviation from linear behavior. Moreover, the simple bilayer graphene
represents more conductivity with respect to the Bernal case.

Graphene is an atom thick allotrope of carbon in two-
dimensional (2D) hexagonal honeycomb lattice [1]. Electrons
in a single-layer graphene exhibit a characteristic linear dis-
persion relation between energy and momentum near the 𝐾
point of the first Brillouin zone (FBZ) [2–4].The overall elec-
tronic structure changes sensitively with increasing crystallo-
graphic stacking sequence. The sequence of graphene sheets
brings about the various 3D graphite crystals [5–8], that
is, 𝐴𝐴-stacked bilayer graphene (hexagonal simple bilayer
graphene), 𝐴𝐵-stacked bilayer graphene (Bernal bilayer
graphene), and 𝐴𝐵𝐶-stacked trilayer graphene (rhombohe-
dral trilayer graphene). The interlayer interactions, due to
the weak overlap of the nonhybridized 𝑝

𝑧
orbitals, result in

the anisotropic band structure along the stacking direction.
Some theoretical studies [9–12] have predicted in two ormore
layers of graphene that the linearly dispersing bands are either
replaced or augmented by split hyperbolic bands. Experi-
mental investigations have also been considered to single-
and bilayer graphene [13–15]. In a single-layer graphene
transistor, the current is modulated by a gate voltage but
it cannot be switched off due to lack of a band gap in
the energy dispersion. Bilayer graphene is the only known
semiconductor with a gate tuneable band gap [16]. Opposed
to the case of single- and bilayer, the trilayer material is
a semimetal with a gate tuneable band overlap between
the conduction and the valence bands [16]. The variety of

electronic properties found in different few-layer graphene
(FLG) is the true strength of these newly discoveredmaterials.

In this study, the electrical conductivity (EC) of FLG
in {𝐴𝐴,𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴,𝐴𝐵, 𝐴𝐵𝐴,𝐴𝐵𝐴𝐵,𝐴𝐵𝐴𝐵𝐴}
structures is investigated within the tight-binding (TB)
Hamiltonian model and Green’s function method. Using
band representation of Green’s function, we calculate the
EC of the systems by Kubo formula [17–19]. Then, the
temperature-dependent EC of a monolayer graphene will be
compared to that for per sheet of these systems, hereinafter
mentioned as “flake EC” (FEC).

In second quantization form, the Hamiltonian of the TB
model for FLG lattice reads as follows [20]:

H = −∑
𝛼,𝛽

𝑁
𝑐

∑

𝑖,𝑗=1

𝑁
𝑝

∑

𝑝,𝑞=1

𝑡
𝛼𝛽

𝑖𝑝𝑗𝑞
𝑐
𝛼†

𝑖𝑝
𝑐
𝛽

𝑗𝑞
, (1)

where 𝛼 and 𝛽 refer to the 𝐴 or 𝐵 subsites inside the Bravais
lattice unit cells (Figure 1) in each plane of the system, 𝑖 and
𝑗 denote the position of the Bravais unit cell in the lattice, 𝑝
and 𝑞 describe plane’s indexes, 𝑁

𝑐
shows the number of the

Bravais lattice unit cell,𝑁
𝑝
implies the number of the layers,

𝑡
𝛼𝛽

𝑖𝑝𝑗𝑞
presents the amplitude for a 𝜋 electron to hop from the

subsite 𝛼 of the Bravais lattice site 𝑖 in plane 𝑝 to the subsite
𝛽 of the nearest-neighbor (NN) site 𝑗 in plane 𝑞, and 𝑐𝛼†

𝑖𝑝
(𝑐𝛽
𝑗𝑞
)
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Figure 1: Geometry of monolayer graphene in 𝑥𝑦 plane.The dashed
lines illustrate the Bravais lattice unit cell. Each cell includes 𝑁

𝑎
=

2 atoms, which are shown by 𝐴 and 𝐵. The primitive vectors are
denoted by a

1
and a

2
and 𝑎

0
implies the interatomic distance.

displays the creation (annihilation) operator of an electron
on subsite 𝛼 (𝛽) of the Bravais lattice site 𝑖 (𝑗) in plane 𝑝 (𝑞).
In our calculations, we take the chemical potential equal to
zero corresponding to the contribution of one electron per
𝑝
𝑧
orbital in the system. We note that the on-site energy of

the carbon atoms has been fitted as zero. Besides, such units
are utilized that ℎ = 𝑘

𝐵
= 𝑚
𝑒
= 𝑒 = 1.

