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Azam et al. (2011), introduce the notion of complex valued metric spaces and obtained common fixed point result for mappings
in the context of complex valued metric spaces. Rao et al. (2013) introduce the notion of complex valued b-metric spaces. In this
paper, we generalize the results of Azam et al. (2011), and Bhatt et al. (2011), by improving the conditions of contraction to establish
the existence and uniqueness of common fixed point for two self-mappings on complex valued b-metric spaces. Some examples
are given to illustrate the main results.

1. Introduction

Banach contraction principle in [1] was the starting point for
many researchers during last decades in the field of nonlinear
analysis. In 1989, Bakhtin [2] introduced the concept of 𝑏-
metric space as a generalization ofmetric spaces.The concept
of complex valued 𝑏-metric spaces was introduced in 2013 by
Rao et al. [3], which was more general than the well-known
complex valuedmetric spaces that were introduced in 2011 by
Azam et al. [4]. The main purpose of this paper is to present
common fixed point results of two self-mappings satisfying
a rational inequality on complex valued 𝑏-metric spaces. The
results presented in this paper are generalization ofwork done
by Azam et al. in [4] and Bhatt et al in [5].

Definition 1 (see [6]). Let 𝑋 be a nonempty set and let 𝑠 ≥ 1

be a given real number. A function 𝑑 : 𝑋 × 𝑋 → [0,∞) is
called a 𝑏-metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions
are satisfied:

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(iii) 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)].

The pair (𝑋, 𝑑) is called a 𝑏-metric space. The number 𝑠 ≥ 1

is called the coefficient of (𝑋, 𝑑).

Example 2 (see [7]). Let (𝑋, 𝑑) be a metric space and
𝜌(𝑥, 𝑦) = (𝑑(𝑥, 𝑦))

𝑝, where 𝑝 > 1 is a real number. Then
(𝑋, 𝜌) is a 𝑏-metric space with 𝑠 = 2𝑝−1.

Let C be the set of complex numbers and 𝑧1, 𝑧2 ∈ C.
Define a partial order ≾ on C as follows:

𝑧1 ≾ 𝑧2

iff Re (𝑧1) ≤ Re (𝑧1) , Im (𝑧1) ≤ Im (𝑧2) .

(1)

Thus 𝑧1 ≾ 𝑧2 if one of the following holds:

(1) Re(𝑧1) = Re(𝑧2) and Im(𝑧1) = Im(𝑧2),
(2) Re(𝑧1) < Re(𝑧2) and Im(𝑧1) = Im(𝑧2),
(3) Re(𝑧1) = Re(𝑧2) and Im(𝑧1) < Im(𝑧2),
(4) Re(𝑧1) < Re(𝑧2) and Im(𝑧1) < Im(𝑧2).

We will write 𝑧1⋨ 𝑧2 if 𝑧1 ̸= 𝑧2 and one of (2), (3), and (4) is
satisfied; also we will write 𝑧1 ≺ 𝑧2 if only (4) is satisfied.

Remark 3. We can easily check that the following statements
are held:

(i) if 𝑎, 𝑏 ∈ R and 𝑎 ≤ 𝑏, then 𝑎𝑧 ≾ 𝑏𝑧 for all 𝑧 ∈ C;
(ii) if 0 ≾ 𝑧1⋨𝑧2, then |𝑧1| < |𝑧2|;
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(iii) if 𝑧1 ≾ 𝑧2 and 𝑧2 ≺ 𝑧3, then 𝑧1 ≺ 𝑧3.

Definition 4 (see [4]). Let 𝑋 be a nonempty set. A function
𝑑 : 𝑋 ×𝑋 → C is called a complex valued metric on𝑋 if for
all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions are satisfied:

(i) 0 ≾ 𝑑(𝑥, 𝑦) and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(iii) 𝑑(𝑥, 𝑦) ≾ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦).

The pair (𝑋, 𝑑) is called a complex valued metric space.

Example 5 (see [8]). Let 𝑋 = C. Define the mapping 𝑑 : 𝑋 ×

𝑋 → C by

𝑑 (𝑥, 𝑦) = 𝑖
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝑋. (2)

Then (𝑋, 𝑑) is a complex valued metric space.

Example 6 (see [9]). Let 𝑋 = C. Define the mapping 𝑑 : 𝑋 ×

𝑋 → C by

𝑑 (𝑥, 𝑦) = 𝑒
𝑖𝑘 𝑥 − 𝑦

 , where 𝑘 ∈ R, ∀𝑥, 𝑦 ∈ 𝑋. (3)

Then (𝑋, 𝑑) is a complex valued metric space.

