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This paper presents a newmethod for solving higher order nonlinear evolution partial differential equations (NPDEs).Themethod
combines quasilinearisation, the Chebyshev spectral collocationmethod, and bivariate Lagrange interpolation. In this paper, we use
the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified
KdV equation, Fisher’s equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The
results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness
of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were
generated to present the order of accuracy of themethod; convergence graphs to verify convergence of themethod and error graphs
are presented to show the excellent agreement between the results from this study and the known results from literature.

1. Introduction

Nonlinearity exists everywhere and, in general, nature is non-
linear. Nonlinear evolution partial differential equations arise
inmany fields of science, particularly in physics, engineering,
chemistry, finance, and biological systems. They are widely
used to describe complex phenomena in various fields of sci-
ences, such as wave propagation phenomena, fluid mechan-
ics, plasma physics, quantum mechanics, nonlinear optics,
solid state physics, chemical kinematics, physical chemistry,
population dynamics, financial industry, and numerous areas
of mathematical modeling. The development of both numer-
ical and analytical methods for solving complicated, highly
nonlinear evolution partial differential equations continues
to be an area of interest to scientists whose research aim
is to enrich deep understanding of such alluring nonlinear
problems.

Innumerable number of methods for obtaining analytical
and approximate solutions to nonlinear evolution equations
have been proposed. Someof the analyticalmethods that have
been used to solve evolution nonlinear partial differential
equations include Adomian’s decomposition method [1–3],

homotopy analysis method [4–7], tanh-function method [8–
10], Haar wavelet method [11–13], and Exp-function method
[14–16]. Several numerical methods have been used to
solve nonlinear evolution partial differential equations.These
include the explicit-implicit method [17], Chebyshev finite
difference methods [18], finite difference methods [19], finite
element methods [20], and pseudospectral methods [21, 22].

Some drawbacks of approximate analytical methods
include slow convergence, particularly for large time (𝑡 > 1).
Theymay also be cumbersome to use as some involvemanual
integration of approximate series solutions and, hence, it is
difficult to find closed solutions sometimes. On the other
hand, some numerical methods may not work in some cases,
for example, when the required solution has to be found
near a singularity. Certain numerical methods, for example,
finite differences require many grid points to achieve good
accuracy and, hence, require a lot of computer memory and
computational time. Conventional first-order finite differ-
ence methods may result in monotonic and stable solutions,
but they are strongly dissipative causing the solution of the
strongly convective partial differential equations to become
smeared out and often grossly inaccurate. On the other hand,
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higher order difference methods are less dissipative but are
prone to numerical instabilities.

Spectral methods have been used successfully in many
different fields in sciences and engineering because of their
ability to give accurate solutions of differential equations.
Khater et al. [23] applied the Chebyshev spectral collocation
method to solve Burgers type of equations in space and finite
differences to approximate the time derivative. The Cheby-
shev spectral collocationmethod has been used together with
the fourth-order Runge-Kutta method to solve the nonlinear
PDEs in this study.TheChebyshev spectral collocation is first
applied to the NPDE and this yields a system of ordinary
differential equations, which are solved using the fourth-
order Runge-Kutta method. Olmos and Shizgal [24], Javidi
[25, 26], Dehghan and Fakhar-Izadi [27], Driscoll [28], and
Driscoll [28] solved the Fisher, Burgers-Fisher, Burgers-
Huxley, Fitzhugh-Nagumo, and KdV equations, respectively,
using a combination of the Chebyshev spectral collocation
method and fourth-order Runge-Kutta method. Darvishi et
al. [29, 30] solved the KdV and the Burgers-Huxley equations
using a combination of the Chebyshev spectral collocation
method and Darvishi’s preconditioning. Jacobs and Harley
[31] and Tohidi and Kilicman [32] used spectral collocation
directly for solving linear partial differential equations. Accu-
racy will be compromised if they implement their approach
in solving nonlinear partial differential equations since they
use Kronecker multiplication.

Chebyshev spectral methods are defined everywhere in
the computational domain. Therefore, it is easy to get an
accurate value of the function under consideration at any
point of the domain, beside the collocation points. This
property is often exploited, in particular to get a significant
graphic representation of the solution, making the possible
oscillations due to a wrong approximation of the derivative
apparent. Spectral collocationmethods are easy to implement
and are adaptable to various problems, including variable
coefficient and nonlinear differential equations. The error
associated with the Chebyshev approximation is O(1/𝑁

𝑟

)

where 𝑁 refers to the truncation and 𝑟 is connected to
the number of continuous derivatives of the function. The
interest in using Chebyshev spectral methods in solving
nonlinear PDEs stems from the fact that these methods
require less grid points to achieve accurate results. They
are computational and efficient compared to traditional
methods like finite difference and finite element methods.
Chebyshev spectral collocation method has been used in
conjunction with additional methods which may have their
own drawbacks. Here, we provide an alternative method that
is not dependent on another method to approximate the
solution.

The main objective of this work is to introduce a new
method that uses Chebyshev spectral collocation, bivariate
Lagrange interpolation polynomials together with quasilin-
earisation techniques. The nonlinear evolution equations
are first linearized using the quasilinearisation method. The
Chebyshev spectral collocation method with Lagrange inter-
polation polynomials are applied independently in space and
time variables of the linearized evolution partial differential
equation. This new method is termed bivariate interpolated

spectral quasilinearisation method (BI-SQLM). We present
the BI-SQLM algorithm in a general setting, where it can be
used to solve any 𝑟th order nonlinear evolution equations.
The applicability, accuracy, and reliability of the proposed
BI-SQLM are confirmed by solving the modified KdV-
Burger equation, highly nonlinear modified KdV equation,
the Cahn-Hillard equation,the fourth-order KdV equation,
Fisher’s, Burgers-Fisher, Burger-Huxley, and the Fitzhugh-
Nagumo equations.The results of the BI-SQLMare compared
against known exact solutions that have been reported in the
scientific literature. It is observed that the method achieves
high accuracy with relatively fewer spatial grid points. It also
converges fast to the exact solution and approximates the
solution of the problem in a computationally efficientmanner
with simulations completed in fractions of a second in all
cases. Tables are generated to show the order of accuracy
of the method and time taken to compute the solutions. It
is observed that, as the number of grid points is increased,
the error decreases. Error graphs and graphs showing the
excellent agreement of the exact and analytical solutions for
all the nonlinear evolution equations are also presented.

The paper is organized as follows. In Section 2, we
introduce the BI-SQLM algorithm for a general nonlinear
evolution PDE. In Section 3, we describe the application
of the BI-SQLM to selected test problems. The numerical
simulations and results are presented in Section 4. Finally, we
conclude in Section 5.

2. Bivariate Interpolated Spectral
Quasilinearization Method (BI-SQLM)

In this section, we introduce the Bivariate Interpolated
Spectral Quasilinearization Method (BI-SQLM) for finding
solutions to nonlinear evolution PDEs. Without loss of
generality, we consider nonlinear PDEs of the form

𝜕𝑢

𝜕𝜏
= 𝐻(𝑢,

𝜕𝑢

𝜕𝜂
,
𝜕
2

𝑢

𝜕𝜂
2
, . . . ,

𝜕
𝑛

𝑢

𝜕𝜂
𝑛
) ,

with the physical region 𝜏 ∈ [0, 𝑇] , 𝜂 ∈ [𝑎, 𝑏] ,

(1)

where 𝑛 is the order of differentiation, 𝑢(𝜂, 𝜏) is the required
solution, and 𝐻 is a nonlinear operator which contains all
the spatial derivatives of 𝑢. The given physical region, 𝜏 ∈

[0, 𝑇], is converted to the region 𝑡 ∈ [−1, 1] using the linear
transformation 𝜏 = 𝑇(𝑡 + 1)/2 and 𝜂 ∈ [𝑎, 𝑏] is converted to
the region 𝑥 ∈ [−1, 1] using the linear transformation

𝜂 =
1

2
(𝑏 − 𝑎) 𝑥 +

1

2
(𝑏 + 𝑎) . (2)

Equation (1) can be expressed as

𝜕𝑢

𝜕𝑡
= 𝐻(𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕
2

𝑢

𝜕𝑥
2
, . . . ,

𝜕
𝑛

𝑢

𝜕𝑥
𝑛
) , 𝑡 ∈ [−1, 1] , 𝑥 ∈ [−1, 1] .

