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We consider the action of the operatorL𝑔(𝑧) = (1 − 𝑧)−1 ∫1
𝑧

𝑓(𝜁)𝑑𝜁 on a class of “mixed norm” spaces of analytic functions on the
unit disk, 𝑋 = 𝐻𝑝,𝑞

𝛼,] , defined by the requirement 𝑔 ∈ 𝑋 ⇔ 𝑟 → (1 − 𝑟)𝛼𝑀
𝑝

(𝑟, 𝑔
(])
) ∈ 𝐿

𝑞

([0, 1], 𝑑𝑟/(1 − 𝑟)), where 1 ≤ 𝑝 ≤ ∞,
0 < 𝑞 ≤ ∞, 𝛼 > 0, and ] is a nonnegative integer.This class contains Besov spaces, weighted Bergman spaces, Dirichlet type spaces,
Hardy-Sobolev spaces, and so forth. The expression L𝑔 need not be defined for 𝑔 analytic in the unit disk, even for 𝑔 ∈ 𝑋. A
sufficient, but not necessary, condition is that ∑∞

𝑛=0

|𝑔(𝑛)|/(𝑛 + 1) < ∞. We identify the indices 𝑝, 𝑞, 𝛼, and ] for which 1∘L is well
defined on𝑋, 2∘L acts from𝑋 to𝑋, 3∘ the implication 𝑔 ∈ 𝑋 ⇒ ∑∞

𝑛=0

|𝑔(𝑛)|/(𝑛 + 1) < ∞ holds. Assertion 2∘ extends some known
results, due to Siskakis and others, and contains some new ones. As an application of 3∘ we have a generalization of Bernstein’s
theorem on absolute convergence of power series that belong to a Hölder class.

1. Introduction and Definitions

Let𝐻(D) denote the class of all functions holomorphic in the
unit diskD of the complex plane. In [1], Libera introduced the
operator

𝑔 (𝑧) →
2

𝑧
∫

𝑧

0

𝑔 (𝜁) 𝑑𝜁 (1)

and showed its importance in the theory of univalent func-
tions. In particular, it was shown in [1] that this operator
transforms the class of star-like functions into itself. Since
thenmany paperswere published devoted to this aspect of the
Libera operator. The “generalized” Libera operator

Λ
𝑎

𝑔 (𝑧) =
1

𝑎 − 𝑧
∫

𝑎

𝑧

𝑔 (𝜁) 𝑑𝜁, where |𝑎| ≤ 1, (2)

was introduced and studied from the functional analytic
point of view by Siskakis in [2, 3], then in [4–6], and other
papers (see [7] for further references). If |𝑎| < 1, then Λ

𝑎

is defined on 𝐻(D), and, on classical spaces such as Hardy,
Bergman, and Besov, has almost the same linear topological

properties as the integration operator 𝑔(𝑧) → ∫𝑧
0

𝑔(𝜁)𝑑𝜁, and
therefore is not so interesting from the functional analytic
point of view (cf. [8]). So we can assume that |𝑎| = 1. In fact
we can and will assume that 𝑎 = 1, so

Λ
1

𝑔 (𝑧) =
1

1 − 𝑧
∫

1

𝑧

𝑔 (𝜁) 𝑑𝜁, (3)

whenever the integral is somehow defined. This definition of
Λ

1

requires further explanation because the integral need not
be defined for 𝑔 ∈ 𝐻(D) (e.g., 𝑔(𝑧) = 1/(1 − 𝑧)).

Endowed with the topology of uniform convergence on
compact subsets of D, the class 𝐻(D) becomes a complete
locally convex space. The dual of 𝐻(D) is equal to 𝐻(D),
where 𝑔 ∈ 𝐻(D) means that 𝑔 is holomorphic in a neigh-
borhood of D (depending on 𝑔). The duality pairing is given
by

⟨𝑓, 𝑔⟩ =

∞

∑

𝑛=0

𝑓 (𝑛) 𝑔 (𝑛) , (4)
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where𝑓(𝑧) = ∑∞

𝑛=0

𝑓(𝑛)𝑧
𝑛

∈ 𝐻(D) and 𝑔(𝑧) = ∑∞

𝑛=0

𝑔(𝑛)𝑧
𝑛

∈

𝐻(D) (see, e.g., [9]). Clearly,Λ
1

is well defined on𝐻(D), and
it is easy to check that it maps𝐻(D) into𝐻(D), and

Λ
1

𝑔 (𝑧) =

∞

∑

𝑛=0

(

∞

∑

𝑘=𝑛

𝑔 (𝑘)

𝑘 + 1
)𝑧

𝑛

= ∫

1

0

𝑔 (𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡.

(5)

The last integral is obtained from (3) by integration over the
straight line joining 𝑧 and 1.

Definition 1. We use the symbol L to denote the operator
Λ

1

: 𝐻(D) → 𝐻(D).

Definition 2. We denote byL the operatorL𝑔(𝑧) = ∫1
0

𝑔(𝑡 +

(1 − 𝑡)𝑧)𝑑𝑡 whenever the integral converges uniformly on
compact subset of D. “Uniform convergence” means that the
limit

lim
𝑥→1

−

∫

𝑥

0

𝑔 (𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡 (6)

is uniform with respect to 𝑧. This hypothesis guarantees that
L𝑔 is an analytic function.

It is easy to verify the validity of the following.

Proposition 3. The dual operator (L)∗ : 𝐻(D) → 𝐻(D)

coincides with the Cesàro operator,C, defined on𝐻(D) by

C𝑓 (𝑧) =
∞

∑

𝑛=0

(
1

𝑛 + 1

𝑛

∑

𝑘=0

𝑓 (𝑘)) 𝑧
𝑛

. (7)

Conversely, the dual ofC : 𝐻(D) → 𝐻(D) coincides withL.

In [6], it was proved thatL is defined on the Bloch space
and maps it into BMOA. This assertion, which improves the
earlier result thatLmaps Bloch space into itself (e.g., [4, 10]),
was deduced from a result of Nowak [11] and Proposition 3.

However, as it can easily be seen, the operator L cannot
be extended to a continuous operator from 𝐻(D) to 𝐻(D).
Moreover, L cannot be extended to a continuous operator
from 𝑋 to 𝐻(D), where 𝑋 is some of common spaces, for
example,

𝑋 = {𝑔 ∈ 𝐻 (D) :

𝑔
𝑋 = ∫

D

𝑔 (𝑧)

2

(1 − |𝑧|)
2

𝑑𝐴 (𝑧) < ∞} ,

(8)

see [6]. (𝑑𝐴 denotes the Lebesgue measure on D). We
will identify a large family of spaces that possess the same
property.

In this paper we consider, in particular, the spaces listed
in the following definition.

Definition 4. Bloch type spaces:

B
𝛼

= {𝑔 ∈ 𝐻 (D) :

𝑔


(𝑧)

= O(1 − |𝑧|)

−𝛼

} , 𝛼 > 0. (9)

Weighted Hardy spaces:

𝐻
𝑝

𝛼

= {𝑔 ∈ 𝐻 (D) : 𝑀
𝑝

(𝑟, 𝑔) = O ((1 − 𝑟)
−𝛼

)} , 𝛼 ≥ 0,

(10)

where

𝑀
𝑝

(𝑟, ℎ) = (
1

2𝜋
∫

2𝜋

0


ℎ (𝑟𝑒

𝑖𝜃

)


𝑝

𝑑𝜃)

1/𝑝

. (11)

Weighted Bergman spaces:

𝐴
𝑝

𝛽

={𝑔 ∈ 𝐻 (D) : ∫
D

𝑔 (𝑧)

𝑝

(1 − |𝑧|
2

)
𝛽

𝑑𝐴 (𝑧) < ∞} ,

𝛽 > −1, 1 ≤ 𝑝 < ∞.

(12)

Dirichlet type spaces:

D
𝑝

𝛽

= {𝑔 ∈ 𝐻 (D) : 𝑓


∈ 𝐴
𝑝

𝛽

} ⋅ (13)

The space D1

0

is closely related to 𝐻1 in that 𝐻1

⊗ 𝐻
1

=

D1

0

, where 𝑋 ⊗ 𝑌 denotes the set of all 𝑔 ∈ 𝐻(D) which can
be represented as 𝑔 = ∑∞

𝑛=0

ℎ
𝑛

∗ 𝑘
𝑛

, ℎ
𝑛

∈ 𝑋, 𝑘
𝑛

∈ 𝑌, with
∑‖ℎ

𝑛

‖
𝑋

‖𝑘
𝑛

‖
𝑌

< ∞ (see [12]).
Concerning these spaces, we mention the following

results.

Theorem A (see [2]). The operator L acts as a bounded
operator from𝐻𝑝 to𝐻𝑝 if and only if 1 < 𝑝 ≤ ∞.

Theorem B (see [4, 10]). L acts as a bounded operator from
B

𝛼

intoB
𝛼

if and only if 0 < 𝛼 < 2.