Definition 7 (see [3]). Let 𝑋 be a nonempty set and let 𝑠 ≥
1 be a given real number. A function 𝑑 : 𝑋 × 𝑋 → C is
called a complex valued 𝑏-metric on 𝑋 if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

the following conditions are satisfied:

(i) 0 ≾ 𝑑(𝑥, 𝑦) and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(iii) 𝑑(𝑥, 𝑦) ≾ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)].

The pair (𝑋, 𝑑) is called a complex valued 𝑏-metric space.

Example 8 (see [3]). Let 𝑋 = [0, 1]. Define the mapping 𝑑 :

𝑋 × 𝑋 → C by

𝑑 (𝑥, 𝑦) =
𝑥 − 𝑦


2
+ 𝑖
𝑥 − 𝑦


2
, ∀𝑥, 𝑦 ∈ 𝑋. (4)

Then (𝑋, 𝑑) is a complex valued 𝑏-metric space with 𝑠 = 2.

Definition 9 (see [3]). Let (𝑋, 𝑑) be a complex valued 𝑏-metric
space. Consider the following.

(i) A point 𝑥 ∈ 𝑋 is called interior point of a set 𝐴 ⊆ 𝑋

whenever there exists 0 ≺ 𝑟 ∈ C such that 𝐵(𝑥, 𝑟) :=
{𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≺ 𝑟} ⊆ 𝐴.

(ii) A point 𝑥 ∈ 𝑋 is called a limit point of a set 𝐴
whenever, for every 0 ≺ 𝑟 ∈ C, 𝐵(𝑥, 𝑟) ∩ (𝐴 − 𝑋) ̸= 0.

(iii) A subset𝐴 ⊆ 𝑋 is called open whenever each element
of 𝐴 is an interior point of 𝐴.

(iv) A subset 𝐴 ⊆ 𝑋 is called closed whenever each
element of 𝐴 belongs to 𝐴.

(v) A subbasis for a Hausdorff topology 𝜏 on𝑋 is a family
𝐹 = {𝐵(𝑥, 𝑟) : 𝑥 ∈ 𝑋 and 0 ≺ 𝑟}.

Definition 10 (see [3]). Let (𝑋, 𝑑) be a complex valued 𝑏-
metric space and {𝑥𝑛} a sequence in 𝑋 and 𝑥 ∈ 𝑋. Consider
the following.

(i) If for every 𝑐 ∈ C, with 0 ≺ 𝑟, there is 𝑁 ∈ N such
that, for all 𝑛 > N, 𝑑(𝑥𝑛, 𝑥) ≺ 𝑐, then {𝑥𝑛} is said to
be convergent, {𝑥𝑛} converges to 𝑥, and 𝑥 is the limit
point of {𝑥𝑛}. We denote this by lim𝑛→∞𝑥𝑛 = 𝑥 or
{𝑥𝑛} → 𝑥 as 𝑛 → ∞.

(ii) If for every 𝑐 ∈ C, with 0 ≺ 𝑟, there is 𝑁 ∈ N such
that, for all 𝑛 > N, 𝑑(𝑥𝑛, 𝑥𝑛+𝑚) ≺ 𝑐, where 𝑚 ∈ N,
then {𝑥𝑛} is said to be Cauchy sequence.

(iii) If every Cauchy sequence in 𝑋 is convergent, then
(𝑋, 𝑑) is said to be a complete complex valued 𝑏-
metric space.

Lemma 11 (see [3]). Let (𝑋, 𝑑) be a complex valued 𝑏-metric
space and let {𝑥𝑛} be a sequence in𝑋. Then {𝑥𝑛} converges to 𝑥
if and only if |𝑑(𝑥𝑛, 𝑥)| → 0 as 𝑛 → ∞.

Lemma 12 (see [3]). Let (𝑋, 𝑑) be a complex valued 𝑏-metric
space and let {𝑥𝑛} be a sequence in 𝑋. Then {𝑥𝑛} is a Cauchy
sequence if and only if |𝑑(𝑥𝑛, 𝑥𝑛+𝑚)| → 0 as 𝑛 → ∞, where
𝑚 ∈ N.

Theorem 13 (see [4]). Let (𝑋, 𝑑) be a complete complex valued
metric space and let 𝜆, 𝜇 be nonnegative real numbers such that
𝜆+𝜇 < 1. Suppose that 𝑆, 𝑇 : 𝑋 → 𝑋 are mappings satisfying

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ 𝜆𝑑 (𝑥, 𝑦) +
𝜇𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
, (5)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑆, 𝑇 have a unique common fixed point
in 𝑋.