(3)
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The solution procedure assumes that the solution can be
approximated by a bivariate Lagrange interpolation polyno-
mial of the form

𝑢 (𝑥, 𝑡) ≈

𝑁
𝑥

∑

𝑖=0

𝑁
𝑡

∑

𝑗=0

𝑢 (𝑥
𝑖
, 𝑡
𝑗
) 𝐿
𝑖
(𝑥) 𝐿
𝑗
(𝑡) , (4)

which interpolates 𝑢(𝑥, 𝑡) at selected points in both the 𝑥 and
𝑡 directions defined by

{𝑥
𝑖
} = {cos( 𝜋𝑖

𝑁
𝑥

)}

𝑁
𝑥

𝑖=0

, {𝑡
𝑗
} = {cos(

𝜋𝑗

𝑁
𝑡

)}

𝑁
𝑡

𝑗=0

. (5)

The choice of the Chebyshev-Gauss-Lobatto grid points (5)
ensures that there is a simple conversion of the continuous
derivatives, in both space and time, to discrete derivatives
at the grid points. The functions 𝐿

𝑖
(𝑥) are the characteristic

Lagrange cardinal polynomials

𝐿
𝑖
(𝑥) =

𝑁
𝑥

∏

𝑖=0

𝑖 ̸=𝑘

𝑥 − 𝑥
𝑘

𝑥
𝑖
− 𝑥
𝑘

, (6)

where

𝐿
𝑖
(𝑥
𝑘
) = 𝛿
𝑖𝑘

= {
0 if 𝑖 ̸= 𝑘

1 if 𝑖 = 𝑘.
(7)

The function 𝐿
𝑗
(𝑡) is defined in a similar manner. Before

linearizing (3), it is convenient to split 𝐻 into its linear and
nonlinear components and rewrite the governing equation in
the form

𝐹 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] + 𝐺 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] − 𝑢̇ = 0, (8)

where the dot and primes denote the time and space deriva-
tives, respectively, 𝐹 is a linear operator, and 𝐺 is a nonlinear
operator. Assuming that the difference 𝑢

𝑟+1
− 𝑢
𝑟
and all it’s

space derivative is small, we first approximate the nonlinear
operator 𝐺 using the linear terms of the Taylor series and,
hence,

𝐺 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] ≈ 𝐺 [𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
]

+

𝑛

∑

𝑘=0

𝜕𝐺

𝜕𝑢
(𝑘)

(𝑢
(𝑘)

𝑟+1
− 𝑢
(𝑘)

𝑟
) ,

(9)

where 𝑟 and 𝑟 + 1 denote previous and current iterations,
respectively. We remark that this quasilinearization method
(QLM) approach is a generalisation of the Newton-Raphson
method and was first proposed by Bellman and Kalaba [33]
for solving nonlinear boundary value problems.

Equation (9) can be expressed as

𝐺 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] ≈ 𝐺 [𝑢
𝑟
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󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
]

+

𝑛
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𝜙
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𝑟
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(𝑛)

𝑟
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(𝑘)
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𝑛

∑
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𝑟
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𝑟
, . . . , 𝑢

(𝑛)

𝑟
] 𝑢
(𝑘)

𝑟
,

(10)

where

𝜙
𝑘,𝑟

[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] =

𝜕𝐺

𝜕𝑢
(𝑘)

[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] . (11)

Substituting (10) into (8), we get

𝐹 [𝑢
𝑟+1

, 𝑢
󸀠

𝑟+1
, . . . , 𝑢

(𝑛)

𝑟+1
] +

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟+1
− 𝑢̇
𝑟+1

= 𝑅
𝑟
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] ,

(12)

where

𝑅
𝑟
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] =

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
− 𝐺 [𝑢

𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] . (13)

A crucial step in the implementation of the solution proce-
dure is the evaluation of the time derivative at the grid points
𝑡
𝑗
(𝑗 = 0, 1, . . . , 𝑁

𝑡
) and the spatial derivatives at the grid

points 𝑥
𝑖
(𝑖 = 0, 1, . . . , 𝑁

𝑥
). The values of the time derivatives

at the Chebyshev-Gauss-Lobatto points (𝑥
𝑖
, 𝑡
𝑗
) are computed

as (for 𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
)

𝜕𝑢

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
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𝑖
)

𝑑𝐿
𝑘
(𝑡
𝑗
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𝑁
𝑡
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𝑢 (𝑥
𝑖
, 𝑡
𝑘
) 𝑑
𝑗𝑘

=

𝑁
𝑡

∑

𝑘=0

𝑑
𝑗𝑘
𝑢 (𝑥
𝑖
, 𝑡
𝑘
) ,

(14)

where 𝑑
𝑗𝑘

= 𝑑𝐿
𝑘
(𝑡
𝑗
)/𝑑𝑡 is the standard first derivative Che-

byshev differentiation matrix of size (𝑁
𝑡
+ 1) × (𝑁

𝑡
+ 1) as

defined in [34]. The values of the space derivatives at the
Chebyshev-Gauss-Lobatto points (𝑥

𝑖
, 𝑡
𝑗
) (𝑖 = 0, 1, 2, . . . , 𝑁

𝑥
)

are computed as

𝜕𝑢

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
𝑖
,𝑡=𝑡
𝑗

=

𝑁
𝑥
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𝑡
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𝑝
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𝑘
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𝑖
)

𝑑𝑥
𝐿
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𝑗
)
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𝑁
𝑥

∑

𝑝=0

𝑢 (𝑥
𝑝
, 𝑡
𝑗
)𝐷
𝑖𝑝

=

𝑁
𝑥

∑

𝑝=0

𝐷
𝑖𝑝
𝑢 (𝑥
𝑝
, 𝑡
𝑗
) ,

(15)

where 𝐷
𝑖𝑝

= 𝑑𝐿
𝑝
(𝑥
𝑖
)/𝑑𝑥 is the standard first derivative

Chebyshev differentiation matrix of size (𝑁
𝑥
+ 1) × (𝑁

𝑥
+ 1).