We study the Hamiltonian Equation (1) by Green’s func-
tion approach. Since each Bravais lattice unit cell of the
graphene sheet includes 𝑁

𝑎
= 2 atoms, the Hamiltonian of

the trilayers graphene, 𝑁
𝑝
= 3, as a typical case, would be

introduced by a 6 × 6 matrix with the following basis kets of
the Hilbert space,

{

Φ
𝛼

𝑖𝑝
⟩} = {

Φ
𝐴

𝑖1
⟩ ,

Φ
𝐴

𝑖2
⟩ ,

Φ
𝐴

𝑖3
⟩ ,

Φ
𝐵

𝑖1
⟩ ,

Φ
𝐵

𝑖2
⟩ ,

Φ
𝐵

𝑖3
⟩} ,

(2)

so the trilayer Green function could be represented as

G (𝑖, 𝑗; 𝜏) =
(
(
(
(
(

(

𝐺
𝐴𝐴

11
𝐺
𝐴𝐴

12
𝐺
𝐴𝐴

13
𝐺
𝐴𝐵

11
𝐺
𝐴𝐵

12
𝐺
𝐴𝐵

13

𝐺
𝐴𝐴

21
𝐺
𝐴𝐴

22
𝐺
𝐴𝐴

23
𝐺
𝐴𝐵

21
𝐺
𝐴𝐵

22
𝐺
𝐴𝐵

23

𝐺
𝐴𝐴

31
𝐺
𝐴𝐴

32
𝐺
𝐴𝐴

33
𝐺
𝐴𝐵

31
𝐺
𝐴𝐵

32
𝐺
𝐴𝐵

33

𝐺
𝐵𝐴

11
𝐺
𝐵𝐴

12
𝐺
𝐵𝐴

13
𝐺
𝐵𝐵

11
𝐺
𝐵𝐵

12
𝐺
𝐵𝐵

13

𝐺
𝐵𝐴

21
𝐺
𝐵𝐴

22
𝐺
𝐵𝐴

23
𝐺
𝐵𝐵

21
𝐺
𝐵𝐵

22
𝐺
𝐵𝐵

23

𝐺
𝐵𝐴

31
𝐺
𝐵𝐴

32
𝐺
𝐵𝐴

33
𝐺
𝐵𝐵

31
𝐺
𝐵𝐵

32
𝐺
𝐵𝐵

33

)
)
)
)
)

)

,

(3)

with 𝐺𝛼𝛽
𝑝𝑞
(𝑖, 𝑗; 𝜏) ≡ 𝐺

𝛼𝛽

𝑝𝑞
= −⟨T𝑐𝛼

𝑖𝑝
(𝜏)𝑐
𝛽†

𝑗𝑞
(0)⟩, in which

𝜏 = 𝑖𝑡 remarks imaginary time and T hints the time
ordering operator. Here, ⟨⋅ ⋅ ⋅ ⟩ exhibits ensemble averaging
on the ground state of the system. Using Green’s function
formalism for the Hamiltonian in (1), the equation of motion
for electrons in 𝐴𝐴𝐴 structure can be written as