Theorem 14 (see [5]). Let (𝑋, 𝑑) be a complete complex valued
metric space and let 𝑆, 𝑇 : 𝑋 → 𝑋 be mappings satisfying

𝑑 (𝑆𝑥, 𝑇𝑦) ≾
𝑎 [𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑦) 𝑑 (𝑦, 𝑆𝑥)]

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑆𝑥)
,

(6)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎 ∈ [0, 1). Then 𝑆, 𝑇 have a unique
common fixed point in 𝑋.

2. Main Result

Our next theorem is a generalization of Theorem 13 in
complex valued 𝑏-metric spaces.

Theorem 15. Let (𝑋, 𝑑) be a complete complex valued 𝑏-metric
space with the coefficient 𝑠 ≥ 1 and let 𝑆, 𝑇 : 𝑋 → 𝑋 be
mappings satisfying

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ 𝜆𝑑 (𝑥, 𝑦) +
𝜇𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
, (7)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜆, 𝜇 are nonnegative reals with 𝑠𝜆 + 𝜇 <
1. Then 𝑆, 𝑇 have a unique common fixed point in 𝑋.
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Proof. For any arbitrary point, 𝑥0 ∈ 𝑋. Define sequence {𝑥𝑛}
in𝑋 such that

𝑥2𝑛+1 = 𝑆𝑥2𝑛, 𝑥2𝑛+2 = 𝑇𝑥2𝑛+1, for 𝑛 = 0, 1, 2, 3, . . . . (8)

Now, we show that the sequence {𝑥𝑛} is Cauchy. Let 𝑥 = 𝑥2𝑛
and 𝑦 = 𝑥2𝑛+1 in (7); we have

𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)

= 𝑑 (𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1)

≾ 𝜆𝑑 (𝑥2𝑛, 𝑥2𝑛+1) +
𝜇𝑑 (𝑥2𝑛, 𝑆𝑥2𝑛) 𝑑 (𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

1 + 𝑑 (𝑥2𝑛, 𝑥2𝑛+1)

= 𝜆𝑑 (𝑥2𝑛, 𝑥2𝑛+1) +
𝜇𝑑 (𝑥2𝑛, 𝑥2𝑛+1) 𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)

1 + 𝑑 (𝑥2𝑛, 𝑥2𝑛+1)
,

(9)

which implies that
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)



≤ 𝜆
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)

 +
𝜇
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)


𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)


1 + 𝑑 (𝑥2𝑛, 𝑥2𝑛+1)



.

(10)

Since |1 + 𝑑(𝑥2𝑛, 𝑥2𝑛+1)| > |𝑑(𝑥2𝑛, 𝑥2𝑛+1)|, we get
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)



≤ 𝜆
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)

 + 𝜇
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)

 ,

(11)

and hence

𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)
 ≤

𝜆

1 − 𝜇

𝑑 (𝑥2𝑛, 𝑥2𝑛+1)
 . (12)

Similarly, we obtain

𝑑 (𝑥2𝑛+2, 𝑥2𝑛+3)
 ≤

𝜆

1 − 𝜇

𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)
 . (13)

Since 𝑠𝜆 + 𝜇 < 1 and 𝑠 ≥ 1, we get 𝜆 + 𝜇 < 1.
Therefore, with 𝛿 = 𝜆/(1 − 𝜇) < 1, and for all 𝑛 ≥ 0,

consequently, we have
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)



≤ 𝛿
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)

 ≤ 𝛿
2 𝑑 (𝑥2𝑛−1, 𝑥2𝑛)



≤ ⋅ ⋅ ⋅ ≤ 𝛿
2𝑛+1 𝑑 (𝑥0, 𝑥1)

 .

(14)

Thus for any𝑚 > 𝑛, 𝑚, 𝑛 ∈ N, and since 𝑠𝛿 = 𝑠𝜆/(1 − 𝜇) < 1,
we get
𝑑 (𝑥𝑛, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
𝑑 (𝑥𝑛+1, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + 𝑠
2 𝑑 (𝑥𝑛+2, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)



+ 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)



+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛−2 𝑑 (𝑥𝑚−3, 𝑥𝑚−2)



+ 𝑠
𝑚−𝑛−1 𝑑 (𝑥𝑚−2, 𝑥𝑚−1)

 + 𝑠
𝑚−𝑛−1 𝑑 (𝑥𝑚−1, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)



+ 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)



+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛−2 𝑑 (𝑥𝑚−3, 𝑥𝑚−2)



+ 𝑠
𝑚−𝑛−1 𝑑 (𝑥𝑚−2, 𝑥𝑚−1)

 + 𝑠
𝑚−𝑛 𝑑 (𝑥𝑚−1, 𝑥𝑚)

 .