Similarly, for an 𝑛th order derivative, we have

𝜕
𝑛

𝑢

𝜕𝑥
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
𝑖
,𝑡=𝑡
𝑗

=

𝑁
𝑥

∑

𝑝=0

𝐷
𝑛

𝑖𝑝
𝑢 (𝑥
𝑝
, 𝑡
𝑗
) = D𝑛U

𝑗
,

𝑖 = 0, 1, 2, . . . , 𝑁
𝑥
,

(16)

where the vector U
𝑗
is defined as

U
𝑗
= [𝑢
𝑗
(𝑥
0
) , 𝑢
𝑗
(𝑥
1
) , . . . , 𝑢

𝑗
(𝑥
𝑁
𝑥

)]
𝑇 (17)
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and the superscript 𝑇 denotes matrix transpose. Substituting
(16) into (12) we get

𝐹 [U
𝑟+1,𝑗

,U󸀠
𝑟+1,𝑗

, . . . ,U(𝑛)
𝑟+1,𝑗

] +

𝑛

∑

𝑘=0

Φ
𝑘,𝑟
U(𝑘)
𝑟+1,𝑗

−

𝑁
𝑡

∑

𝑘=0

𝑑
𝑗𝑘
U
𝑟+1,𝑘

= 𝑅
𝑟
[U
𝑟,𝑗
,U󸀠
𝑟,𝑗
, . . . ,U(𝑛)

𝑟,𝑗
]

(18)

for 𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
, where

U(𝑛)
𝑟+1,𝑗

= D𝑛U
𝑟+1,𝑗

,

Φ
𝑘,𝑟

=

[
[
[
[

[

𝜙
𝑘,𝑟

(𝑥
0
, 𝑡
𝑗
)

𝜙
𝑘,𝑟

(𝑥
1
, 𝑡
𝑗
)

d
𝜙
𝑘,𝑟

(𝑥
𝑁
𝑥

, 𝑡
𝑗
)

]
]
]
]

]

.

(19)

The initial condition for (3) corresponds to 𝜏
𝑁
𝑡

= −1 and,
hence, we express (18) as

𝐹 [U
𝑟+1,𝑗

,U󸀠
𝑟+1,𝑗

, . . . ,U(𝑛)
𝑟+1,𝑗

]

+

𝑛

∑

𝑘=0

Φ
𝑘,𝑟
U(𝑘)
𝑟+1,𝑗

−

𝑁
𝑡
−1

∑

𝑘=0

𝑑
𝑗𝑘
U
𝑟+1,𝑘

= R
𝑗
,

(20)

where

R
𝑗
= 𝑅
𝑟
[U
𝑟,𝑗
,U󸀠
𝑟,𝑗
, . . . ,U(𝑛)

𝑟,𝑗
] + 𝑑
𝑗𝑁
𝑡

U
𝑁
𝑡

,

𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
− 1.

(21)

Equation (20) can be expressed as the following𝑁
𝑡
(𝑁
𝑥
+1) ×

𝑁
𝑡
(𝑁
𝑥
+ 1)matrix system

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑁
𝑡
−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑁
𝑡
−1

...
... d

...
𝐴
𝑁
𝑡
−1,0

𝐴
𝑁
𝑡
−1,1

⋅ ⋅ ⋅ 𝐴
𝑁
𝑡
−1,𝑁
𝑡
−1

]
]
]
]

]

[
[
[
[

[

U
0

U
1

...
U
𝑁
𝑡
−1

]
]
]
]

]

=

[
[
[
[

[

R
0

R
1

...
R
𝑁
𝑡
−1

]
]
]
]

]

,

(22)

where

𝐴
𝑖,𝑖

= 𝐹 [I,D, . . . ,D(𝑛)] +
𝑛

∑

𝑘=0

Φ
𝑘,𝑟
D(𝑘) − 𝑑

𝑖,𝑖
I,

𝐴
𝑖,𝑗

= −𝑑
𝑖,𝑗
I, when 𝑖 ̸= 𝑗,

(23)

and I is the identity matrix of size (𝑁
𝑥
+1)× (𝑁

𝑥
+1). Solving

(19) gives 𝑢(𝑥
𝑖
, 𝑡
𝑗
) and, hence, we use (4) to approximate

𝑢(𝑥, 𝑡).

3. Numerical Experiments

We apply the proposed algorithm to well-known nonlinear
PDEs of the form (3) with exact solutions. In order to
determine the level of accuracy of the BI-SQLM approximate
solution, at a particular time level, in comparison with the
exact solution, we report maximum error which is defined by

𝐸
𝑁

= max
𝑟

{
󵄨󵄨󵄨󵄨
𝑢 (𝑥
𝑟
, 𝑡) − 𝑢̃ (𝑥

𝑟
, 𝑡)

󵄨󵄨󵄨󵄨
, : 0 ≤ 𝑟 ≤ 𝑁} , (24)

where 𝑢̃(𝑥
𝑟
, 𝑡) is the approximate solution and is the 𝑢(𝑥

𝑟
, 𝑡)

exact solution at the time level 𝑡.

Example 1. Weconsider the generalizedBurgers-Fisher equa-
tion [35]:

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿
𝜕𝑢

𝜕𝑥
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝛽𝑢 (1 − 𝑢

𝛿

) , (25)

with initial condition

𝑢 (𝑥, 0) = {
1

2
+

1

2
tanh(

−𝛼𝛿

2(𝛿 + 1)
𝑥)}

1/𝛿

(26)

and exact solution

𝑢 (𝑥, 𝑡)

= {
1

2
+

1

2
tanh(

−𝛼𝛿

2 (𝛿 + 1)

× [𝑥 − (
𝛼

𝛿 + 1
+

𝛽 (𝛿 + 1)

𝛼
) 𝑡])}

1/𝛿

,

(27)

where 𝛼, 𝛽, and 𝛿 are parameters. For illustration purposes,
these parameters are chosen to be𝛼 = 𝛽 = 𝛿 = 1 in this paper.
The linear operator 𝐹 and nonlinear operator𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

+ 𝑢, 𝐺 (𝑢) = −𝑢𝑢
󸀠

− 𝑢
2

. (28)

We first linearize the nonlinear operator 𝐺. We approximate
𝐺 using the equation

𝐺 ≈ 𝐺 [𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] +

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟+1
−

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
. (29)

The coefficients are given by

𝜙
0,𝑟

=
𝜕𝐺

𝜕𝑢
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = − (𝑢

󸀠

𝑟
+ 2𝑢
𝑟
) ,

𝜙
1,𝑟

=
𝜕𝐺

𝜕𝑢
󸀠
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = −𝑢

𝑟
,

𝜙
2,𝑟

=
𝜕𝐺

𝜕𝑢
󸀠󸀠
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = 0,

𝑅
𝑟
=

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
− 𝐺 [𝑢

𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = −𝑢

2

𝑟
− 𝑢
𝑟
𝑢
󸀠

𝑟
.

(30)
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Therefore, the linearized equation can be expressed as

𝑢
󸀠󸀠

𝑟+1
+ 𝜙
1,𝑟
𝑢
󸀠

𝑟+1
+ 𝜙
0,𝑟
𝑢
𝑟+1

+ 𝑢
𝑟+1

− 𝑢̇ = 𝑅
𝑟
. (31)

Applying the spectral method both in 𝑥 and 𝑡 and initial
condition, we get

D2U
𝑟+1,𝑖

+Φ
1,𝑟
DU
𝑟+1,𝑖

+Φ
0,𝑟
U
𝑟+1,𝑖

+ U
𝑟+1,𝑖

− 2

𝑁
𝑡
−1

∑

𝑗=0

𝑑
𝑖𝑗
U
𝑟+1,𝑗

= R
𝑖
.

(32)

Equation (32) can be expressed as

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑁
𝑡
−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑁
𝑡
−1

...
... d

...
𝐴
𝑁
𝑡
−1,0

𝐴
𝑁
𝑡
−1,1

⋅ ⋅ ⋅ 𝐴
𝑁
𝑡
−1,𝑁
𝑡
−1

]
]
]
]

]

[
[
[
[

[

U
0

U
1

...
U
𝑁
𝑡
−1

]
]
]
]

]

=

[
[
[
[

[

R
0

R
1

...
R
𝑁
𝑡
−1

]
]
]
]

]

,

(33)

where

𝐴
𝑖,𝑖

= D2 +Φ(𝑖)
1,𝑟
D +Φ

(𝑖)

0,𝑟
+ (1 − 2𝑑

𝑖,𝑖
) I,

𝐴
𝑖,𝑗

= − 2𝑑
𝑖,𝑗
I, when 𝑖 ̸= 𝑗,

R
𝑖
= 𝑅
𝑟
+ 2𝑑
𝑖𝑁
𝑡

U
𝑟,𝑁
𝑡

.