∑

ℓ

(
(

(

𝐸 𝑡
𝐴𝐴

⟨𝑖1ℓ2⟩
0 𝑡

𝐴𝐵

⟨𝑖1ℓ1⟩
0 0

𝑡
𝐴𝐴

⟨𝑖2ℓ1⟩
𝐸 𝑡

𝐴𝐴

⟨𝑖2ℓ3⟩
0 𝑡

𝐴𝐵

⟨𝑖2ℓ2⟩
0

0 𝑡
𝐴𝐴

⟨𝑖3ℓ2⟩
𝐸 0 0 𝑡

𝐴𝐵

⟨𝑖3ℓ3⟩

𝑡
𝐵𝐴

⟨𝑖1ℓ1⟩
0 0 𝐸 𝑡

𝐵𝐵

⟨𝑖1ℓ2⟩
0

0 𝑡
𝐵𝐴

⟨𝑖2ℓ2⟩
0 𝑡

𝐵𝐵

⟨𝑖2ℓ1⟩
𝐸 𝑡

𝐵𝐵

⟨𝑖2ℓ3⟩

0 0 𝑡
𝐵𝐴

⟨𝑖3ℓ3⟩
0 𝑡

𝐵𝐵

⟨𝑖3ℓ2⟩
𝐸

)
)

)

G (ℓ, 𝑗; 𝐸) = I𝛿
𝑖𝑗
,

(4)
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Figure 2: Schematic presentation of intra- (𝑡
‖
) and interplane (𝑡

⊥
)

hopping to the NN sites in trilayer graphene for simple case (left)
and Bernal one (right).

and that for 𝐴𝐵𝐴 case is given by

∑

ℓ

(
(

(

𝐸 0 0 𝑡
𝐴𝐵

⟨𝑖1ℓ1⟩
0 0

0 𝐸 0 𝑡
𝐴𝐵

⟨𝑖2ℓ1⟩
𝑡
𝐴𝐵

⟨𝑖2ℓ2⟩
𝑡
𝐴𝐵

⟨𝑖2ℓ3⟩

0 0 𝐸 0 0 𝑡
𝐴𝐵

⟨𝑖3ℓ3⟩

𝑡
𝐵𝐴

⟨𝑖1ℓ1⟩
𝑡
𝐵𝐴

⟨𝑖1ℓ2⟩
0 𝐸 0 0

0 𝑡
𝐵𝐴

⟨𝑖2ℓ2⟩
0 0 𝐸 0

0 𝑡
𝐵𝐴

⟨𝑖3ℓ2⟩
𝑡
𝐵𝐴

⟨𝑖3ℓ3⟩
0 0 𝐸

)
)

)

G (ℓ, 𝑗; 𝐸) = I𝛿
𝑖𝑗
,

(5)

where 𝐸 = E + 𝚤0+, the index ⟨⋅ ⋅ ⋅ ⟩ shows NN sites, I plays
the role of a 6 × 6 unit matrix, and 𝛿

𝑖𝑗
notifies the Kronecker

symbol. The k-space Fourier transformation of (4) and (5)
leads to the following relations:

G (k; 𝐸) =(

(

𝐸 𝑡
⊥
0 𝜖k 0 0

𝑡
⊥
𝐸 𝑡
⊥
0 𝜖k 0

0 𝑡
⊥
𝐸 0 0 𝜖k

𝜖
∗

k 0 0 𝐸 𝑡⊥ 0
0 𝜖
∗

k 0 𝑡⊥ 𝐸 𝑡⊥
0 0 𝜖

∗

k 0 𝑡⊥ 𝐸

)

)

−1

,

G (k; 𝐸) =(

(

𝐸 0 0 𝜖k 0 0
0 𝐸 0 𝑡

⊥
𝜖k 𝑡⊥

0 0 𝐸 0 0 𝜖k
𝜖
∗

k 𝑡⊥ 0 𝐸 0 0
0 𝜖
∗

k 0 0 𝐸 0
0 𝑡
⊥
𝜖
∗

k 0 0 𝐸

)

)

−1

,

(6)

in which 𝜖k is defined as

𝜖k = 𝑡‖ [1 + 2 exp (𝚤√3𝑘𝑥
𝑎

2
) cos(𝑘

𝑦

𝑎

2
)] , (7)

where k = (𝑘
𝑥
, 𝑘
𝑦
) points a 2D wave vector in the FBZ, 𝑎 =

|a
1
| = |a
2
| = √3𝑎

0
, in which 𝑎

0
displays interatomic distance,

and {a
1
, a
2
} perform as primitive vectors (Figure 1). In (6)-

(7), the intraplane hopping to the NN sites and the interplane
ones are denoted by 𝑡

‖
and 𝑡
⊥
, respectively (Figure 2).