(15)

By using (14) we get
𝑑 (𝑥𝑛, 𝑥𝑚)



≤ 𝑠𝛿
𝑛 𝑑 (𝑥0, 𝑥1)

 + 𝑠
2
𝛿
𝑛+1 𝑑 (𝑥0, 𝑥1)



+ 𝑠
3
𝛿
𝑛+2 𝑑 (𝑥0, 𝑥1)



+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛−2

𝛿
𝑚−3 𝑑 (𝑥0, 𝑥1)



+ 𝑠
𝑚−𝑛−1

𝛿
𝑚−2 𝑑 (𝑥0, 𝑥1)

 + 𝑠
𝑚−𝑛

𝛿
𝑚−1 𝑑 (𝑥0, 𝑥1)



=

𝑚−𝑛

∑

𝑖=1

𝑠
𝑖
𝛿
𝑖+𝑛−1 𝑑 (𝑥0, 𝑥1)

 .

(16)

Therefore,
𝑑 (𝑥𝑛, 𝑥𝑚)



≤

𝑚−𝑛

∑

𝑖=1

𝑠
𝑖+𝑛−1

𝛿
𝑖+𝑛−1 𝑑 (𝑥0, 𝑥1)



=

𝑚−1

∑

𝑡=𝑛

𝑠
𝑡
𝛿
𝑡 𝑑 (𝑥0, 𝑥1)



≤

∞

∑

𝑡=𝑛

(𝑠𝛿)
𝑡 𝑑 (𝑥0, 𝑥1)



=
(𝑠𝛿)
𝑛

1 − 𝑠𝛿

𝑑 (𝑥0, 𝑥1)
 ,

(17)

and hence

𝑑 (𝑥𝑛, 𝑥𝑚)
 ≤

(𝑠𝛿)
𝑛

1 − 𝑠𝛿

𝑑 (𝑥0, 𝑥1)
 → 0 as 𝑚, 𝑛 → ∞.

(18)

Thus, {𝑥𝑛} is a Cauchy sequence in 𝑋.
Since 𝑋 is complete, there exists some 𝑢 ∈ 𝑋 such that

𝑥𝑛 → 𝑢 as 𝑛 → ∞. Assuming not, then there exist 𝑧 ∈ 𝑋

such that

|𝑑 (𝑢, 𝑆𝑢)| = |𝑧| > 0. (19)

So by using the triangular inequality and (7), we get

𝑧 = 𝑑 (𝑢, 𝑆𝑢)

≾ 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + 𝑠𝑑 (𝑥2𝑛+2, 𝑆𝑢)

= 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + 𝑠𝑑 (𝑇𝑥2𝑛+1, 𝑆𝑢)

≾ 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + 𝑠𝜆𝑑 (𝑢, 𝑥2𝑛+2)

+
𝑠𝜇𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

1 + 𝑑 (𝑢, 𝑥2𝑛+2)
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= 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + 𝑠𝜆𝑑 (𝑢, 𝑥2𝑛+2)

+
𝑠𝜇𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)

1 + 𝑑 (𝑢, 𝑥2𝑛+2)
,

(20)

which implies that

|𝑧| = |𝑑 (𝑢, 𝑆𝑢)|

≤ 𝑠
𝑑 (𝑢, 𝑥2𝑛+2)

 +
𝑠𝜇 |𝑑 (𝑢, 𝑆𝑢)|

𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)


1 + 𝑑 (𝑢, 𝑥2𝑛+2)


.

(21)

Taking the limit of (21) as 𝑛 → ∞, we obtain that |𝑧| =
|𝑑(𝑢, 𝑆𝑢)| ≤ 0, a contradiction with (19). So |𝑧| = 0. Hence
𝑆𝑢 = 𝑢. Similarly, we obtain 𝑇𝑢 = 𝑢.

Now we show that 𝑆 and 𝑇 have unique common fixed
point of 𝑆 and 𝑇. To show this, assume that 𝑢∗ is another
common fixed point of 𝑆 and 𝑇. Then

𝑑 (𝑢, 𝑢
∗
) = 𝑑 (𝑆𝑢, 𝑇𝑢

∗
)

≾ 𝜆𝑑 (𝑢, 𝑢
∗
) +

𝜇𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑢
∗
, 𝑇𝑢
∗
)

1 + 𝑑 (𝑢, 𝑢∗)

≺ 𝑑 (𝑢, 𝑢
∗
) .

(22)

This implies that |𝑑(𝑥, 𝑥∗)| < |𝑑(𝑢, 𝑢
∗
)|, a contradiction. So

𝑢 = 𝑢
∗ which proves the uniqueness of common fixed point

in𝑋. This completes the proof.