(34)

The boundary conditions are implemented in the first and
last row of the matrices 𝐴

𝑖𝑗
and the column vectors R

𝑖
for

𝑖 = 0, 1, . . . , 𝑁
𝑡
− 1 and 𝑗 = 0, 1, . . . , 𝑁

𝑡
− 1. The procedure

for finding the variable coefficients 𝜙
𝑖
and matrices for the

remaining examples is similar.

Example 2. We consider Fisher’s equation

𝜕𝑢

𝜕𝑡
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝛼𝑢 (1 − 𝑢) , (35)

subject to the initial condition

𝑢 (𝑥, 0) =
1

(1 + 𝑒
√𝛼/6𝑥

)
2 (36)

and exact solution [36]

𝑢 (𝑥, 𝑡) =
1

(1 + 𝑒
√𝛼/6𝑥−5𝛼𝑡/6

)
2
, (37)

where 𝛼 is a constant. The Fisher equation represents a
reactive-diffusive system and is encountered in chemical
kinetics and population dynamics applications. For this
example, the appropriate linear operator 𝐹 and nonlinear
operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

+ 𝛼𝑢, 𝐺 (𝑢) = −𝛼𝑢
2

. (38)

Table 1: Maximum errors 𝐸
𝑁
for Fisher equation when 𝛼 = 1 using

𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.986𝑒 − 008 1.119𝑒 − 011 7.398𝑒 − 013 7.171𝑒 − 013

0.2 3.934𝑒 − 008 3.121𝑒 − 011 1.552𝑒 − 012 1.561𝑒 − 012

0.3 5.577𝑒 − 008 4.864𝑒 − 011 1.004𝑒 − 012 1.005𝑒 − 012

0.4 6.997𝑒 − 008 6.802𝑒 − 011 7.895𝑒 − 013 8.124𝑒 − 013

0.5 8.107𝑒 − 008 7.971𝑒 − 011 1.088𝑒 − 012 1.027𝑒 − 012

0.6 8.891𝑒 − 008 8.560𝑒 − 011 8.805𝑒 − 013 7.847𝑒 − 013

0.7 9.344𝑒 − 008 8.953𝑒 − 011 6.418𝑒 − 013 6.463𝑒 − 013

0.8 9.431𝑒 − 008 8.759𝑒 − 011 6.199𝑒 − 013 6.164𝑒 − 013

0.9 9.178𝑒 − 008 8.325𝑒 − 011 3.978𝑒 − 013 3.695𝑒 − 013

1.0 8.787𝑒 − 008 7.421𝑒 − 011 7.988𝑒 − 014 5.596𝑒 − 014

CPU
time
(sec)

0.019942 0.025988 0.027756 0.029436

Table 2:Maximum errors𝐸
𝑁
for the Burgers-Fisher equation when

𝛼 = 𝛾 = 𝛿 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.142𝑒 − 007 1.369𝑒 − 010 5.891𝑒 − 012 6.143𝑒 − 012

0.2 1.178𝑒 − 007 1.373𝑒 − 010 9.570𝑒 − 012 1.013𝑒 − 011

0.3 1.186𝑒 − 007 1.479𝑒 − 010 1.489𝑒 − 011 1.512𝑒 − 011

0.4 1.069𝑒 − 007 9.450𝑒 − 011 1.703𝑒 − 011 1.702𝑒 − 011

0.5 9.030𝑒 − 008 7.944𝑒 − 011 5.283𝑒 − 012 5.736𝑒 − 012

0.6 6.963𝑒 − 008 6.618𝑒 − 011 1.639𝑒 − 011 1.626𝑒 − 011

0.7 4.638𝑒 − 008 1.579𝑒 − 011 1.362𝑒 − 011 1.364𝑒 − 011

0.8 2.457𝑒 − 008 4.030𝑒 − 011 3.934𝑒 − 012 3.852𝑒 − 012

0.9 2.028𝑒 − 008 6.006𝑒 − 011 4.466𝑒 − 012 4.727𝑒 − 012

1.0 3.147𝑒 − 008 7.708𝑒 − 011 7.757𝑒 − 013 7.261𝑒 − 013

CPU
Time
(sec)

0.010152 0.015387 0.019163 0.021564

Example 3. Consider the Fitzhugh-Nagumo equation

𝜕𝑢

𝜕𝑡
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝑢 (𝑢 − 𝛼) (1 − 𝑢) (39)

with initial condition

𝑢 (𝑥, 0) =
1

2
[1 − coth(−

𝑥

2√2

)] . (40)

This equation has the exact solution [37]

𝑢 (𝑥, 𝑡) =
1

2
[1 − coth(−

𝑥

2√2

+
2𝛼 − 1

4
𝑡)] , (41)

where 𝛼 is a parameter. In this example, the linear operator 𝐹
and nonlinear operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

− 𝛼𝑢, 𝐺 (𝑢) = (1 + 𝛼) 𝑢
2

− 𝑢
3

. (42)
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Table 3: Maximum errors 𝐸
𝑁
for the Fitzhug-Nagumo equation

when 𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 5.719𝑒 − 007 1.196𝑒 − 009 2.367𝑒 − 012 9.881𝑒 − 014

0.2 6.193𝑒 − 007 1.299𝑒 − 009 2.761𝑒 − 012 3.952𝑒 − 014

0.3 6.662𝑒 − 007 1.463𝑒 − 009 3.259𝑒 − 012 8.216𝑒 − 014

0.4 6.779𝑒 − 007 1.448𝑒 − 009 3.341𝑒 − 012 8.094𝑒 − 014

0.5 6.920𝑒 − 007 1.526𝑒 − 009 3.587𝑒 − 012 5.063𝑒 − 014

0.6 7.019𝑒 − 007 1.573𝑒 − 009 3.729𝑒 − 012 3.775𝑒 − 014

0.7 6.933𝑒 − 007 1.516𝑒 − 009 3.660𝑒 − 012 8.915𝑒 − 014

0.8 6.828𝑒 − 007 81.535𝑒 − 009 3.635𝑒 − 012 7.594𝑒 − 014

0.9 6.765𝑒 − 007 1.528𝑒 − 009 3.519𝑒 − 012 3.242𝑒 − 013

1.0 6.687𝑒 − 007 1.490𝑒 − 009 3.405𝑒 − 012 1.688𝑒 − 013

CPU
time
(sec)

0.024281 0.024901 0.026810 0.032389

Table 4:Maximum errors𝐸
𝑁
for the Burger-Huxley equation when

𝛾 = 0.75, 𝛽 = 1, and𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 2.217𝑒 − 006 8.482𝑒 − 009 2.166𝑒 − 011 7.822𝑒 − 014

0.2 2.596𝑒 − 006 9.369𝑒 − 009 2.536𝑒 − 011 1.184𝑒 − 013

0.3 2.859𝑒 − 006 1.073𝑒 − 008 3.201𝑒 − 011 1.049𝑒 − 013

0.4 3.001𝑒 − 006 1.112𝑒 − 008 3.652𝑒 − 011 9.426𝑒 − 014

0.5 3.137𝑒 − 006 1.213𝑒 − 008 4.262𝑒 − 011 1.510𝑒 − 013

0.6 3.270𝑒 − 006 1.311𝑒 − 008 4.842𝑒 − 011 2.127𝑒 − 013

0.7 3.367𝑒 − 006 1.359𝑒 − 008 5.289𝑒 − 011 1.230𝑒 − 013

0.8 3.467𝑒 − 006 1.438𝑒 − 008 5.803𝑒 − 011 1.549𝑒 − 013

0.9 3.562𝑒 − 006 1.504𝑒 − 008 6.260𝑒 − 011 3.063𝑒 − 013

1.0 3.640𝑒 − 006 1.559𝑒 − 008 6.674𝑒 − 011 2.951𝑒 − 013

CPU
time
(sec)