Theorem C (see [3]).L acts as a bounded operator from𝐴𝑝,𝛽

into 𝐴𝑝,𝛽 if and only if 𝑝 > 𝛽 + 2.

Theorem D (see [13]). If 𝑔(𝑛) ≥ 0 for all 𝑛, and ∑(𝑔(𝑛)/(𝑛 +
1)) < ∞, thenL𝑔 ∈ D1

0

if and only if
∞

∑

𝑛=0

𝑔 (𝑛) log (𝑛 + 2)
𝑛 + 1

< ∞. (14)

Here “acts” means, among other things, that L𝑔 is
defined on the space in the sense of Definition 2; that is,

𝐼
𝑔

(𝑧)

:= ∫

1

0

𝑔 (𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡 converges uniformly in |𝑧| < 𝜌

(15)

for all 𝜌 ∈ (0, 1).
Condition (15) is implied, as is easily seen, by

∞

∑

𝑛=0

𝑔 (𝑛)


𝑛 + 1
< ∞. (16)
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This condition is satisfied, according toHardy’s inequality, for
𝑔 ∈ 𝐻

1 and therefore for 𝑔 ∈ 𝐻𝑝

∪ D1

0

, 𝑝 ≥ 1, because
𝐻

𝑝

⊂ 𝐻
1 and D1

0

⊂ 𝐻
1. However, (15) does not imply (16)

even in the case whenLmaps a space into itself. This can be
seen from the following reformulation of Bernstein’s theorem
andTheorem 5 below.

Theorem E (Zygmund, [14], Ch. VI (3.5)). Let 0 < 𝛼 < 1.
Then the implication 𝑔 ∈ 𝐻∞

𝛼

⇒(16) holds if and only if 0 <
𝛼 < 1/2.

Theorem 5. L acts as a bounded operator from𝐻∞

𝛼

into𝐻∞

𝛼

if and only if 0 < 𝛼 < 1.

(The proof is very easy, although the theorem is a special
case of Theorem 11.)

What we can deduce from condition (15) is that the series

∑
𝑔(𝑛)

𝑛 + 1
is Abel summable. (17)

Namely, taking 𝑧 = 0, we see that the integral

𝐼
𝑔

(0) = ∫

1

0

𝑔 (𝑡) 𝑑𝑡 = lim
𝑥→∞

𝑔 (𝑛) 𝑥
𝑛+1

𝑛 + 1
(18)

exists and is finite. However, it may happen that L maps a
space into itself and that

𝑔 (𝑛)
 ≥ (𝑛 + 1)

𝑠

, (19)

where 𝑠 > 0 is positive constants. For instance, as an applica-
tion of Khinchin’s inequality and a profound result of Kisli-
akov, we have the following.

Theorem6. Let 1/2 ≤ 𝛼 < 1.Then there is a function 𝑔 ∈ 𝐻∞

𝛼

such that |𝑔(𝑛)| ≥ 𝑐(𝑛 + 1)𝛼−1/2 (although L maps 𝐻∞

𝛼

into
𝐻

∞

𝛼

).

Proof. See the proof of Proposition 34, Case (1), 𝑝 = ∞.

On the other hand, if a space𝑋 satisfies (15) for all 𝑔 ∈ 𝑋,
this does not mean that L maps 𝑋 into 𝑋 (although it is
defined on 𝑋). Besides 𝐻1, we have, for instance, the
following.

Theorem F (see [13]). The space D1

0

is contained in 𝐻1and
satisfies (16), but L does not mapD1

0

into𝐻1.

One of the aims of the present paper is to extend
Theorems A, B, C, 5, and 6 to a large scale of “mixed norm”
spaces.

Definition 7. We denote by𝐻𝑝,𝑞

𝛼

(0 < 𝑝, 𝑞 ≤ ∞), where 𝛼 > 0
when 𝑞 < ∞, and 𝛼 ≥ 0 when 𝑞 = ∞, the class of those
𝑔 ∈ 𝐻(D) for which

∫

1

0

𝑀
𝑞

𝑝

(𝑟, 𝑓) (1 − 𝑟)
𝛼𝑞−1

𝑑𝑟 < ∞ (𝑞 < ∞) ,

sup
0<𝑟<1

(1 − 𝑟)
𝛼

𝑀
𝑝

(𝑟, 𝑓) < ∞ (𝑞 = ∞) .

(20)

Then letting ] be a nonnegative integer, we define the space

𝐻
𝑝,𝑞

𝛼,] = {𝑔 ∈ 𝐻 (D) : 𝑔
(])
∈ 𝐻

𝑝,𝑞

𝛼

} . (21)

The (quasi) norm in𝐻𝑝,𝑞

𝛼,] is given by

𝑔
𝑝,𝑞
𝛼,]
=

]−1

∑

𝑗=0


𝑔
(𝑗)(0)



+ (∫

1

0

𝑀
𝑞

𝑝

(𝑟, 𝑔
(])
(1 − 𝑟)

𝑞𝛼−1

𝑑𝑟)

1/𝑞

,

(22)

where ∑−1

𝑗=0

should be interpreted as equal to zero.

It is well known and easy to prove that these spaces are
complete.

The norm (22) is not the most natural one but is
convenient for technical reasons. For instance, in the case
𝑝 = 𝑞, ] = 0, a more (but not most) natural norm is given
by

(∫

1

0

𝑀
𝑝

𝑝

(𝑟, 𝑔) (1 − 𝑟)
𝑝𝛼−1

𝑟 𝑑𝑟)

1/𝑝

= (
1

2𝜋
∫
D

𝑔 (𝑧)

𝑝

(1 − |𝑧|)
𝑝𝛼−1

𝑑𝐴 (𝑧))

1/𝑝

.

(23)

This norm is equivalent to that given by (22) because of the
maximummodulus principle for analytic functions.

The space 𝐻𝑝,∞

𝛼,] =: 𝐻
𝑝

𝛼,] is specific in that the set, P, of
all analytic polynomials is not dense in it.The closure ofP in
𝐻

𝑝

𝛼,] coincides with the “little oh” space

ℎ
𝑝

𝛼,] = {𝑔 ∈ 𝐻 (D) : 𝑀𝑝

(𝑟, 𝑔
(])
) = 𝑜(1 − 𝑟)

−𝛼

(𝑟 ↑ 1)} .

(24)

Fromnow on, unless specified otherwise, we suppose that

1 ≤ 𝑝 ≤ ∞, 0 < 𝑞 ≤ ∞,

𝛼 > 0 for 𝑞 < ∞, 𝛼 ≥ 0 for 𝑞 = ∞.
(25)

It is sometimes more convenient to work with the Besov
type spaces.

Definition 8. Let 𝛽 ∈ R and choose any integer ] ≥ 0 such
that ] − 𝛽 > 0. The spaceB𝑝,𝑞

𝛽

is defined as

B
𝑝,𝑞

𝛽

= 𝐻
𝑝,𝑞

]−𝛽,]. (26)

If 𝑞 = ∞, we can assume that ] = 𝛽. It is well known that this
definition is independent of ]; this follows immediately from
Lemma A below. If 𝛽 > 0, then B

𝑝,𝑞

𝛽

is “true” Besov spaces;
if 𝛽 < 0, then B

𝑝,𝑞

𝛽

= 𝐻
𝑝,𝑞

−𝛽

; if 𝛽 = 0, then it is called Hardy-
Bloch spaces [15]. If 𝑞 = ∞, then we have the space

B
𝑝

𝛽

= {𝑔 ∈ 𝐻 (D) : 𝑀
𝑝

(𝑟, 𝑔
(])
) = O ((1 − 𝑟)

𝛽−]
)}

(0 < 𝛽 < ]) ,
(27)
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and its subspace

b
𝑝

𝛽

= {𝑔 ∈ 𝐻 (D) : 𝑀
𝑝

(𝑟, 𝑔
(])
) = 𝑜 ((1 − 𝑟)

𝛽−]
)

(0 < 𝛽 < ]) } .
(28)

Lipschitz Spaces. It is known that the spaceB𝑝,𝑞

𝛽

(𝛽 > 0) coin-
cides with the (Lipschitz) space Λ𝑝,𝑞

𝛽

consisting of those 𝑔 in
the 𝑝-Hardy space𝐻𝑝 for which

(∫

1

0

(

Δ
]
𝑡

𝑔

𝑝

𝑡𝛽
)

𝑞

𝑑𝑡

𝑡
)

1/𝑞

< ∞. (29)

Here Δ]
𝑡

𝑔 denotes the symmetric ]th difference with step 𝑡,

Δ
]
𝑡

ℎ (𝜃) =

]

∑

𝑘=0

(
]
𝑘
) (−1)

]−𝑘
ℎ (𝜃 + 𝑘𝑡) ,

where ℎ (𝜃) = 𝑔 (𝑒𝑖𝜃) ,

(30)

and ‖ ⋅ ‖
𝑝

denotes the norm in 𝐻𝑝. This result is essentially
due to Hardy and Littlewood and Zygmund (see [16] for a
simple proof of a generalized variant). We also have

B
𝑝

𝛽

= Λ
𝑝

𝛽

:= Λ
𝑝,∞

𝛽

= {𝑔 ∈ 𝐻
𝑝

:
Δ

𝑛

𝑡

𝑔

𝑝

= O (𝑡
𝛽

)}

(0 < 𝛽 < ]) ,

b
𝑝

𝛽

= 𝜆
𝑝

𝛽

= {𝑔 ∈ 𝐻
𝑝

:
Δ

𝑛

𝑡

𝑔

𝑝

= 𝑜 (𝑡
𝛽

) (𝑡 ↓ 0)}

(0 < 𝛽 < ]) .