Corollary 16. Let (𝑋, 𝑑) be a complete complex valued 𝑏-
metric space with the coefficient 𝑠 ≥ 1 and let 𝑇 : 𝑋 → 𝑋

be a mapping satisfying

𝑑 (𝑇𝑥, 𝑇𝑦) ≾ 𝜆𝑑 (𝑥, 𝑦) +
𝜇𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
, (23)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜆, 𝜇 are nonnegative reals with 𝑠𝜆 + 𝜇 <
1. Then 𝑇 has a unique fixed point in𝑋.

Proof. We can prove this result by applying Theorem 15 with
𝑆 = 𝑇.

Corollary 17. Let (𝑋, 𝑑) be a complete complex valued 𝑏-
metric space with the coefficient 𝑠 ≥ 1 and let 𝑇 : 𝑋 → 𝑋

be a mapping satisfying

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≾ 𝜆𝑑 (𝑥, 𝑦) +

𝜇𝑑 (𝑥, 𝑇
𝑛
𝑥) 𝑑 (𝑦, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)
, (24)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜆, 𝜇 are nonnegative reals with 𝑠𝜆 + 𝜇 <
1. Then 𝑇 has a unique fixed point in𝑋.

Proof. From Corollary 20, we obtain 𝑢 ∈ 𝑋 such that

𝑇
𝑛
𝑢 = 𝑢. (25)

The uniqueness follows from

𝑑 (𝑇𝑢, 𝑢) = 𝑑 (𝑇𝑇
𝑛
𝑢, 𝑇
𝑛
𝑢) = 𝑑 (𝑇

𝑛
𝑇𝑢, 𝑇
𝑛
𝑢)

≾ 𝜆𝑑 (𝑇𝑢, 𝑢) +
𝜇𝑑 (𝑇𝑢, 𝑇

𝑛
𝑇𝑢) 𝑑 (𝑢, 𝑇

𝑛
𝑢)

1 + 𝑑 (𝑇𝑢, 𝑢)

≾ 𝜆𝑑 (𝑇𝑢, 𝑢) +
𝜇𝑑 (𝑇𝑢, 𝑇

𝑛
𝑇𝑢) 𝑑 (𝑢, 𝑢)

1 + 𝑑 (𝑇𝑢, 𝑢)

= 𝜆𝑑 (𝑇𝑢, 𝑢) .

(26)

By taking modulus of (26) and since 𝜆 < 1, we obtain
|𝑑(𝑇𝑢, 𝑢)| ≤ 𝜆|𝑑(𝑇𝑢, 𝑢)| < |𝑑(𝑇𝑢, 𝑢)|, a contradiction. So,
𝑇𝑢 = 𝑢. Hence

𝑇𝑢 = 𝑇
𝑛
𝑢 = 𝑢. (27)

Therefore, the fixed point of 𝑇 is unique. This completes the
proof.

Example 18. Let 𝑋 = C. Define a function 𝑑 : 𝑋 × 𝑋 → C

such that

𝑑 (𝑧1, 𝑧2) =
𝑥1 − 𝑥2


2
+ 𝑖
𝑦1 − 𝑦2


2
, (28)

where 𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2.
To verify that (𝑋, 𝑑) is a complete complex valued 𝑏-

metric space with 𝑠 = 2, it is enough to verify the triangular
inequality condition.

Let 𝑧1, 𝑧2, and 𝑧3 ∈ 𝑋; then,

𝑑 (𝑧1, 𝑧2)

=
𝑥1 − 𝑥2


2
+ 𝑖
𝑦1 − 𝑦2


2

=
𝑥1 − 𝑥3 + 𝑥3 − 𝑥2


2
+ 𝑖
𝑦1 − 𝑦3 + 𝑦3 − 𝑦2


2

≾
𝑥1 − 𝑥3


2
+
𝑥3 − 𝑥2


2
+ 2

𝑥1 − 𝑥3

𝑥3 − 𝑥2



+ 𝑖 [
𝑦1 − 𝑦3


2
+
𝑦3 − 𝑦2


2
+ 2

𝑦1 − 𝑦3

𝑦3 − 𝑦2

]

≾
𝑥1 − 𝑥3


2
+
𝑥3 − 𝑥2


2
+
𝑥1 − 𝑥3


2
+
𝑥3 − 𝑥2


2

+ 𝑖 [
𝑦1 − 𝑦3


2
+
𝑦3 − 𝑦2


2
+
𝑦1 − 𝑦3


2
+
𝑦3 − 𝑦2


2
]

= 2 {
𝑥1 − 𝑥3


2
+
𝑥3 − 𝑥2


2
+ 𝑖 [

𝑦1 − 𝑦3

2
+
𝑦3 − 𝑦2


2
]}

= 2 [𝑑 (𝑧1, 𝑧3) + 𝑑 (𝑧3, 𝑧2)] .