0.023822 0.024901 0.02685 0.032806

Example 4. Consider the Burgers-Huxley equation

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿

𝑢
𝑥
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝛽𝑢 (1 − 𝑢

𝛿

) (𝑢
𝛿

− 𝛾) , (43)

where 𝛼, 𝛽 ≥ 0 are constant parameters, 𝛿 is a positive integer
(set to be 𝛿 = 1 in this study), and 𝛾 ∈ (0, 1). The exact
solution subject to the initial condition

𝑢 (𝑥, 0) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
𝑥] , (44)

is reported in [38, 39] as

𝑢 (𝑥, 𝑡) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
(𝑥 − 𝑐𝑡)] , (45)

where

𝑟 = √𝛼
2
+ 8𝛽, 𝑐 =

(𝛼 − 𝑟) (2𝛾 − 1) + 2𝛼

4

(46)

Table 5: Maximum errors 𝐸
𝑁

for the modified KdV-Burgers
equation, with𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.803𝑒 − 007 3.419𝑒 − 010 4.449𝑒 − 013 1.572𝑒 − 013

0.2 2.614𝑒 − 007 4.347𝑒 − 010 5.049𝑒 − 013 5.992𝑒 − 014

0.3 2.717𝑒 − 007 4.677𝑒 − 010 5.532𝑒 − 013 8.128𝑒 − 013

0.4 2.009𝑒 − 007 3.663𝑒 − 010 4.771𝑒 − 013 6.158𝑒 − 013

0.5 2.580𝑒 − 007 4.410𝑒 − 010 7.518𝑒 − 013 2.555𝑒 − 013

0.6 2.653𝑒 − 007 4.606𝑒 − 010 8.738𝑒 − 013 5.756𝑒 − 013

0.7 2.248𝑒 − 007 4.039𝑒 − 010 6.210𝑒 − 013 2.393𝑒 − 013

0.8 2.572𝑒 − 007 4.476𝑒 − 010 5.432𝑒 − 013 6.812𝑒 − 013

0.9 2.436𝑒 − 007 4.351𝑒 − 010 6.111𝑒 − 013 6.287𝑒 − 013

1.0 8.275𝑒 − 008 3.721𝑒 − 010 7.569𝑒 − 013 1.087𝑒 − 007

CPU
time
(sec)

0.015646 0.021226 0.030159 0.035675

Table 6: Maximum errors 𝐸
𝑁
for the highly nonlinear modified

KdV equation, with𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 7.788𝑒 − 005 3.553𝑒 − 007 7.601𝑒 − 010 2.080𝑒 − 010

0.2 1.153𝑒 − 004 4.000𝑒 − 007 5.684𝑒 − 010 1.189𝑒 − 010

0.3 1.011𝑒 − 004 3.739𝑒 − 007 4.471𝑒 − 010 4.503𝑒 − 010

0.4 3.926𝑒 − 005 1.785𝑒 − 007 6.544𝑒 − 010 4.987𝑒 − 010

0.5 6.727𝑒 − 005 2.342𝑒 − 007 2.638𝑒 − 010 1.528𝑒 − 010

0.6 6.065𝑒 − 005 2.207𝑒 − 007 4.565𝑒 − 010 4.568𝑒 − 010

0.7 2.511𝑒 − 005 1.105𝑒 − 007 4.749𝑒 − 010 3.748𝑒 − 010

0.8 4.074𝑒 − 005 1.427𝑒 − 007 1.062𝑒 − 010 1.604𝑒 − 010

0.9 2.386𝑒 − 005 1.018𝑒 − 007 2.343𝑒 − 010 8.114𝑒 − 011

1.0 1.440𝑒 − 006 7.256𝑒 − 008 1.436𝑒 − 009 1.513𝑒 − 011

CPU
time
(sec)

0.020609 0.021241 0.030617 0.032816

The general solution (45) was reported in [40, 41]. In this
example, the linear operator 𝐹 and nonlinear operator 𝐺 are
chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

− 𝛽𝛾𝑢,

𝐺 (𝑢) = −𝛼𝑢𝑢
󸀠

+ 𝛽 (1 + 𝛾) 𝑢
2

− 𝛽𝑢
3

.

(47)

Example 5. We consider the modified KdV-Burgers equation

𝜕𝑢

𝜕𝑡
=

𝜕
3

𝑢

𝜕𝑥
3
−

𝜕
2

𝑢

𝜕𝑥
2
− 6𝑢
2
𝜕𝑢

𝜕𝑥

(48)

subject to the initial condition

𝑢 (𝑥, 0) =
1

6
+

1

6
tanh(

𝑥

6
) (49)

and exact solution [42]

𝑢 (𝑥, 𝑡) =
1

6
+

1

6
tanh(

𝑥

6
−

𝑡

27
) . (50)
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Table 7: Maximum errors 𝐸
𝑁
for Fisher equation when 𝛼 = 1 using

𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.119𝑒 − 011 7.398𝑒 − 013 8.266𝑒 − 013 3.808𝑒 − 014

0.4 3.121𝑒 − 011 1.552𝑒 − 012 7.378𝑒 − 013 3.780𝑒 − 014

0.6 4.864𝑒 − 011 1.004𝑒 − 012 3.402𝑒 − 012 7.283𝑒 − 014

0.8 6.802𝑒 − 011 7.895𝑒 − 013 1.118𝑒 − 012 3.714𝑒 − 014

1.0 7.971𝑒 − 011 1.088𝑒 − 012 1.473𝑒 − 012 1.691𝑒 − 013

1.2 8.560𝑒 − 011 8.805𝑒 − 013 2.611𝑒 − 012 3.119𝑒 − 013

1.4 8.953𝑒 − 011 6.418𝑒 − 013 6.671𝑒 − 012 1.796𝑒 − 013

1.6 8.759𝑒 − 011 6.199𝑒 − 013 1.118𝑒 − 011 1.097𝑒 − 013

1.8 8.325𝑒 − 011 3.978𝑒 − 013 7.515𝑒 − 013 6.273𝑒 − 014

2.0 7.421𝑒 − 011 7.988𝑒 − 014 3.682𝑒 − 012 2.311𝑒 − 013

CPU
time
(sec)

0.013542 0.022967 0.023792 0.024758

Table 8:Maximum errors𝐸
𝑁
for the Burgers-Fisher equation when

𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.223𝑒 − 007 1.400𝑒 − 008 1.402𝑒 − 008 1.094𝑒 − 012

0.4 1.145𝑒 − 007 1.919𝑒 − 008 1.918𝑒 − 008 3.919𝑒 − 012

0.6 9.192𝑒 − 008 2.082𝑒 − 008 2.085𝑒 − 008 1.953𝑒 − 012

0.8 2.293𝑒 − 008 1.793𝑒 − 008 1.793𝑒 − 008 6.340𝑒 − 013

1.0 2.395𝑒 − 008 1.337𝑒 − 008 1.339𝑒 − 008 2.381𝑒 − 012

1.2 5.778𝑒 − 008 1.954𝑒 − 008 1.930𝑒 − 008 1.005𝑒 − 011

1.4 6.045𝑒 − 008 1.620𝑒 − 008 1.620𝑒 − 008 3.535𝑒 − 012

1.6 5.244𝑒 − 008 7.218𝑒 − 009 7.345𝑒 − 009 5.765𝑒 − 012

1.8 4.395𝑒 − 008 6.828𝑒 − 009 6.784𝑒 − 009 3.983𝑒 − 012

2.0 2.944𝑒 − 008 9.406𝑒 − 010 8.820𝑒 − 010 3.812𝑒 − 012

CPU
time
(sec)