(31)

In the case 𝑝 = 𝑞 = ∞ and 𝛽 = 1, the space Λ𝑝,𝑞
𝛽

is denoted
by Λ

∗

and is called the Zygmund space. The corresponding
“little” space is denoted by 𝜆

∗

. These spaces were introduced
by Zygmund via symmetric differences. In [17], connections
of 𝜆

∗

and 𝜆
∗

with Besov spaces were established.

Hardy-Sobolev Spaces. Let ] ≥ 1 be an integer. The Hardy-
Sobolev space𝑊𝑝

] consists of those 𝑔 ∈ 𝐻𝑝 such that 𝑔(]) ∈
𝐻

𝑝; that is,𝑊𝑝

] = 𝐻
𝑝,∞

0,] . It is known that

𝑊
𝑝

] = {𝑔 ∈ 𝐻
𝑝

: sup
0<𝑡<1

Δ
]
𝑡

𝑔

𝑝

< ∞} . (32)

See, for example, [16]. In particular,𝑊∞

1

coincides with the
usual Lipschitz space consisting of those 𝑓 from the disk-
algebra for which

𝑓 (𝜁) − 𝑓 (𝜂)
 ≤ 𝐶

𝜁 − 𝜂
 (
𝜁
 =
𝜂
 = 1) . (33)

There are various inclusions between members of the
scale𝐻𝑝,𝑞

𝛼,] . Here we mention the following.

Proposition 9. If 𝛼 > 0, then

(a) 𝐻𝑝,𝑞

𝛼,] ⫋ ℎ
𝑝

𝛼,] ⫋ 𝐻
𝑝

𝛼,], for 𝑞 < ∞,

(b) 𝐻𝑝,𝑞

𝛼,] ⫋ 𝐻
𝑢,𝑞

𝛽,] , where 𝛽 = 1/𝑝 − 1/𝑢 + 𝛼, where 𝑢 > 𝑝,
and 0 < 𝑞 ≤ ∞,

(c) ℎ𝑝
𝛼,] ⫋ ℎ

𝑢

𝛽,], where 𝛽 = 1/𝑢−1/𝑝+𝛼, and where 𝑢 > 𝑝.

Proof. We can assume that ] = 0. Besides, we omit the proof
that the inclusions are strict because we do not need this fact.

(a) If ∫1
0

𝑀
𝑞

𝑝

(𝑟, 𝑔)(1 − 𝑟)
𝑞𝛼−1

𝑑𝑟 < ∞, then𝑀
𝑝

(𝑟, 𝑔)(1 −

𝑟)
𝛼

→ 0 (𝑟 → 1−) because𝑀
𝑝

(𝑟, 𝑔) increases with
𝑟.

(b) It is well known that 𝑀
𝑢

(𝑟, 𝑔) ≤ 𝐶(1 −

𝑟)
1/𝑢−1/𝑝

𝑀
𝑝

(√𝑟, 𝑔) for 𝑢 > 𝑝 (see, e.g., [18, Corollary
5.1.2]).

(c) This follows from (b) (𝑞 = ∞) and the density of P
in ℎ𝑝

𝛼,].

Let

𝜅
𝑝,𝛼,] = ] − 𝛼 + 1 −

1

𝑝
. (34)

We will determine the indices 𝑝, 𝑞, 𝛼, and ] for which:

(1) L acts from𝐻𝑝,𝑞

𝛼,] into𝐻
𝑝,𝑞

𝛼,] [𝜅𝑝,𝛼,] > 0];

(2) L acts from𝐻𝑝,𝑞

𝛼,] to𝐻(D) but not to𝐻𝑝,𝑞

𝛼,] [𝜅
𝑝,𝛼,] = 0

and 1 ≤ 𝑝 ≤ 2 and 𝑞 ≤ 1; see Theorem 16];
(3) L acts from 𝐻𝑝,𝑞

𝛼,] into 𝐻𝑝,𝑞

𝛼,] but the implication 𝑔 ∈
𝐻

𝑝,𝑞

𝛼,] ⇒(16) does not hold (𝑝 > 2 and (either 𝑞 > 1
and ] − 𝛼 ≤ −1/2, or 0 < 𝑞 ≤ 1 and ] − 𝛼 < −1/2); see
Theorem 18);

(4) the operator L cannot be extended to a bounded
operator from 𝐻𝑝,𝑞

𝛼,] to 𝐻(D) (1∘𝜅
𝑝,𝛼,] < 0, 2

∘

𝜅
𝑝,𝛼,] =

0 and (𝑝 > 2 or 𝑞 > 1); see Theorem 16).

Observe that, since ] − 𝛼 > 1/𝑝 − 1 in (3), the inequality
] − 𝛼 < 1/2 is equivalent to

1

𝑝
− 1 < ] − 𝛼 < −

1

2
, (35)

which has sense because 1/𝑝− 1 < −1/2 due to the condition
𝑝 > 2.

In proving (1) we use the inequality

𝑟
1/𝑝

𝑀
𝑝

(𝑟, (L𝑔)
(])
)

≤ 2
1/𝑝

(1 − 𝑟)
−𝛿−1

∫

1

𝑟

𝑀
𝑝

(𝑠, 𝑔
(])
) (1 − 𝑠)

𝛿

𝑑𝑠,

(36)

where 𝛿 = ] − 1/𝑝, which is a relatively simple consequence
of the Littlewood subordination principle. A generalized
version of (36) immediately gives sufficient conditions forL
to map𝑋 = 𝐻𝑝,𝑞

𝛼,] to𝑋. In order to prove that these conditions
are necessary we analyze membership in𝑋 of functions with
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nonnegative, nonincreasing coefficients and apply this to the
Libera transform of functions with positive coefficients.

Let 𝑓 be a function of the form

𝑓 (𝑧) =

∞

∑

𝑛=0

𝑎
𝑛

𝑧
𝑛

, 𝑎
𝑛

≥ 0 ∀𝑛, (37)

and define L𝑓 by Definition 2. This definition is correct if
and only if

∞

∑

𝑘=0

𝑎
𝑘

𝑘 + 1
< ∞, (38)

because a series with positive coefficients is Abel summable
if and only if it is summable in the ordinary sense. If (38) is
satisfied, then the sequence of the Taylor coefficients of L𝑓
is

𝑏
𝑛

=

∞

∑

𝑘=𝑛

𝑎
𝑘

𝑘 + 1
(39)

and is therefore nonincreasing. In this paper we consider only
the functions where 𝑎

𝑛

= (𝑛 + 1)
𝛾

/log𝜀(𝑛 + 2). Discussion of
the general case will appear in a separate paper.

In considering (2) and (4) we use, besides functions with
positive coefficients, a deep theorem of Kolmogorov and
Khinchin, while in the case of (3)we need another deep result,
due to Kisliakov. By use of these theorems we can say much
more about (3). Namely, if the implication 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] does not
hold, then there exists a function 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that |𝑔(𝑛)| ≥
log−1(𝑛 + 2), and in some cases |𝑔(𝑛)| ≥ 1 or even |𝑔(𝑛)| ≥
(𝑛 + 1)

𝜂 for some 𝜂 > 0 (see Theorem 5 andTheorem 41).

2. Results

Before stating our first result we give a sufficient condition
for the validity of (15). This condition is not necessary (see
Theorem 16).