Our starting point for the EC tensor is the well-known
Kubo formula [17–19],

𝜎
𝜇] (𝑇) = ∫

+∞

−∞

𝑑E [−𝜕E𝑓 (E, 𝑇)] 𝜉𝜇] (E) , (8)
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where {𝜇, ]} indicate Cartesian components,𝑇 shows temper-
ature, and 𝑓(E, 𝑇) refers to Fermi-Dirac distribution func-
tion, 𝑓(E, 𝑇) = [1 + exp(E/𝑇)]−1. In band representation,
energy-dependent EC, 𝜉

𝜇](E), is defined as

𝜉
𝜇] (E) =

1

𝜋𝑁
𝑏
𝑁
𝑐
Ω
𝑐

FBZ
∑

k

𝑁
𝑏

∑

𝑏=1

V(𝑏)
𝜇
(k) V(𝑏)] (k) [I𝐺

(𝑏)

(k; 𝐸)]
2

,

(9)

in which 𝑏 serves as band index, 𝑁
𝑏
= 𝑁
𝑎
𝑁
𝑝
equals the

number of the bands in the system, V(𝑏)
𝜇
(k) = 𝜕

𝑘
𝜇

E
(𝑏)

0
(k)

describes a 𝑏 band Cartesian component of the velocity oper-
ator, and E

(𝑏)

0
(k)’s express eigenvalues of the Hamiltonian of

the system. We point out that, in band representation, the
Hamiltonian of the system has a diagonal form, so (6) get the
shape as

G (k; 𝐸) = (

𝜁
(1)

(k) 0 0 0 0 0

0 𝜁
(2)

(k) 0 0 0 0

0 0 𝜁
(3)

(k) 0 0 0

0 0 0 𝜁
(4)

(k) 0 0

0 0 0 0 𝜁
(5)

(k) 0
0 0 0 0 0 𝜁

(6)

(k)

)

−1

,

(10)

where 𝜁(𝑏)(k) = 𝐸−E(𝑏)
0
(k). Formonolayer graphene,𝑁

𝑝
= 1,

E
(𝑏)

0
(k)’s are calculated as

E
(1)

0
(k) = −E(2)

0
(k) = 𝜖k

 , (11)

so that
𝜖k
= 𝑡‖{1 + 4 [cos(√3𝑘𝑥

𝑎

2
) + cos(𝑘

𝑦

𝑎

2
)] cos(𝑘

𝑦

𝑎

2
)}

1/2

.

(12)

For FEG, up to five layers, the eigenvalues could also be ana-
lytically found. Using (10), 𝐺(𝑏)(k; 𝐸) turns out to be

𝐺
(𝑏)

(k; 𝐸) = 1

𝐸 −E
(𝑏)

0
(k)
. (13)

Moreover, the velocity operator could be represented by

v
𝜇
(k) =(

(

V(1)
𝜇
(k) 0 0 0 0 0

0 V(2)
𝜇
(k) 0 0 0 0

0 0 V(3)
𝜇
(k) 0 0 0

0 0 0 V(4)
𝜇
(k) 0 0

0 0 0 0 V(5)
𝜇
(k) 0

0 0 0 0 0 V(6)
𝜇
(k)

)

)

.

(14)
From (9), (10), and (13) and definition of velocity, the
𝑥-component of the energy-dependent EC, 𝜉

𝑥𝑥
(E), of the

simple structures (𝑁
𝑝
= 1, 2, 3, 4, 5) can be written as

𝜉
𝑥𝑥
(E) = 𝜉

0

FBZ
∑

k

{

{

{

[
sin2 (√3𝑘

𝑥
(𝑎/2)) cos2 (𝑘

𝑦
(𝑎/2))

𝜖k

2

]

×

𝑁
𝑏

∑

𝑏=1

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

}

}

}

,

(15)

while that of the Bernal structure with𝑁
𝑝
= 2 is determined

by

𝜉
𝑥𝑥
(E) = 𝜉

0

FBZ
∑

k

{

{

{

[
sin2 (√3𝑘

𝑥
(𝑎/2)) cos2 (𝑘

𝑦
(𝑎/2))