(29)

Therefore, 𝑠 = 2.
Now, define two self-mappings 𝑆, 𝑇 : 𝑋 → 𝑋 as follows:

𝑇𝑧 = 𝑇 (𝑥 + 𝑖𝑦) =

{{{{

{{{{

{

0 if 𝑥, 𝑦 ∈ Q

2 if 𝑥 ∈ Q𝑐, 𝑦 ∈ Q

2𝑖 if 𝑥 ∈ Q𝑐, 𝑦 ∈ Q𝑐

2 + 2𝑖 if 𝑥 ∈ Q, 𝑦 ∈ Q𝑐

(30)

such that 𝑆 = 𝑇 and 𝑧 = 𝑥 + 𝑖𝑦. Let 𝑥 = 1/𝜋 and 𝑦 = 0, and
since 𝜆 ∈ [0, 1), we have

𝑑 (𝑇𝑥, 𝑇𝑦) = 𝑑 (𝑇
1

𝜋
, 𝑇0)

= 𝑑 (2, 0) = 4 ≻ 𝜆
1

𝜋2

= 𝜆𝑑(
1

𝜋
, 0) +

𝜇𝑑 (1/𝜋, 𝑇 (1/𝜋)) 𝑑 (0, 𝑇0)

1 + 𝑑 (1/𝜋, 0)
.

(31)
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Note that 𝑇𝑛𝑧 = 0 for 𝑛 > 1, so

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) = 0 ≾ 𝜆𝑑 (𝑥, 𝑦) +

𝜇𝑑 (𝑥, 𝑇
𝑛
𝑥) 𝑑 (𝑦, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)
,

(32)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆, 𝜇 ≥ 0with 2𝜆+𝜇 < 1. So all conditions
of Corollary 21 are satisfied to get a unique fixed point 0 of 𝑇.

Our next theorem is a generalization of Theorem 14 in
complex valued 𝑏-metric spaces.

Theorem19. Let (𝑋, 𝑑) be a complete complex valued 𝑏-metric
space with the coefficient 𝑠 ≥ 1 and let 𝑆, 𝑇 : 𝑋 → 𝑋 be
mappings satisfying

𝑑 (𝑆𝑥, 𝑇𝑦) ≾
𝑎 [𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑦) 𝑑 (𝑦, 𝑆𝑥)]

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑆𝑥)
,

(33)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑠𝑎 ∈ [0, 1). Then 𝑆, 𝑇 have a unique
common fixed point in𝑋.

Proof. For any arbitrary point, 𝑥0 ∈ 𝑋. Define sequence {𝑥𝑛}
in𝑋 such that

𝑥2𝑛+1 = 𝑆𝑥2𝑛, 𝑥2𝑛+2 = 𝑇𝑥2𝑛+1, for 𝑘 = 0, 1, 2, 3, . . . . (34)

Now, we show that the sequence {𝑥𝑛} is Cauchy. Let 𝑥 = 𝑥2𝑛
and 𝑦 = 𝑥2𝑛+1 in (33); we have

𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2) = 𝑑 (𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1)

≾ 𝑎 [𝑑 (𝑥2𝑛, 𝑆𝑥2𝑛) 𝑑 (𝑥2𝑛, 𝑇𝑥2𝑛+1)

+ 𝑑 (𝑥2𝑛+1, 𝑇𝑥2𝑛+1) 𝑑 (𝑥2𝑛+1, 𝑆𝑥2𝑛]

× (𝑑 (𝑥2𝑛, 𝑇𝑥2𝑛+1) + 𝑑 (𝑥2𝑛+1, 𝑆𝑥2𝑛))
−1

= 𝑎 [𝑑 (𝑥2𝑛, 𝑥2𝑛+1) 𝑑 (𝑥2𝑛, 𝑥2𝑛+2)

+ 𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2) 𝑑 (𝑥2𝑛+1, 𝑥2𝑛+1]

× (𝑑 (𝑥2𝑛, 𝑥2𝑛+2) + 𝑑 (𝑥2𝑛+1, 𝑥2𝑛+1))
−1
,

(35)

which implies that
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)



≤ 𝑎 [
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)


𝑑 (𝑥2𝑛, 𝑥2𝑛+2)



+
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)


𝑑 (𝑥2𝑛+1, 𝑥2𝑛+1)

]