Proposition 10. If 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] , where 0 < 𝑝 ≤ ∞, 0 < 𝑞 ≤ ∞,
and

] − 𝛼 >
1

𝑝
− 1, (40)

then the integrals

𝐽
𝑚

(𝑧) := ∫

1

0

(1 − 𝑡)
𝑚

𝑔
(𝑚)

(𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡,

𝑚 ≥ 0, 𝑧 ∈ D

(41)

converge uniformly on compact subsets of D, and the operator

L𝑔 (𝑧) = ∫
1

0

𝑔 (𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡 (42)

maps 𝐻𝑝,𝑞

𝛼,] to 𝐻(D) and coincides with L on 𝐻(D), and we
have

(L𝑔)
(])
(𝑧) = ∫

1

0

(1 − 𝑡)
]
𝑔
(])
(𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡. (43)

Proof. By the well-known theorem from complex analysis,
it is enough to prove that 𝐽

0

(𝑧) converges uniformly. Since
𝑀

𝑝

(𝑟, 𝑔) increases with 𝑟, the condition 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] implies that

𝑀
𝑝

(𝑟, 𝑔
(])
) ≤ 𝐶(1 − 𝑟)

−𝛼

. (44)

This implies, by the well-known estimate 𝑀
∞

(𝑟, ℎ) ≤

𝐶𝑀
𝑝

(√𝑟, ℎ)(1 − 𝑟)
−1/𝑝, that

𝑀
∞

(𝑟, 𝑔
(])
) ≤ 𝐶(1 − 𝑟)

−𝛼−1/𝑝

. (45)

Hence, by successive integration we get𝑀
∞

(𝑟, 𝑔) ≤ 𝐶𝜓(𝑟),
where

𝜓 (𝑟) = (1 − 𝑟)
−𝛼−1/𝑝+]

, if − 1 < −𝛼 − 1
𝑝
+ ] < 0

= log 4

1 − 𝑟
, if − 𝛼 − 1

𝑝
+ ] = 0

= 1, if − 𝛼 − 1
𝑝
+ ] > 0.

(46)

It turns out that

∫

1

0

𝑔 (𝑡 + (1 − 𝑡) 𝑧)
 𝑑𝑡

≤ 𝐶∫

1

0

𝜓 ((1 − |𝑡 + (1 − 𝑡) 𝑧|)) 𝑑𝑡

≤ 𝐶∫

1

0

𝜓 ((1 − 𝑡 − (1 − 𝑡) |𝑧|)) 𝑑𝑡

= 𝐶∫

1

0

𝜓 ((1 − 𝑡) (1 − |𝑧|)) 𝑑𝑡.

(47)

It is not difficult to check that if |𝑧| < 𝜌 < 1, the 𝜓((1 −
𝑡)(1 − |𝑧|)) ≤ 𝐶Ψ(𝜌, 𝑡), where ∫1

0

Ψ(𝜌, 𝑡)𝑑𝑡 < ∞. This implies,
by Weierstrass’ theorem, that 𝐽

0

(𝑧) converges uniformly on
compact subsets of D. The rest of the proof is easy.

Our first result is as follows.

Theorem 11. Let 𝑋 = 𝐻𝑝,𝑞

𝛼,] or 𝑋 = ℎ𝑝
𝛼,]. Then the following

assertions are equivalent:

(a) the operatorL acts as a bounded operator from𝑋 into
𝑋;

(b) Condition (40) is satisfied.

Observe that condition (40) is independent of 𝑞.

Remark 12. In other words, the theorem says the following
(excluding Hardy and Hardy-Sobolev spaces): let 𝑋 = B

𝑝,𝑞

𝛽

or 𝑋 = b
𝑝

𝛽

, 𝛽 ∈ R. Then L acts from 𝑋 to 𝑋 if and only if
𝛽 > 1/𝑝 − 1, or what is the same, if and only if 𝛽 > −1 and
𝑝 > 1/(𝛽 + 1).

Theorem 11 contains some known and some new results
as special cases.
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Case 1. Theorem 11 covers the case when 𝛼 = 0, 𝑞 = ∞. In
particular,

(a) Lmaps𝐻𝑝 into𝐻𝑝 if and only if 1 < 𝑝 ≤ ∞. This is
Theorem A;

if ] ≥ 1, then

(b) L maps Hardy-Sobolev space 𝑊𝑝

] = 𝐻
𝑝

0,] into 𝑊
𝑝

] ,
for every 𝑝 ∈ [1,∞], and, in particular, L maps the
ordinary Lipschitz space into itself.

This is, maybe, a new result.

Case 2 (Theorem C). In particular, L does not act as a
bounded operator from 𝐴1

𝛽

into 𝐴1
𝛽

, for any 𝛽 > −1.

This is seen from Theorem 11 by taking 𝛽 = 𝛼𝑝 − 1; that
is, 𝛼 = (𝛽 + 1)/𝑝.

Case 3. (a) L maps the Dirichlet space D𝑝

𝛽

into itself if and
only if 𝑝 > 1 + 𝛽/2. In particular, L maps D1

𝛽

if and only if
−1 < 𝛽 < 0.

Another case: (b)LmapsD2

𝛽

into itself if and only if 𝛽 <
2.

These facts are, maybe, new.

Case 4. (a) L maps 𝐻𝑝,𝑞

𝛼

into itself if and only if 𝛼 < 1 and
𝑝 > 1/(1 − 𝛼).

This is seen from Theorem 11 by taking ] = 0. This is
related to a result of [19], which, when reformulated in our
notation, gives the assertion (a) under the additional condi-
tion 𝛼𝑞 − 1 ≥ −(1/𝑝), or equivalently 𝑞𝛼 ≤ 1 and 𝑝 ≤ 1/(1 −
𝑞𝛼). For example, if 𝑞 = 1 and 𝛼 = 1/2, then this assertion
says nothing because of the hypothesis 𝑝 ≤ 2, while we
still have thatLmaps𝐻𝑝,1

1/2

into itself if and only if 𝑝 > 2.
If 𝛼 = 0, and ] = 0, 𝑞 = ∞, then (a) says that L

maps 𝐻𝑝 into 𝐻𝑝 if and only if 𝑝 > 1. (Compare Case 1.) In
particularLmaps𝐻∞

𝛼

into𝐻∞

𝛼

if and only 0 ≤ 𝛼 < 1 (this is
Theorem 5). Also L maps ℎ𝑝

𝛼

:= ℎ
𝑝

𝛼,0

if and only if 0 < 𝛼 <
1 − 1/𝑝.

Case 5. (a)LmapsB𝑝,𝑞

𝛽

= Λ
𝑝,𝑞

𝛽

into itself for every 𝑝(≥ 1), 𝑞,
and 𝛽 > 0. The same holds for the little space b𝑝

𝛽

= 𝜆
𝑝

𝛽

.

This is seen fromTheorem 11 (or Remark 12): the inequal-
ity ] + 1 > ] − 𝛽 + 1/𝑝 holds for any 𝛽 > 0 and 𝑝 ∈ [1,∞].
In the case 𝑞 ≥ 1, a direct proof can be found in [7]. In [6],
assertion (a) (𝑞 ≥ 1) is proved by using the relation C∗

= L

and the fact that C maps 𝐻𝑝



,𝑞



𝛼

(1/𝑠 + 1/𝑠 = 1) into itself.
(The latter was proved in [20]; a quick proof is given in [21].)
What is new here is that (a) holds for 𝑞 < 1.

(b) As a special case of (a) (𝑝 = 𝑞 = ∞) we have that L
maps the Lipschitz (=Hölder) class Λ

𝛽

= Λ
∞

𝛽

into itself.

Case 6. Lmaps 𝑝-Bloch type spacesB𝑝

𝛼

= 𝐻
𝑝

𝛼,1

into itself if
and only if 𝛼 + 1/𝑝 < 2.

The same holds for the little space b𝑝
𝛼

= ℎ
𝑝

𝛼,1

.
In particular, when 𝑝 = ∞, this condition reduces to 0 <

𝛽 < 2; this is Theorem B.

Case 7. (a)Lmaps the Hardy-Bloch spaceB𝑝,𝑞 if and only if
𝑝 > 1.

This is, maybe, new. In the case 2 < 𝑝 = 𝑞 < ∞, there
exists a better result [6]: L maps B𝑝,𝑝 into 𝐻𝑝 (the well-
known result of Littlewood and Paley states that𝐻𝑝

⫋ B𝑝,𝑝).

Case 8. Lmaps the Zygmund space Λ
∗

into itself. The same
holds for 𝜆

∗

.

The implication (a)⇒(b) ofTheorem 11 is valid because of
the following two propositions.

Proposition 13. Let (1) 𝜅
𝑝,𝛼,] ≤ 0, 𝛼 > 0, and𝑋 ∈ {𝐻𝑝

𝛼,], ℎ
𝑝

𝛼,]},
or (2) 𝜅

𝑝,𝛼,] < 0 and𝑋 = 𝐻𝑝,𝑞

𝛼,] (𝑞 < ∞).
Then the operator L cannot be extended to a bounded

operator from𝑋 to𝐻(D).

As mentioned in Introduction (see (4), in page 4, or
Theorem 16 below), the class of such spaces is larger.

Remark 14. In (1), the condition 𝛼 > 0 is necessary since𝐻𝑝

0,]
is either a Hardy space (] = 0) or a Hardy-Sobolev space
𝑊

𝑝

] (] ≥ 1), which is contained in𝐻𝑝.