0.019942 0.025988 0.027756 0.029436

The modified KdV-Burgers equation describes various kinds
of phenomena such as a mathematical model of turbulence
[43] and the approximate theory of flow through a shockwave
traveling in viscous fluid [44]. For this example, the linear
operator 𝐹 and nonlinear operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠󸀠

− 𝑢
󸀠󸀠

, 𝐺 (𝑢) = −6𝑢
󸀠

𝑢
2

. (51)

Example 6. We consider the high nonlinear modified KdV
equation

𝜕𝑢

𝜕𝑡
=

𝜕
3

𝑢

𝜕𝑥
3
+ (

𝜕𝑢

𝜕𝑥
)

2

− 𝑢
2 (52)

subject to the initial condition

𝑢 (𝑥, 0) =
1

2
+

𝑒
−𝑥

4

(53)

Table 9: Maximum errors 𝐸
𝑁
for the Fitzhugh-Nagumo equation

when 𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 6.326𝑒 − 007 1.311𝑒 − 009 2.886𝑒 − 012 1.131𝑒 − 012

0.4 6.721𝑒 − 007 1.467𝑒 − 009 3.310𝑒 − 012 1.564𝑒 − 012

0.6 7.140𝑒 − 007 1.602𝑒 − 009 3.617𝑒 − 012 1.936𝑒 − 012

0.8 6.730𝑒 − 007 1.496𝑒 − 009 4.707𝑒 − 012 1.196𝑒 − 012

1.0 6.660𝑒 − 007 1.487𝑒 − 009 3.675𝑒 − 012 1.264𝑒 − 012

1.2 6.449𝑒 − 007 1.366𝑒 − 009 1.897𝑒 − 012 1.727𝑒 − 012

1.4 5.690𝑒 − 007 1.083𝑒 − 009 2.972𝑒 − 012 1.200𝑒 − 012

1.6 4.931𝑒 − 007 8.010𝑒 − 010 1.519𝑒 − 012 8.590𝑒 − 013

1.8 3.986𝑒 − 007 4.658𝑒 − 010 1.068𝑒 − 012 6.790𝑒 − 013

2.0 2.904𝑒 − 007 2.968𝑒 − 010 1.592𝑒 − 012 1.770𝑒 − 013

CPU
time
(sec)

0.041048 0.049629 0.055008 0.053863

Table 10: Maximum errors 𝐸
𝑁

for the Burgers-Huxley equation
when 𝛾 = 0.5, 𝛽 = 1, and𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 2.866𝑒 − 006 1.119𝑒 − 008 3.670𝑒 − 011 1.150𝑒 − 012

0.4 3.401𝑒 − 006 1.420𝑒 − 008 5.744𝑒 − 011 1.638𝑒 − 012

0.6 3.814𝑒 − 006 1.687𝑒 − 008 7.426𝑒 − 011 1.958𝑒 − 012

0.8 3.915𝑒 − 006 1.729𝑒 − 008 8.171𝑒 − 011 7.002𝑒 − 013

1.0 3.938𝑒 − 006 1.738𝑒 − 008 8.157𝑒 − 011 1.267𝑒 − 012

1.2 3.808𝑒 − 006 1.624𝑒 − 008 7.687𝑒 − 011 1.710𝑒 − 012

1.4 3.456𝑒 − 006 1.527𝑒 − 008 6.965𝑒 − 011 5.109𝑒 − 013

1.6 3.230𝑒 − 006 1.349𝑒 − 008 5.535𝑒 − 011 8.203𝑒 − 013

1.8 2.925𝑒 − 006 1.078𝑒 − 008 3.598𝑒 − 011 8.294𝑒 − 013

2.0 2.497𝑒 − 006 7.505𝑒 − 009 2.265𝑒 − 011 9.726𝑒 − 014

CPU
time
(sec)

0.023822 0.024901 0.02685 0.032806

and exact solution

𝑢 (𝑥, 𝑡) =
1

𝑡 + 2
+

𝑒
−(𝑥+𝑡)

(𝑡 + 2)
2
. (54)

For this example, the linear operator 𝐹 and nonlinear opera-
tor 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠󸀠

, 𝐺 (𝑢) = (𝑢
󸀠

)
2

− 𝑢
2

. (55)

4. Results and Discussion

In this section we present the numerical solutions obtained
using the BI-SQLM algorithm. The number of collocation
points in the space 𝑥 variable used to generate the results is
𝑁
𝑥

= 10 in all cases. Similarly, the number of collocation
points in the time 𝑡 variable used is 𝑁

𝑡
= 10 in all cases. It

was found that sufficient accuracy was achieved using these
values in all numerical simulations.
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Table 11: Maximum errors 𝐸
𝑁

for the modified KdV-Burgers
equation, with𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 2.137𝑒 − 007 3.820𝑒 − 010 4.846𝑒 − 013 9.998𝑒 − 013

0.4 2.480𝑒 − 007 4.267𝑒 − 010 5.596𝑒 − 013 8.775𝑒 − 013

0.6 2.691𝑒 − 007 4.676𝑒 − 010 6.565𝑒 − 013 2.054𝑒 − 012

0.8 2.214𝑒 − 007 3.979𝑒 − 010 8.776𝑒 − 013 1.168𝑒 − 012

1.0 2.538𝑒 − 007 4.463𝑒 − 010 9.650𝑒 − 013 8.410𝑒 − 013

1.2 2.650𝑒 − 007 4.680𝑒 − 010 7.450𝑒 − 013 5.113𝑒 − 013

1.4 2.383𝑒 − 007 4.296𝑒 − 010 7.500𝑒 − 013 1.110𝑒 − 012

1.6 2.568𝑒 − 007 4.572𝑒 − 010 9.704𝑒 − 013 2.837𝑒 − 013

1.8 2.520𝑒 − 007 4.529𝑒 − 010 7.443𝑒 − 013 5.353𝑒 − 013

2.0 2.370𝑒 − 007 4.438𝑒 − 010 2.719𝑒 − 013 8.849𝑒 − 013

CPU
time
(sec)

0.062066 0.081646 0.080718 0.10775

Table 12: Maximum errors 𝐸
𝑁
for the highly nonlinear modified

KdV equation, with𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.986𝑒 − 008 1.119𝑒 − 011 7.398𝑒 − 013 7.171𝑒 − 013

0.4 8.010𝑒 − 005 3.577𝑒 − 007 3.902𝑒 − 008 1.979𝑒 − 010

0.6 7.235𝑒 − 005 2.549𝑒 − 007 2.016𝑒 − 008 4.899𝑒 − 010

0.8 6.284𝑒 − 005 1.663𝑒 − 007 1.155𝑒 − 007 2.679𝑒 − 010

1.0 1.642𝑒 − 005 1.620𝑒 − 007 1.243𝑒 − 007 2.474𝑒 − 010

1.2 2.753𝑒 − 005 1.073𝑒 − 007 1.073𝑒 − 007 1.679𝑒 − 010

1.4 3.738𝑒 − 006 8.971𝑒 − 008 8.598𝑒 − 008 4.788𝑒 − 011

1.6 1.223𝑒 − 005 2.153𝑒 − 008 2.503𝑒 − 008 2.941𝑒 − 011

1.8 5.836𝑒 − 006 2.986𝑒 − 008 9.127𝑒 − 009 5.177𝑒 − 011

2.0 9.310𝑒 − 006 6.548𝑒 − 008 7.277𝑒 − 008 1.453𝑒 − 009

CPU
time
(sec)