× (
𝑑 (𝑥2𝑛, 𝑥2𝑛+2) + 𝑑 (𝑥2𝑛+1, 𝑥2𝑛+1)

)
−1

=
𝑎
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)


𝑑 (𝑥2𝑛, 𝑥2𝑛+2)


𝑑 (𝑥2𝑛, 𝑥2𝑛+2)



= 𝑎
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)

 ,

(36)

and hence
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)

 ≤ 𝑎
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)

 . (37)

Similarly, we can see that
𝑑 (𝑥2𝑛+2, 𝑥2𝑛+3)

 ≤ 𝑎
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)

 . (38)

Since 𝑠𝑎 < 1 and 𝑠 ≥ 1, we get 𝑎 < 1.

Therefore, for all 𝑛 ≥ 0, consequently, we have
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)

 ≤ 𝑎
𝑑 (𝑥2𝑛, 𝑥2𝑛+1)



≤ 𝑎
2 𝑑 (𝑥2𝑛−1, 𝑥2𝑛)



≤ ⋅ ⋅ ⋅ ≤ 𝑎
2𝑛+1 𝑑 (𝑥0, 𝑥1)

 .

(39)

Thus for any𝑚 > 𝑛, 𝑚, 𝑛 ∈ N, we have
𝑑 (𝑥𝑛, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
𝑑 (𝑥𝑛+1, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + 𝑠
2 𝑑 (𝑥𝑛+2, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)



+ 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)

 + 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)



+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛−2 𝑑 (𝑥𝑚−3, 𝑥𝑚−2)



+ 𝑠
𝑚−𝑛−1 𝑑 (𝑥𝑚−2, 𝑥𝑚−1)

 + 𝑠
𝑚−𝑛−1 𝑑 (𝑥𝑚−1, 𝑥𝑚)



≤ 𝑠
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 + 𝑠
2 𝑑 (𝑥𝑛+1, 𝑥𝑛+2)

 + 𝑠
3 𝑑 (𝑥𝑛+2, 𝑥𝑚)



+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛−2 𝑑 (𝑥𝑚−3, 𝑥𝑚−2)



+ 𝑠
𝑚−𝑛−1 𝑑 (𝑥𝑚−2, 𝑥𝑚−1)

 + 𝑠
𝑚−𝑛 𝑑 (𝑥𝑚−1, 𝑥𝑚)

 .

(40)

By using (39), we get
𝑑 (𝑥𝑛, 𝑥𝑚)



≤ 𝑠𝑎
𝑛 𝑑 (𝑥0, 𝑥1)

 + 𝑠
2
𝑎
𝑛+1 𝑑 (𝑥0, 𝑥1)

 + 𝑠
3
𝑎
𝑛+2 𝑑 (𝑥0, 𝑥1)



+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛−2

𝑎
𝑚−3 𝑑 (𝑥0, 𝑥1)



+ 𝑠
𝑚−𝑛−1

𝑎
𝑚−2 𝑑 (𝑥0, 𝑥1)

 + 𝑠
𝑚−𝑛

𝑎
𝑚−1 𝑑 (𝑥0, 𝑥1)



=

𝑚−𝑛

∑

𝑖=1

𝑠
𝑖
𝑎
𝑖+𝑛−1 𝑑 (𝑥0, 𝑥1)

 .

(41)

Therefore,

𝑑 (𝑥𝑛, 𝑥𝑚)
 ≤

𝑚−𝑛

∑

𝑖=1

𝑠
𝑖+𝑛−1

𝑎
𝑖+𝑛−1 𝑑 (𝑥0, 𝑥1)



=

𝑚−1

∑

𝑡=𝑛

𝑠
𝑡
𝑎
𝑡 𝑑 (𝑥0, 𝑥1)



≤

∞

∑

𝑡=𝑛

(𝑠𝑎)
𝑡 𝑑 (𝑥0, 𝑥1)



=
(𝑠𝑎)
𝑛

1 − 𝑠𝑎

𝑑 (𝑥0, 𝑥1)
 .

(42)

Now, since 𝑠𝑎 < 1, we deduce

𝑑 (𝑥𝑛, 𝑥𝑚)
 ≤

(𝑠𝑎)
𝑛

1 − 𝑠𝑎

𝑑 (𝑥0, 𝑥1)
 → 0 as 𝑚, 𝑛 → ∞.