Proposition 15. If 𝑞 < ∞ and 𝜅
𝑝,𝛼,] = 0, then the function

𝑓 (𝑧) =

∞

∑

𝑛=0

𝑧
𝑛

log𝜀 (𝑛 + 2)
, 𝑤ℎ𝑒𝑟𝑒 max{1

𝑞
, 1} < 𝜀 ≤ 1 +

1

𝑞
,

(48)

belongs to𝐻𝑝,𝑞

𝛼,] ; the functionL𝑓 is well defined butL𝑓 is not
in𝐻𝑝,𝑞

𝛼,] .

However, if 𝜅
𝑝,𝛼,] = 0, it may happen that L is

well defined on 𝐻𝑝,𝑞

𝛼,] (but, by Proposition 15, does not map
the space into itself). The following theorem together with
Proposition 10 characterizes those𝑋 = 𝐻𝑝,𝑞

𝛼,] such thatL can
be extended to a bounded operator from𝑋 to𝐻(D).

Theorem 16. Let 𝑋 = 𝐻𝑝,𝑞

𝛼,] (0 < 𝑞 ≤ ∞) or 𝑋 = ℎ𝑝
𝛼,], and

𝜅
𝑝,𝛼,] ≤ 0. Then the following four conditions are equivalent:

(a) the operatorL can be extended to a bounded operator
from𝑋 to𝐻(D);

(b) L acts as a bounded operator from𝑋 to𝐻(D);

(c) If 𝑔 ∈ 𝑋, then ∑(|𝑔(𝑛)|/(𝑛 + 1)) < ∞;

(d) 1 ≤ 𝑝 ≤ 2, 0 < 𝑞 ≤ 1, and 𝜅
𝑝,𝛼,] = 0.
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A natural question arises from this theorem: under con-
dition (d), find a quasi-Banach 𝑋 such that L(𝐻𝑝,𝑞

𝛼,] ) ⊂ 𝑋. It
turns out that we can take, for instance,

𝑋 = {𝑔 ∈ 𝐻 (D) : ∫
1

0

𝑀
𝑞

𝑝

(𝑟, 𝑔)

×(1 − 𝑟)
𝑞𝛼−1log−𝜀 log 4

1 − 𝑟
𝑑𝑟 < ∞} ,

𝜀 > 1.

(49)
Theorem 17. Let 𝜀 > 1, 1 ≤ 𝑝 ≤ 2, 𝜅

𝑝,𝛼,] = 0 (i.e., 𝛼 =
] + 1 − 1/𝑝), and 𝑞 ≤ 1. ThenL maps𝐻𝑝,𝑞

𝛼,] to 𝑋, where 𝑋 is
defined by (49).

This theorem can easily be deduced from (36); we will
omit the proof.

There are cases when 𝜅
𝑝,𝛼,] > 0 (which implies that L is

well defined on 𝑋) but the assertion (c) of Theorem 16 does
not hold.

Theorem 18. Let 𝑋 = 𝐻𝑝,𝑞

𝛼,] (0 < 𝑞 ≤ ∞, 𝛼 > 0) and 𝜅
𝑝,𝛼,] >

0. Then assertion (c) of Theorem 16 does not hold if and only if
one of the following two conditions is satisfied:

(1) 2 < 𝑝 ≤ ∞, 1 < 𝑞 ≤ ∞, and ] − 𝛼 ≤ −1/2,
(2) 2 < 𝑝 ≤ ∞, 0 < 𝑞 ≤ 1, and ] − 𝛼 < −1/2.

Remark 19. In the case of Besov type spaces, this theorem says
the following: let 𝛽 > 1/𝑝 − 1. The implication 𝑔 ∈ B

𝑝,𝑞

𝛽

⇒

∑
∞

𝑛=0

|𝑔(𝑛)|/(𝑛 + 1) < ∞ does not hold if and only if either (1)
2 < 𝑝 ≤ ∞, 1 < 𝑞 ≤ ∞, and 𝛽 ≤ −1/2 or (2) 2 < 𝑝 ≤ ∞,
0 < 𝑞 ≤ 1, and 𝛽 < −1/2.

Theorem 18 can be used to get a generalization of Bern-
stein’s theorem to the case of the Besov spaces.

Theorem 20. Let 𝛽 > 1/𝑝. The implication

𝑔 ∈ B
𝑝,𝑞

𝛽

⇒

∞

∑

𝑛=1

𝑔 (𝑛)
 < ∞ (50)

does not hold if and only if either (1) 2 < 𝑝 ≤ ∞, 1 < 𝑞 ≤ ∞,
and 𝛽 ≤ 1/2, or (2) 2 < 𝑝 ≤ ∞, 0 < 𝑞 ≤ 1, and 𝛽 < 1/2.

Proof. This follows fromTheorem 18, the definition of Besov
type spaces (Definition 8), and the equivalence 𝑔 ∈ B

𝑝,𝑞

𝛽

⇔

𝑔


∈ 𝐻
𝑝,𝑞

]−𝛽,]−1.

By taking 𝑝 = 𝑞 = ∞ we get Bernstein’s theorem.

3. Proof of Theorem 11

We need a variant of the Littlewood subordination principle.

Theorem G (see [22]). If 𝜑 : D → D is an analytic function
and 𝑔 ∈ 𝐻𝑝, then 𝑓 ∘ 𝜑 ∈ 𝐻𝑝 and

𝑔 ∘ 𝜑
𝑝 ≤ (

1 +
𝜑 (0)



1 −
𝜑 (0)



)

1/𝑝

𝑔
𝑝.

(51)

Here ‖𝑔‖
𝑝

denotes the norm of 𝑔 in𝐻𝑝,

𝑔
𝑝 = sup

0<𝑟<1

(
1

2𝜋
∫

2𝜋

0


𝑔 (𝑟𝑒

𝑖𝜃

)


𝑝

𝑑𝜃)

1/𝑝

. (52)

As an application we have the following lemma.

Lemma 21. If 𝑎 and 𝑏 are positive real numbers such that 𝑎 +
𝑏 ≤ 1 and if 𝑔 ∈ 𝐻𝑝, 0 < 𝑝 ≤ ∞, then

(∫

2𝜋

0


𝑔 (𝑎 + 𝑏𝑒

𝑖𝜃

)


𝑝

𝑑𝜃)

1/𝑝

≤ (
2𝑎 + 𝑏

𝑏
)

1/𝑝

(∫

2𝜋

0


𝑔 ((𝑎 + 𝑏) 𝑒

𝑖𝜃

)


𝑝

𝑑𝜃)

1/𝑝

.

(53)

Proof. The case 𝑝 = ∞ is easy. Let 𝑝 < ∞. Let ℎ(𝑧) = 𝑔((𝑎 +
𝑏)𝑧), 𝑎

1

= 𝑎/(𝑎 + 𝑏), 𝑏
1

= 𝑏/(𝑎 + 𝑏), and 𝜑(𝑧) = 𝑎
1

+ 𝑏
1

𝑧. Then

∫

2𝜋

0


𝑔 (𝑎 + 𝑏𝑒

𝑖𝜃

)


𝑝

𝑑𝜃

= ∫

2𝜋

0


ℎ (𝑎

1

+ 𝑏
1

𝑒
𝑖𝜃

)


𝑝

𝑑𝜃

≤
1 + 𝑎

1

1 − 𝑎
1

∫

2𝜋

0


ℎ (𝑒

𝑖𝜃

)


𝑝

𝑑𝜃

=
2𝑎 + 𝑏

𝑏
∫

2𝜋

0


𝑔 ((𝑎 + 𝑏) 𝑒

𝑖𝜃

)


𝑝

𝑑𝜃,

(54)

which was to be proved.

Lemma 22. IfL𝑔 is well defined (see Definition 2), then

𝑟
1/𝑝

𝑀
𝑝

(𝑟, (L𝑔)
(])
)

≤ 2
1/𝑝

(1 − 𝑟)
−(𝛿+1)

∫

1

𝑟

𝑀
𝑝

(𝑠, 𝑔
(])
) (1 − 𝑟)

𝛿

𝑑𝑟,

(55)

where 𝛿 = ] − 1/𝑝.

Remark 23. The integral in (55) diverges if and only if 𝑝 = 1
and ] = 0.

Proof. Let ℎ =L𝑔. We have

ℎ (𝑧) = ∫

1

0

𝑔 (𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡, 𝑧 ∈ D, (56)

and hence

ℎ
(])
(𝑧) = ∫

1

0

(1 − 𝑡)
]
𝑔
(])
(𝑡 + (1 − 𝑡) 𝑧) 𝑑𝑡. (57)
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Applying the Minkowski inequality and Lemma 21 with 𝑎 =
𝑡, 𝑏 = (1 − 𝑡)𝑟 we obtain

𝑀
𝑝

(𝑟, ℎ
(])
)

≤ ∫

1

0

(1 − 𝑡)
]
𝑀

𝑝

(𝑡 + (1 − 𝑡) 𝑟, 𝑔
(])
) (
2𝑡 + (1 − 𝑡) 𝑟

(1 − 𝑡) 𝑟
)

1/𝑝

𝑑𝑡

≤ 2
1/𝑝

𝑟
−1/𝑝

∫

1

0

(1 − 𝑡)
]−1/𝑝
𝑀

𝑝

(𝑡 + (1 − 𝑡) 𝑟, 𝑔
(])
) 𝑑𝑡,

1 ≤ 𝑞 < ∞.