𝜖k

2

+ (𝑡
⊥
/2)
2

]

×

𝑁
𝑏

∑

𝑏=1

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

}

}

}

;

(16)

for𝑁
𝑝
= 3, the result is

𝜉
𝑥𝑥
(E)

= 𝜉
0

FBZ
∑

k
sin2 (√3𝑘

𝑥

𝑎

2
) cos2 (𝑘

𝑦

𝑎

2
)

×
{

{

{

(
1

𝜖k

2

+ (√2(𝑡
⊥
/2))
2
)

×

4


∑

𝑏=1

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

+ (
1

𝜖k

2
)

6


∑

𝑏=5

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

}

}

}

.

(17)

When𝑁
𝑝
= 4, it is found that

𝜉
𝑥𝑥
(E)

= 𝜉
0

FBZ
∑

k
sin2 (√3𝑘

𝑥

𝑎

2
) cos2 (𝑘

𝑦

𝑎

2
)

×
{

{

{

[

[

1

𝜖k

2

+ ((3 + √5) /2) (𝑡
⊥
/2)
2

]

]

×

4


∑

𝑏=1

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

+ [

[

1

𝜖k

2

+ ((3 − √5) /2) (𝑡
⊥
/2)
2

]

]

×

8


∑

𝑏=5

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

}

}

}

,

(18)

and𝑁
𝑝
= 5 leads to

𝜉
𝑥𝑥
(E)

= 𝜉
0

FBZ
∑

k
sin2 (√3𝑘

𝑥

𝑎

2
) cos2 (𝑘

𝑦

𝑎

2
)

×
{

{

{

[

[

1

𝜖k

2

+ (√3(𝑡
⊥
/2))
2

]

]
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Figure 3: The FEC of mono-, bi-, tri-, tetra-, and pentalayer graphene plane for simple structure (a) and Bernal case (b). In (a) and (b), the
interplane hopping term is chosen to be 𝑡

⊥
= 𝑡
‖
/7. (c) shows the FEC of the bilayer Bernal graphene for four values of interplane hopping
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⊥
= 𝑡
‖
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‖
/7, 𝑡
‖
/4.67, and 𝑡

‖
/3.5.

×

4


∑

𝑏=1

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

+ [
1

𝜖k

2

+ (𝑡
⊥
/2)
2
]

×

8


∑

𝑏=5

[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

+ (
1

𝜖k

2
)

10

∑

𝑏=9



[I(
1

𝐸 −E
(𝑏)

0
(k)
)]

2

}

}

}

,

(19)

in which 𝜉
0
= 3𝑎
2

𝑡
4

‖
/(𝜋𝑁
𝑏
𝑁
𝑐
Ω
𝑐
) and∑ implies sum over just

some bands not all.

In summary, using Green’s function method and the
Kubo-Greenwood formula through the TB Hamiltonian
model, the EC of FLG is analytically found for single-layer
and {𝐴𝐴,𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴} simple cases as well as
{𝐴𝐵, 𝐴𝐵𝐴,𝐴𝐵𝐴𝐵,𝐴𝐵𝐴𝐵𝐴} Bernal structures. The aim is to
compare the EC of the single-layer graphene and FLG (see
(8) and (11)–(19)). We set the intraplane hopping to the NN
and interplane ones as 𝑡

‖
≃ 2.8 eV and 𝑡

⊥
= 𝑡
‖
/7 ≃ 0.4 eV

[21–23], respectively. Figures (3) and (4) show the results. In
Figure 3(a), the FECs of mono-layer graphene and FLG in
simple structure are plotted, while, in Figure 3(b), those of
the Bernal cases are classified. The latter are investigated and
summarized in Figure 3(c) for 𝑁

𝑝
= 2 and different values

of interplane term; that is, 𝑡
⊥
= 𝑡
‖
/14, 𝑡

‖
/7, 𝑡
‖
/4.67, and

𝑡
‖
/3.5. Also, 𝜎

𝑥𝑥
(𝑇) is illustrated for simple and Bernal bilayer

graphene in Figure 4. We mention that, for a monolayer
graphene, Ω

𝑐
is just the area of the graphene unit cell.
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Figure 4: Comparison of the FEC of the bilayer graphene for simple
and Bernal cases. The interplane hopping term is 𝑡

⊥
= 𝑡
‖
/7.