0.020609 0.021241 0.030617 0.032816

In Tables 1, 2, 3, 4, 5, and 6 we give the maximum
errors between the exact and BI-SQLM results for the Fisher
equation, Burgers-Fisher equation, Fitzhugh-Nagumo equa-
tion, Burgers-Huxley equation, the modified KdV-Burgers
equation, and the modified KdV equation, respectively, at
𝑡 ∈ [0.1, 1]. The results were computed in the space domain
𝑥 ∈ [0, 1]. To give a sense of the computational efficiency of
the method, the computational time to generate the results
is also given. Tables 1–6 clearly show the accuracy of the
method. The accuracy is seen to improve with an increase
in the number of collocation points 𝑁

𝑥
. It is remarkable to

note that accurate results with errors of order up to 10
−14

are obtained using very few collocation points in both the 𝑥

and 𝑡 variables 𝑁
𝑡
≤ 10, 𝑁

𝑥
≤ 10. This is a clear indication

that the BI-SQLM is powerful method that is appropriate
in solving nonlinear evolution PDEs. We remark, also, that
the BI-SQLM is computationally fast as accurate results are
generated in a fraction of a second in all the examples
considered in this work.
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Figure 1: Fishers equation analytical solution graph.
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Figure 2: Burger-Fishers equation analytical solution graph.

In Tables 7, 8, 9, 10, 11, and 12 we give the maxi-
mum errors of the BI-SQLM results for the Fisher equa-
tion, Burgers-Fisher equation, Fitzhugh-Nagumo equation,
Burgers-Huxley equation, the modified KdV-Burgers equa-
tion, and themodified KdV equation, respectively, at selected
values of 𝑡 = 2 for different collocation points, 𝑁

𝑡
, in the

𝑡-variable. The results in Tables 7–12 were computed on the
space domain 𝑥 ∈ [0, 1]. We note that the accuracy does not
detoriate when 𝑡 > 1 for this method as is often the case with
numerical schemes such as finite differences.
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Figure 3: Fitzhugh-Nagumo equation analytical solution graph.
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Figure 4: Burgers-Huxley equation analytical solution graph.

Figures 1, 2, 3, 4, 5, and 6 show a comparison of the
analytical and approximate solutions of the Fisher equa-
tion, Burgers-Fisher equation, Fitzhugh-Nagumo equation,
Burgers-Huxley equation, the modified KdV-Burgers equa-
tion, and the modified KdV equation, respectively, when 𝑡 =

2. The approximate solutions are in excellent agreement with
the analytical solutions, and this demonstrates the accuracy
of the algorithm presented in this study.

In Figures 7, 8, 9, 10, 11, and 12, we present error analysis
graphs for the Fisher equation, Burgers-Fisher equation,
Fitzhugh-Nagumo equation, Burgers-Huxley equation, the
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Figure 5: Modified KdV-Burger equation analytical solution graph.
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Figure 6: Modified KdV equation analytical solution graph.

modified KdV-Burgers equation, and the modified KdV
equation, respectively, when 𝑡 = 2.

In Figures 13, 14, 15, 16, 17, and 18, convergence analysis
graphs for the Fisher equation, Burgers-Fisher equation,
Fitzhugh-Nagumo equation, Burgers-Huxley equation, the
modified KdV-Burgers equation, and the modified KdV
equation, respectively. The figures present a variation of the
error norm at a fixed value of time (𝑡 = 1) with iterations
of the BI-SQLM scheme. It can be seen that, in almost all
the examples considered, the iteration scheme takes about
3 or 4 iterations to converge fully. Beyond the point where
full convergence is reached, error norm levels off and does
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The error graph of the Burgers-Fisher equation
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Figure 8: Burger-Fishers equation error graph.

The error graph of the Fitzhurg-Nagumo equation
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Figure 9: Fitzhugh-Nagumo equation error graph.

The error graph of the Burger-Huxley equation
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Figure 10: Burgers-Huxley equation error graph.

The error analysis graph of the modified KdV-Burger equation
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not improve with an increase in the number of iterations.
This plateau level gives an estimate of the maximum error
that can be achieved when using the proposed method with
a certain number of collocation points. It is worth remarking
that the accuracy of the method depends on the number of
collocation points in both the 𝑥 and 𝑡 directions. The results
from Figures 13–18 clearly demonstrate that the BI-SQLM is
accurate.

5. Conclusion

This paper has presented a new Chebyshev collocation
spectral method for solving general nonlinear evolution
partial differential equations.The bivariate interpolated spec-
tral quasilinearisation method (BI-SQLM) was developed
by combining elements of the quasilinearisation method
and Chebyshev spectral collocation with bivariate Lagrange
interpolation.Themain goal of the current studywas to assess
the accuracy, robustness, and effectiveness of the method in
solving nonlinear partial differential equations.

Numerical simulations were conducted on the modified
KdV-Burger equation, highly nonlinear modified KdV equa-
tion, the Fisher equation, Burgers-Fisher equation, Fitzhugh-
Nagumo equation, andBurgers-Huxley equation. It is evident
from the study that the BI-SQLM gives accurate results in
a computationally efficient manner. Further evidence from
this study is that the BI-SQLM gives solutions that are
uniformly accurate and valid in large intervals of space and
time domains. The apparent success of the method can be
attributed to the use of the Chebyshev spectral collocation
method with bivariate Lagrange interpolation in space and
time for differentiating. This work contributes to the existing
body of literature on quasilinearisation tools for solving
complex nonlinear partial differential equations. Further
work needs to be done to establish whether the BI-SQLM can
be equally successful in solving coupled systems of equations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported in part by the National Research
Foundation of South Africa (Grant no. 85596).

References

[1] G. Adomian, Stochastic Systems, vol. 169 of Mathematics in
Science and Engineering, Academic Press, Orlando, Fla, USA,
1983.

[2] G. Adomian, “A review of the decomposition method in
applied mathematics,” Journal of Mathematical Analysis and
Applications, vol. 135, no. 2, pp. 501–544, 1988.

[3] L. Bougoffa and R. C. Rach, “Solving nonlocal initial-boundary
value problems for linear and nonlinear parabolic and hyper-
bolic partial differential equations by the Adomian decomposi-
tion method,” Applied Mathematics and Computation, vol. 225,
pp. 50–61, 2013.

[4] S. J. Liao, Advances in Homotopy Analysis Method, World
Scientific Publishing, Singapore, 2014.

[5] J. He, “Application of homotopy perturbation method to non-
linear wave equations,” Chaos, Solitons and Fractals, vol. 26, no.
3, pp. 695–700, 2005.

[6] S. Abbasbandy, “The application of homotopy analysis method
to solve a generalized Hirota-Satsuma coupled KdV equation,”
Physics Letters A: General, Atomic and Solid State Physics, vol.
361, no. 6, pp. 478–483, 2007.

[7] L. Song and H. Zhang, “Application of homotopy analy-
sis method to fractional KdV-Burgers-KURamoto equation,”
Physics Letters A, vol. 367, no. 1-2, pp. 88–94, 2007.

[8] E. J. Parkes and B. R. Duffy, “An automated tanh-function
method for finding solitary wave solutions to non-linear evolu-
tion equations,” Computer Physics Communications, vol. 98, no.
3, pp. 288–300, 1996.

[9] B. R. Duffy and E. J. Parkes, “Travelling solitary wave solutions
to a seventh-order generalized KdV equation,” Physics Letters A,
vol. 214, no. 5-6, pp. 271–272, 1996.