(58)

Substituting 𝑡 + (1 − 𝑡)𝑟 = 𝑠 and taking ] − 1/𝑝 = 𝛿,

𝑟
1/𝑝

𝑀
𝑝

(𝑟, ℎ
(])
)

≤ 2
1/𝑝

(1 − 𝑟)
−𝛿−1

∫

1

𝑟

(1 − 𝑠)
𝛿

𝑀
𝑝

(𝑠, 𝑔
(])
) 𝑑𝑠,

(59)

which was to be proved.

Remark 24. Before going further note that an immediate con-
sequence of this lemma is the validity of implication (b)⇒(a)
ofTheorem 11 in the case𝑋 = 𝐻𝑝

𝛼,] = 𝐻
𝑝,∞

𝛼,] . Then we use this
fact and the following two ones to show thatLmaps ℎ𝑝

𝛼,] into
ℎ
𝑝

𝛼,]. The setP (all polynomials) is dense in ℎ𝑝
𝛼,] andLmaps

P intoP.

Lemma 25. If 0 < 𝑞 < ∞ andL𝑔 is well defined, then

𝑟
𝑞/𝑝

𝑀
𝑞

𝑝

(𝑟, (L𝑔)
(])
)

≤ 𝐶(1 − 𝑟)
−(𝛿+1−𝜀)𝑞

× ∫

1

𝑟

𝑀
𝑞

𝑝

(𝑠, 𝑔
(])
) (1 − 𝑠)

(𝛿+1−𝜀)𝑞−1

𝑑𝑠,

(60)

where

𝜀 = {
= 0, 𝑞 ≤ 1,

> 0, 𝑞 > 1,
(61)

and 𝐶 is independent of 𝑔 and 𝑟.

In the case 𝑞 ≤ 1, this lemma follows from Lemma 22 and
the following.

Sublemma 25.1. Let 0 < 𝑞 < 1, 𝛽 = 1 + 𝛿 > 0, and let
𝑢 : (0, 1) → [0,∞) be a nondecreasing function. Then

(∫

1

𝑟

𝑢 (𝑠) (1 − 𝑠)
𝛽−1

𝑑𝑠)

𝑞

≤ 𝐶∫

1

𝑟

𝑢(𝑠)
𝑞

(1 − 𝑠)
𝑞𝛽−1

𝑑𝑠, (62)

where 𝐶 is independent of 𝑢.

Proof. Fix 𝑟 ∈ (0, 1), and define the function V on (0, 1) by

V (𝑠) = {
0, 0 < 𝑠 ≤ 𝑟,

𝑢 (𝑠) , 𝑟 < 𝑠 < 1.
(63)

Then the desired inequality can be written as

(∫

1

0

V (𝑠) (1 − 𝑠)𝛽−1𝑑𝑠)
𝑞

≤ 𝐶∫

1

0

V(𝑠)𝑞(1 − 𝑠)𝛽𝑞−1𝑑𝑠. (64)

Let 𝑟
𝑛

= 1 − 2
−𝑛, where 𝑛 is a nonnegative integer. Then

(∫

1

0

V (𝑠) (1 − 𝑠)𝛽−1𝑑𝑠)
𝑞

= (

∞

∑

𝑛=0

∫

𝑟

𝑛+1

𝑟

𝑛

V (𝑠) (1 − 𝑠)𝛽−1𝑑𝑠)
𝑞

≤ 𝐶(

∞

∑

𝑛=0

V (𝑟
𝑛+1

) 2
−𝑛𝛽

)

𝑞

≤ 𝐶

∞

∑

𝑛=0

(V (𝑟
𝑛+1

) 2
−𝑛𝛽

)
𝑞

.

(65)

In a similar way we can prove that

∫

1

0

V(𝑠)𝑞(1 − 𝑠)𝛽𝑞−1𝑑𝑠 ≥ 𝑐
∞

∑

𝑛=0

V(𝑟
𝑛

)
𝑞

2
−𝑛𝛽𝑞

= 𝑐
1

∞

∑

𝑛=−1

V(𝑟
𝑛+1

)
𝑞

2
−𝑛𝛽𝑞

≥ 𝑐
1

∞

∑

𝑛=0

V(𝑟
𝑛+1

)
𝑞

2
−𝑛𝛽𝑞

,

(66)

where 𝑐
1

= const. > 0. Comparing these inequalities we get
the result.

In the case 𝑞 > 1, Lemma 25 is a consequence of the fol-
lowing fact.

Sublemma 25.2. Let 1 < 𝑞 < ∞, 𝜀 > 0, and 𝑢 ≥ 0, a
measurable function defined on (𝑟, 1).Then

(∫

1

𝑟

𝑢 (𝑠) (1 − 𝑠)
𝛿

𝑑𝑠)

𝑞

≤ 𝐶(1 − 𝑟)
𝜀𝑞

∫

1

𝑟

𝑢(𝑠)
𝑞

(1 − 𝑠)
(1+𝛿−𝜀)𝑞−1

𝑑𝑠,

(67)

where 𝐶 is independent of 𝑢.

Proof. Let 𝜅 = 𝛿 + 1 − 𝜀 − 1/𝑞. Then, by Hölder’s inequality
(1/𝑞 + 1/𝑞



= 1),

∫

1

𝑟

𝑢 (𝑠) (1 − 𝑠)
𝛿

𝑑𝑠

= ∫

1

𝑟

𝑢 (𝑠) (1 − 𝑠)
𝛾

(1 − 𝑠)
𝛿−𝛾

𝑑𝑠

≤ (∫

1

𝑟

𝑢(𝑠)
𝑞

(1 − 𝑠)
𝛾𝑞

𝑑𝑠)

1/𝑞

(∫

1

𝑟

(1 − 𝑠)
(𝛿−𝛾)𝑞



𝑑𝑠)

1/𝑞

.

(68)
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Since (𝛿 − 𝛾)𝑞 = (𝜀 − 1 + 1/𝑞)𝑞 > −1 because 𝜀 > 0, we have
that the last integral is less than

𝐶(1 − 𝑟)
𝛿−𝛾+1/𝑞



= 𝐶(1 − 𝑟)
𝜀

. (69)

The result follows.

Proof of Theorem 11, ((b)⇒(a)). By Remark 24, we may
assume that 𝑞 is finite, which implies that 𝛼 > 0. Let 𝑞 > 1. A
standard application of the maximum modulus principle for
analytic functions gives

∫

1

0

𝑀
𝑞

𝑝

(𝑟, (L𝑔)
(])
) (1 − 𝑟)

𝑞𝛼−1

𝑑𝑟

≤ 𝐶∫

1

0

𝑟
𝑞/𝑝

𝑀
𝑞

𝑝

(𝑟, (L𝑔)
(])
) (1 − 𝑟)

𝑞𝛼−1

𝑑𝑟.

(70)

Then, if 𝑞 > 1, we have

∫

1

0

𝑀
𝑞

𝑝

(𝑟, (L𝑔)
(])
) (1 − 𝑟)

𝑞𝛼−1

𝑑𝑟

≤ 𝐶∫

1

0

(1 − 𝑟)
(𝛼−𝛿−1+𝜀)𝑞−1

𝑑𝑟

× ∫

1

𝑟

𝑀
𝑞

𝑝

(𝑠, 𝑔) (1 − 𝑠)
(𝛿+1−𝜀)𝑞−1

𝑑𝑠

= 𝐶∫

1

0

𝑀
𝑞

𝑝

(𝑠, 𝑔) (1 − 𝑠)
(𝛿+1−𝜀)𝑞−1

𝑑𝑠

× ∫

𝑠

0

(1 − 𝑟)
(𝛼−𝛿−1+𝜀)𝑞−1

𝑑𝑟.

(71)

Since 𝛼 − 𝛿 − 1 = 𝛼 + 1/𝑝 − ] − 1 < 0, we can choose 𝜀 > 0 so
that 𝛼 − 𝛿 − 1 + 𝜀 < 0. Then

∫

𝑠

0

(1 − 𝑟)
(𝛼−𝛿−1+𝜀)𝑞−1

𝑑𝑟 ≤ 𝐶(1 − 𝑠)
(𝛼−𝛿−1+𝜀)𝑞

. (72)

Combining this with the preceding inequality we get the
result in the case 𝑞 > 1. In the case 𝑞 ≤ 1 the proof is similar
and simpler and is omitted.

Proof of Theorem 11 ((a)⇒(b)). As noted in Section 2, it is
enough to prove Propositions 13 and 15.