For FLG, the FEC is of more interest, so Ω
𝑐
will be the

multiplication of the single-layer area by the layer number
𝑁
𝑝
. So, in (15)–(19), Ω

𝑐
= 𝑁
𝑝
, if we set the area of the

graphene unit cell equal to unity. Numerically, we insert 𝑎
0
=

1 and 𝑡
‖
= 0.28.

In Figures 3(a) and 3(b), the temperature-dependent
FECs of mono-layer graphene and FLG are compared in
simple and Bernal form as well. It is shown that 𝜎

𝑥𝑥
(𝑇)

decreases with increasing the number of layers from𝑁
𝑝
= 1

to 5. This behavior could be justified by overlapping of the
nonhybridized 𝑝

𝑧
orbitals perpendicular to the sheets, so

that these interlayer interactions will generate new channels
of electron motion with respect to those of the isolated
single layer, but perpendicular to them. Reasonably, these
vertical detour ways can distract a fraction of the electrons’
motivation from horizontal traces parallel to the layers,
towards the vertical tracks. In other words, overlapped
nonhybridized 𝑝

𝑧
orbitals lead to a partial deviation of the

electrons’ mobility from the planes on behalf of the normal
directions. Consequently, these interlayer possibilities of
movement result in a reduction of the intralayer displace-
ments, whereby the system exhibits a decay in the FEC.
This phenomenon gets more remarkable with respect to the
monolayer case by increasing the number of the layers, easily
conceivable fromFigures 3(a) and 3(b) and in agreement with
the last explanation, because adding more layers provides
more distracting paths for moving electrons, so the plane
components get lesser. On the other hand, the changing in
the FEC could also be a result of significant variations in the
low energy band structures (linear to quadratic dispersion)
and the corresponding density of states (DOS). As the layer
number increases to five, the variation of the low energy
band structure is much less dramatic than the transition
from one to two [24]. So the variation in the magnitude
of the FEC changes less as the layer number increases to
beyond two. Considerably, this change in dispersion provides
a small deviation in the linear behavior of the FEC at low
temperatures. This is more notable for the simple case whose
dispersion bears more variations around the Fermi level.

It is also resulted that the FEC depends on the amount
of the interplane hopping integrals. In Figure 3(c), the
temperature-dependent FEC of bilayer Bernal structure is
plotted for four values of 𝑡

⊥
. Obviously, themore 𝑡

⊥
increases,

the more 𝜎
𝑥𝑥
(𝑇) decreases. This could be interpreted that the

procedure of increasing the interlayer hopping transforms
the interlayer interactions towards the limit of somehow
covalence-like bonds, which resemble the carbonic system as
an insulator with four strong bonds and consequently weak
EC.

We have also compared 𝜎
𝑥𝑥
(𝑇) of bilayer both simple

and Bernal graphene in Figure 4. It is known that a finite
DOS at zero energy appears in the simple case [25] in
contrast to the single layer whose DOS vanishes. Therefore,
because of appearing allowed states close to Fermi energy, the
temperature-dependent FEC of the simple case is more that
of the Bernal one.

Totally, it is concluded that the FEC decreases by increas-
ing the layers of the graphene due to overlapping of the
nonhybridized 𝑝

𝑧
orbitals perpendicular to the sheets. But,

the variation in the magnitude of the FEC varies less as the
layer number increases to beyond two as a result of changes
in the low energy band structures. Besides, a deviation
from the linear behavior of the FEC is observable at low
temperatures originated from changes in relevant dispersion,
especially for the simple case. It is found that more increase
in interplane term causes more decrease in the temperature-
dependent FEC because of transforming the interlayer inter-
actions towards the limit of covalence-like bonds. Finally, it
is resulted that the FEC of simple structure is more than that
of Bernal one.
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