(43)

Thus, {𝑥𝑛} is a Cauchy sequence in 𝑋.
Since 𝑋 is complete, there exists some 𝑢 ∈ 𝑋 such that

𝑥𝑛 → 𝑢 as 𝑛 → ∞. Assuming not, then there exist 𝑧 ∈ 𝑋

such that

|𝑑 (𝑢, 𝑆𝑢)| = |𝑧| > 0. (44)
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So by using the triangular inequality and (33), we get

𝑧 = 𝑑 (𝑢, 𝑆𝑢)

≾ 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + 𝑠𝑑 (𝑥2𝑛+2, 𝑆𝑢)

= 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + 𝑠𝑑 (𝑇𝑥2𝑛+1, 𝑆𝑢)

≾ 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + (𝑠𝑎𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑢, 𝑇𝑥2𝑛+1)

+𝑠𝑎𝑑 (𝑥2𝑛+1, 𝑇𝑥2𝑛+1) 𝑑 (𝑥2𝑛+1, 𝑆𝑢))

× (𝑑 (𝑢, 𝑇𝑥2𝑛+1) + 𝑑 (𝑥2𝑛+1, 𝑆𝑢))
−1

= 𝑠𝑑 (𝑢, 𝑥2𝑛+2) + (𝑠𝑎𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑢, 𝑥2𝑛+2)

+𝑠𝑎𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2) 𝑑 (𝑥2𝑛+1, 𝑆𝑢))

× (𝑑 (𝑢, 𝑥2𝑛+2) + 𝑑 (𝑥2𝑛+1, 𝑆𝑢))
−1
,

(45)

which implies that

|𝑧| = |𝑑 (𝑢, 𝑆𝑢)| ≤ 𝑠
𝑑 (𝑢, 𝑥2𝑛+2)



+ (𝑠𝑎 |𝑑 (𝑢, 𝑆𝑢)|
𝑑 (𝑢, 𝑥2𝑛+2)



+𝑠𝑎
𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)


𝑑 (𝑥2𝑛+1, 𝑆𝑢)

)

× (
𝑑 (𝑢, 𝑥2𝑛+2) + 𝑑 (𝑥2𝑛+1, 𝑆𝑢)

)
−1
.

(46)

Taking the limit of (48) as 𝑛 → ∞, we obtain that |𝑧| =
|𝑑(𝑢, 𝑆𝑢)| ≤ 0, a contradiction with (44). So |𝑧| = 0. Hence
𝑆𝑢 = 𝑢. Similarly, we obtain 𝑇𝑢 = 𝑢.

Now we show that 𝑆 and 𝑇 have unique common fixed
point of 𝑆 and 𝑇. To show this, assume that 𝑢∗ is another
common fixed point of 𝑆 and 𝑇. Then

𝑑 (𝑢, 𝑢
∗
) = 𝑑 (𝑆𝑢, 𝑇𝑢

∗
)

≾
𝑎 [𝑑 (𝑢, 𝑆𝑢) 𝑑 (𝑢, 𝑇𝑢

∗
) + 𝑑 (𝑢

∗
, 𝑇𝑢
∗
) 𝑑 (𝑢
∗
, 𝑆𝑢)]

𝑑 (𝑢, 𝑇𝑢∗) + 𝑑 (𝑢∗, 𝑆𝑢)

≺ 𝑑 (𝑢, 𝑢
∗
) .

(47)

This implies that |𝑑(𝑥, 𝑥∗)| ≤ 0, and then𝑢 = 𝑢∗ which proves
the uniqueness of common fixed point in 𝑋. This completes
the proof.

Corollary 20. Let (𝑋, 𝑑) be a complete complex valued 𝑏-
metric space with the coefficient 𝑠 ≥ 1 and let 𝑇 : 𝑋 → 𝑋

be a mapping satisfying

𝑑 (𝑇𝑥, 𝑇𝑦) ≾
𝑎 [𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑦) 𝑑 (𝑦, 𝑇𝑥)]

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)
,

(48)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑠𝑎 ∈ [0, 1). Then 𝑇 has a unique fixed
point in 𝑋.

Corollary 21. Let (𝑋, 𝑑) be a complete complex valued 𝑏-
metric space with the coefficient 𝑠 ≥ 1 and let 𝑇 : 𝑋 → 𝑋

be a mapping satisfying

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦)

≾
𝑎 [𝑑 (𝑥, 𝑇

𝑛
𝑥) 𝑑 (𝑥, 𝑇

𝑛
𝑦) + 𝑑 (𝑦, 𝑇

𝑛
𝑦) 𝑑 (𝑦, 𝑇

𝑛
𝑥)]

𝑑 (𝑥, 𝑇𝑛𝑦) + 𝑑 (𝑦, 𝑇𝑛𝑥)
,

(49)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑠𝑎 ∈ [0, 1) and 𝑛 ∈ N. Then 𝑇 has a
unique fixed point in𝑋.
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