Proof of Proposition 13. We have

Case (1). By Proposition 9 we have ℎ∞
𝛽,] ⊂ ℎ

𝑝

𝛼,], where 𝛽 =
𝛼+1/𝑝. Since 𝜅

∞,𝛽,] = 𝜅𝛼,𝑝,], it is enough to consider the case
of ℎ∞

𝛽,]. Let 𝑓𝜌(𝑧) = 1/(1 − 𝜌𝑧), 0 < 𝜌 < 1. It is clear that
𝑓
𝜌

∈ 𝐻(D). A simple calculation shows that the set {𝑓
𝜌

: 0 <

𝜌 < 1} is bounded in ℎ∞
𝛼,]. Hence, if L has an extension to a

bounded operator from ℎ∞
𝛼,] to 𝐻(D), then the set {L𝑓

𝑟

(0)}

is bounded because the functional 𝑔 → 𝑔(0) is bounded on
𝐻(D). However,

L𝑓
𝑟

(0) =

∞

∑

𝑛=0

𝑟
𝑛

𝑛 + 1
→ ∞, 𝑟 → 1

−

, (73)

which is a contradiction.This proves the desired result in the
case of ℎ𝑝

𝛼,]. Since ℎ
𝑝

𝛼,] ⊂ 𝐻
𝑝

𝛼,], we see that the result holds for
this space as well.

Case (2). Let 𝑘
𝑝,𝛼,] < 0 and choose 𝛽 so that 𝑘

𝑝,𝛽,] = 0. This
implies that 𝛽 < 𝛼. Then it is easy to check that𝐻𝑝,𝑞

𝛼,] ⊂ 𝐻
𝑝

𝛼,],
which together with the Case (1) gives the result.

Proof of Proposition 15. The proof of Proposition 15 is more
delicate. First note that, by Proposition 9,

𝐻
1,𝑞

𝛽,] ⊂ 𝐻
𝑝,𝑞

𝛼,] ⊂ 𝐻
∞,𝑞

𝛾,] , (74)

where

𝛼 = 𝛽 + 1 −
1

𝑝
, 𝛾 = 𝛼 +

1

𝑝
, (75)

and that
𝜅
1,𝛾,] = 𝜅𝑝,𝛼,] = 𝜅∞,𝛽,] = 0, (76)

see (34). Therefore, it is enough to prove that the function 𝑓
defined by (48) belongs to𝐻1,𝑞

𝛽,] whileL𝑓 does not belong to
𝐻

∞,𝑞

𝛾,] .
It is easier to prove that L𝑓 ∉ 𝐻∞,𝑞

𝛾,] . Namely, since the
coefficients 𝑐

𝑛

of (L𝑓)(]) are nonnegative, we see thatL𝑓 is in
𝐻

∞,𝑞

𝛾,] if and only if

∫

1

0

(

∞

∑

𝑛=0

𝑐
𝑛

𝑟
𝑛

)

𝑞

(1 − 𝑟)
𝑞𝛾−1

𝑑𝑟 < ∞, (77)

which, by a theorem of 𝐿𝑝-integrability of power series with
positive coefficients (see [23, Theorem 1]), is equivalent to

∞

∑

𝑛=0

2
−𝑛𝑞𝛾

(∑

𝑘∈𝐼

𝑛

𝑐
𝑘

)

𝑞

< ∞. (78)

Here

𝐼
𝑛

= {𝑘 : 2
𝑛−1

≤ 𝑘 ≤ 2
𝑛+1

− 1} (for 𝑛 ≥ 1) , 𝐼
0

= {0} .

(79)

Since 𝑐
𝑘

≍ (𝑘 + 1)
] (𝑘 → ∞), the latter is equivalent to

∞

∑

𝑛=0

2
𝑛𝑞(]−𝛾)

(∑

𝑘∈𝐼

𝑛

𝑏
𝑘

)

𝑞

, (80)

where 𝑏
𝑛

are coefficients of L𝑓. Since 𝑏
𝑛

↓ 0, we get the
equivalent condition

∞

∑

𝑛=0

2
𝑛𝑞(]−𝛾+1)

𝑏
𝑞

2

𝑛

< ∞. (81)

This condition is not satisfied because 𝛾 = ] + 1 and

𝑏
2

𝑛 = ∑

𝑘=2

𝑛

1

(𝑘 + 1) log𝜀 (𝑘 + 2)
≍ (𝑛 + 1)

𝜀−1

, (82)

and hence
∞

∑

𝑛=0

(𝑛 + 1)
(𝜀−1)𝑞

= ∞ (because (𝜀 − 1) 𝑞 ≤ 1) , (83)

where the functionL𝑓 is well defined because 𝜀 > 1, which
implies

∞

∑

𝑛=0

1

(𝑛 + 1) log𝜀 (𝑛 + 2)
< ∞. (84)
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In proving that 𝑓 ∈ 𝐻1,𝑞

𝛽,] we use a sequence {𝑉
𝑛

}
∞

0

constructed in the following way (see, e.g., [24]).
Let 𝜔 be a 𝐶∞ function on R such that

(1) 𝜔(𝑡) = 1 for 𝑡 ≤ 1,
(2) 𝜔(𝑡) = 0 for 𝑡 ≥ 2,
(3) 𝜔 is decreasing and positive on the interval (1, 2).

Let 𝜑(𝑡) = 𝜔(𝑡/2) − 𝜔(𝑡), and let 𝑉
0

(𝑧) = 1 + 𝑧, and, for
𝑛 ≥ 1,

𝑉
𝑛

(𝑡) =

∞

∑

𝑘=0

𝜑(
𝑘

2𝑛−1
)𝑧

𝑘

=

2

𝑛+1

∑

𝑘=2

𝑛−1

𝜑(
𝑘

2𝑛−1
)𝑧

𝑘

. (85)

These polynomials have the following properties:

𝑔 (𝑧) =

∞

∑

𝑛=0

𝑉
𝑛

∗ 𝑔 (𝑧) , for 𝑔 ∈ 𝐻 (D) ; (86)

𝑉𝑛 ∗ 𝑔
𝑝 ≤ 𝐶

𝑔
𝑝, for 𝑔 ∈ 𝐻𝑝

, 𝑝 > 0; (87)

𝑉𝑛
𝑝 ≍ 2

𝑛(1−1/𝑝)

, ∀𝑝 > 0. (88)

(Here ∗ denotes the Hadamard product).
In [25, Lemma 2.1], the following characterization of𝐻𝑝,𝑞

𝛼,]
was proved.

Lemma A. Let 0 < 𝑝 ≤ ∞, and 0 < 𝑞 ≤ ∞, 𝛼 > 0, and let ]
be a nonnegative integer. A function 𝑔 ∈ 𝐻(D) is in𝐻𝑝,𝑞

𝛼,] if and
only if

𝐾
1

(𝑔) := (

∞

∑

𝑛=0

2
𝑛(]−𝛼)𝑞𝑉𝑛 ∗ 𝑔


𝑞

𝑝

)

1/𝑞

< ∞, (89)

and we have 𝐾
1

(𝑔) ≍ ‖𝑓‖
𝐻

𝑝,𝑞

𝛼,]
. In the case of 𝐻𝑝

𝛼,] (resp., ℎ
𝑝

𝛼,])
this is interpreted as ‖𝑉

𝑛

∗ 𝑔‖
𝑝

= O(2𝑛(𝛼−])) (resp. ‖𝑉
𝑛

∗ 𝑔‖
𝑝

=

𝑜(2
𝑛(𝛼−])

)).

Remark 26. This lemma was deduced in [25] from the case
] = 0 (which is relatively easy to discuss) by using some non-
trivial results of Hardy and Littlewood [26] and of Flett (see
[27]). By a successive application of Lemma 27 below (case
𝛿 = 0), we can make this deduction elementary.

Lemma 27. If 𝑛 is a positive integer,

𝑃 (𝑧) =

4𝑛

∑

𝑘=𝑛

𝜆
𝑘

𝑧
𝑘

, (90)

where {𝜆
𝑘

} is a complex sequence, and

𝑄 (𝑧) =

4𝑛

∑

𝑘=𝑛

(𝑘 + 1)
𝛽log𝛿 (𝑘 + 1) 𝜆

𝑘

𝑧
𝑘

, 𝛿, 𝛽 ∈ R, (91)

then there is a constant 𝐶 depending only on 𝛿 and 𝛽 such that

𝐶
−1

‖𝑄‖
1

≤ (𝑛 + 1)
𝛽log𝛿 (𝑛 + 1) ‖𝑃‖

1

≤ 𝐶‖𝑄‖
1

. (92)

Proof. Theproof can be reduced to two cases: (1) 𝛽 = 0, 𝛿 ∈ R
and (2) 𝛿 = 0, 𝛽 ∈ R. We will consider only Case (1); Case (2)
is discussed similarly.