[10] Z. B. Li, “Exact solitary wave solutions of nonlinear evolution
equations,” in Mathematics Mechanization and Application, X.
S. Gao and D.M.Wang, Eds., Academic Press, San Diego, Calif,
USA, 2000.

[11] U. Lepik, “Numerical solution of evolution equations by the
Haar wavelet method,” Applied Mathematics and Computation,
vol. 185, no. 1, pp. 695–704, 2007.

[12] I. Celik, “Haar wavelet method for solving generalized Burgers-
Huxley equation,” Arab Journal of Mathematical Sciences, vol.
18, no. 1, pp. 25–37, 2012.

[13] G. Hariharan, K. Kannan, and K. R. Sharma, “Haar wavelet
method for solving Fisher's equation,”AppliedMathematics and
Computation, vol. 211, no. 2, pp. 284–292, 2009.

[14] J. He and X. Wu, “Exp-function method for nonlinear wave
equations,” Chaos, Solitons & Fractals, vol. 30, no. 3, pp. 700–
708, 2006.

[15] C. Chun, “Solitons and periodic solutions for the fifth-order
KdV equation with the Exp-function method,” Physics Letters
A, vol. 372, no. 16, pp. 2760–2766, 2008.

[16] X. H. Wu and J. H. He, “EXP-function method and its applica-
tion to nonlinear equations,” Chaos, Solitons & Fractals, vol. 38,
no. 3, pp. 903–910, 2008.

[17] F.W.Wubs and E. D. deGoede, “An explicit-implicitmethod for
a class of time-dependent partial differential equations,”Applied
Numerical Mathematics, vol. 9, no. 2, pp. 157–181, 1992.

[18] E.M. E. Elbarbary andM. El-Kady, “Chebyshev finite difference
approximation for the boundary value problems,” Applied
Mathematics and Computation, vol. 139, no. 2-3, pp. 513–523,
2003.

[19] A. C. Vliegenthart, “On finite-difference methods for the
Korteweg-de Vries equation,” Journal of EngineeringMathemat-
ics, vol. 5, pp. 137–155, 1971.

[20] J. Argyris and M. Haase, “An engineer’s guide to soliton phe-
nomena: application of the finite element method,” Computer
Methods in AppliedMechanics and Engineering, vol. 61, no. 1, pp.
71–122, 1987.

[21] G. F. Carey and Y. Shen, “Approximations of the KdV equation
by least squares finite elements,” Computer Methods in Applied
Mechanics and Engineering, vol. 93, no. 1, pp. 1–11, 1991.

[22] K. Djidjeli, W. G. Price, P. Temarel, and E. H. Twizell, “A
linearized implicit pseudo-spectral method for certain non-
linear water wave equations,” Communications in Numerical



The Scientific World Journal 13

Methods in Engineering with Biomedical Applications, vol. 14, no.
10, pp. 977–993, 1998.

[23] A. H. Khater, R. S. Temsah, and M. M. Hassan, “A Chebyshev
spectral collocation method for solving Burger's-type equa-
tions,” Journal of Computational and Applied Mathematics, vol.
222, no. 2, pp. 333–350, 2008.

[24] D. Olmos and B. D. Shizgal, “A pseudospectral method of
solution of Fisher's equation,” Journal of Computational and
Applied Mathematics, vol. 193, no. 1, pp. 219–242, 2006.

[25] M. Javidi, “Spectral collocation method for the solution of the
generalized Burger-Fisher equation,” Applied Mathematics and
Computation, vol. 174, no. 1, pp. 345–352, 2006.

[26] M. Javidi, “A numerical solution of the generalized Burgers-
Huxley equation by spectral collocation method,” Applied
Mathematics and Computation, vol. 178, no. 2, pp. 338–344,
2006.

[27] M. Dehghan and F. Fakhar-Izadi, “Pseudospectral methods for
Nagumoequation,” International Journal forNumericalMethods
in Biomedical Engineering, vol. 27, no. 4, pp. 553–561, 2011.

[28] T. A. Driscoll, “A composite Runge-Kutta method for the
spectral solution of semilinear PDEs,” Journal of Computational
Physics, vol. 182, no. 2, pp. 357–367, 2002.

[29] M. T. Darvishi, S. Kheybari, and F. Khani, “A numerical solution
of Korteweg-de Vries equation by pseudospectral method
using Darvishi’s preconditionings,” Applied Mathematics and
Computation, vol. 182, no. 1, pp. 98–105, 2006.

[30] M. T. Darvishi, S. Kheybari, and F. Khani, “Spectral collocation
method and Darvishi’s preconditionings to solve the general-
ized Burgers-Huxley equation,” Communications in Nonlinear
Science and Numerical Simulation, vol. 13, no. 10, pp. 2091–2103,
2008.

[31] B. A. Jacobs and C. Harley, “Two hybrid methods for solv-
ing two-dimensional linear time-fractional partial differential
equations,” Abstract and Applied Analysis, vol. 2014, Article ID
757204, 10 pages, 2014.

[32] E. Tohidi and A. Kilicman, “An efficient spectral approximation
for solving several types of parabolic pdes with nonlocal
boundary conditions,” Mathematical Problems in Engineering,
vol. 2014, Article ID 369029, 6 pages, 2014.

[33] R. E. Bellman and R. E. Kalaba, Quasilinearization and Non-
linear Boundary-Value Problems, vol. 3 ofModern Analytic and
Computional Methods in Science and Mathematics, American
Elsevier, New York, NY, USA, 1965.

[34] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadel-
phia, Pa, USA, 2000.

[35] A. Golbabai and M. Javidi, “A spectral domain decomposition
approach for the generalized Burger’s-Fisher equation,” Chaos,
Solitons & Fractals, vol. 39, no. 1, pp. 385–392, 2009.

[36] A. Wazwaz and A. Gorguis, “An analytic study of Fisher’s
equation by using Adomian decomposition method,” Applied
Mathematics and Computation, vol. 154, no. 3, pp. 609–620,
2004.

[37] H. Li and Y. Guo, “New exact solutions to the FitzHugh-
Nagumo equation,”AppliedMathematics and Computation, vol.
180, no. 2, pp. 524–528, 2006.

[38] E. Fan, “Traveling wave solutions for nonlinear equations
using symbolic computation,” Computers & Mathematics with
Applications, vol. 43, no. 6-7, pp. 671–680, 2002.

[39] Y. N. Kyrychko, M. V. Bartuccelli, and K. B. Blyuss, “Persistence
of travelling wave solutions of a fourth order diffusion system,”
Journal of Computational and AppliedMathematics, vol. 176, no.
2, pp. 433–443, 2005.

[40] I. Hashim, M. S. M. Noorani, and M. R. Said Al-Hadidi,
“Solving the generalized Burgers-Huxley equation using the
Adomian decompositionmethod,”Mathematical andComputer
Modelling, vol. 43, no. 11-12, pp. 1404–1411, 2006.

[41] X. Y. Wang, Z. S. Zhu, and Y. K. Lu, “Solitary wave solutions of
the generalised Burgers-Huxley equation,” Journal of Physics A:
Mathematical and General, vol. 23, no. 3, pp. 271–274, 1990.

[42] M. A. Helal and M. S. Mehanna, “A comparison between two
different methods for solving KdV-Burgers equation,” Chaos,
Solitons and Fractals, vol. 28, no. 2, pp. 320–326, 2006.

[43] J. M. Burgers, “A mathematical model illustrating the theory of
turbulence,” in Advances in Applied Mechanics, vol. 1, pp. 171–
199, 1948.

[44] J. D. Cole, “On a quasi-linear parabolic equation occurring in
aerodynamics,” Quarterly of Applied Mathematics, vol. 9, pp.
225–236, 1951.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