Let 𝜓 be a 𝐶∞ function on (0,∞) such that supp𝜓 ⊂
(1/2, 5) and 𝜓(𝑡) = 1 for 1 ≤ 𝑡 ≤ 4. Then we have 𝑄 as

𝑄 (𝑧) =

∞

∑

𝑘=0

𝜓(
𝑘

𝑛
) log𝛿 (𝑘 + 2) 𝜆

𝑘

𝑧
𝑘

, (93)

where 𝜆
𝑘

:= 0 for 𝑘 ∉ [𝑛, 2𝑛]. Fix 𝑛 and let

Δ
2

𝜂 (𝑘) = 𝜂 (𝑘) − 2𝜂 (𝑘 + 1) + 𝜂 (𝑘 + 2) , (94)

where

𝜂 (𝑡) = 𝜓(
𝑡

𝑛
) log𝛿 (𝑡 + 1) . (95)

We have

𝑄 (𝑧) =

∞

∑

𝑘=0

Δ
2

𝜂 (𝑘) (𝑘 + 1) (𝜎
𝑘

𝑃) (𝑧)

= ∑

𝑛/2≤𝑘≤5𝑛

Δ
2

𝜂 (𝑘) (𝑘 + 1) (𝜎
𝑘

𝑃) (𝑧) ,

(96)

where 𝜎
𝑘

𝑃 are (𝐶, 1)-means of 𝑃. It follows that

‖𝑄‖
1

≤ ∑

𝑛/2≤𝑘≤5𝑛


Δ
2

𝜂 (𝑘)

(𝑘 + 1)

𝜎𝑘𝑃
1

≤ ∑

𝑛/2≤𝑘≤5𝑛


Δ
2

𝜂 (𝑘)

(𝑘 + 1) ‖𝑃‖

1

,

(97)

where we have used Fejér’s inequality ‖𝜎
𝑘

𝑃‖
1

≤ ‖𝑃‖
1

. Nowwe
use Lagrange’s inequality in the form


Δ
2

𝜂 (𝑘)

≤ 2 sup

𝑘≤𝑡≤𝑘+2


𝜂


(𝑡)
 (98)

and the easily proved inequality


𝜂


(𝑡)

≤
𝐶

𝑛2
log𝛿 (𝑛 + 1) , 𝑛

2
≤ 𝑡 ≤ 5𝑛 (99)

to get

‖𝑄‖
1

≤
𝐶

𝑛2
log𝛿 (𝑛 + 1) ∑

𝑛/2≤𝑘≤5𝑛

(𝑘 + 1) ‖𝑃‖
1

≤ 𝐶log𝛿 (𝑛 + 1) ‖𝑃‖
1

,

(100)

which proves the desired result in one direction. To prove the
reverse inequality we write 𝑃 as

𝑃 (𝑧) =

4𝑛

∑

𝑘=𝑛

log−𝛿 (𝑘 + 1) 𝜉
𝑘

𝑧
𝑘

, where 𝜉
𝑘

= 𝜆
𝑘

log𝛿 (𝑘 + 1) .

(101)

Applying the above case, we get

‖𝑃‖
1

≤ 𝐶log−𝛿 (𝑛 + 1) ‖𝑄‖
1

, (102)

which completes the proof.
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Proof of Proposition 15. As noted above it is enough to prove
that 𝑓 ∈ 𝐻1,𝑞

𝛽,] , where 𝛽 = ]. In this case, by Lemma A, the
function 𝑓 belongs to𝐻1,𝑞

𝛽,] if and only if
∞

∑

𝑛=0

𝑉𝑛 ∗ 𝑓

𝑞

1

< ∞. (103)

On the other hand, by Lemma 27 and the property (88),
𝑉𝑛 ∗ 𝑓


𝑞

1

≍ (log𝜀 (2𝑛+1) 𝑉𝑛
1)

𝑞

≍ (𝑛 + 1)
−𝜀𝑞

, (104)

which implies that 𝑓 is in𝐻1,𝑞

𝛽,] , because 𝜀𝑞 > 1.
Thus, we have proved the implication (a)⇒(b) of

Theorem 11.

4. Proof of Theorem 16

It is clear that (b) implies (a). We have already noted that (c)
implies (b).The following assertion shows that (d) implies (c).

Proposition 28. If 𝑞 ≤ 1, 1 ≤ 𝑝 ≤ 2, 𝜅
𝑝,𝛼,] = ]+1−𝛼−1/𝑝 =

0, and 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] , then
∞

∑

𝑛=0

𝑔 (𝑛)


𝑛 + 1
< ∞. (105)

Proof. Since 𝐻1,𝑞

𝛼,] ⊂ 𝐻
1,1

𝛼,] , it is enough to consider the case
𝑞 = 1. Let

𝑃
𝑛

= 𝑉
𝑛−1

+ 𝑉
𝑛

+ 𝑉
𝑛+1

, 𝑛 ≥ 0, where 𝑉
−1

= 0. (106)

Since 𝑃
𝑛

∗𝑉
𝑛

= 𝑉
𝑛

, which follows from (86) and the fact𝑉
𝑛

∗

𝑉
𝑚

= 0 for |𝑚 − 𝑛| ≥ 2, we see that

Lemma A remains true if 𝑉
𝑛

is replaced by 𝑃
𝑛

. (107)

Also the relation 𝑃
𝑛

∗ 𝑉
𝑛

= 𝑉
𝑛

implies that �̂�
𝑛

(𝑘)�̂�
𝑛

(𝑘) =

�̂�
𝑛

(𝑘), and hence �̂�
𝑛

(𝑘) = 1 whenever �̂�
𝑛

(𝑘) ̸= 0. In particular
�̂�
𝑛

(𝑘) = 1 for 𝑘 ∈ 𝐼
𝑛

(see (79)). We use Hardy’s inequality
∞

∑

𝑘=0

(𝑘 + 1)
𝑝−2


ℎ̂ (𝑘)


𝑝

≤ 𝐶‖ℎ‖
𝑝

𝑝

, 1 ≤ 𝑝 ≤ 2, (108)

and Lemma (107) to conclude that if 𝑔 ∈ 𝐻𝑝,1

𝛼,] , then

∞

∑

𝑛=0

2
−𝑛/𝑝

(∑

𝑘∈𝐼

𝑛

𝑔 (𝑘)

𝑝

)

1/𝑝

< ∞. (109)

Hence, by Hölder’s inequality,
∞

∑

𝑛=0

2
−𝑛

∑

𝑘∈𝐼

𝑛

𝑔 (𝑘)


≤

∞

∑

𝑛=0

2
−𝑛

(∑

𝑘∈𝐼

𝑛

𝑔 (𝑘)

𝑝

)

1/𝑝

2
𝑛(1−1/𝑝)

=

∞

∑

𝑛=0

2
−𝑛/𝑝

(∑

𝑘∈𝐼

𝑛

𝑔 (𝑘)

𝑝

)

1/𝑝

,

(110)

which proves the result.

It remains to be proven that (a) implies (d); that is, that
(a) does not hold in the following cases:

(1) 1 ≤ 𝑝 ≤ ∞, 0 < 𝑞 ≤ ∞, and 𝜅
𝑝,𝛼,] < 0;

(2) 1 ≤ 𝑝 ≤ 2, 1 < 𝑞 ≤ ∞, 𝜅
𝑝,𝛼,] = 0;

(3) 2 < 𝑝 ≤ ∞, 0 < 𝑞 ≤ ∞, 𝜅
𝑝,𝛼,] = 0.

Case (1) is part of Proposition 13. In view of the same
proposition, we can assume, in what follows, that 𝑞 < ∞.

The following assertion proves the desired result in Cases
(2) and (3, 𝑞 > 1).

Proposition 29. If 1 ≤ 𝑝 ≤ ∞, 𝜅
𝑝,𝛼,] = 0, and 1 < 𝑞 < ∞,

then L cannot be extended to a bounded operator from 𝐻𝑝,𝑞

𝛼,]
to𝐻(D).

Proof. (a) Let

𝑓
𝜀,𝜌

(𝑧) =

∞

∑

𝑘=0

𝜌
𝑛

𝑧
𝑛

(𝑘 + 1) log1+𝜀 (𝑘 + 2)
,

𝜀 > 0, 0 < 𝜌 ≤ 1.

(111)

It follows from Lemmas A and 27 that

𝑓𝜀,1

𝑞

𝑝,𝑞

𝛼,]
≍

∞

∑

𝑛=0

(𝑛 + 1)
−(1+𝜀)𝑞

≤

∞

∑

𝑛=0

(𝑛 + 1)
−𝑞

= 𝐶
𝑞

< ∞,

(112)

where 𝐶
𝑞

is independent of 𝜀. This inequality remains true if
𝑓
𝜀,1

is replaced by 𝑓
𝜀,𝜌

with 𝜌 < 1. The function 𝑓
𝜀,𝜌

(𝜌 < 1)

belongs to 𝐻(D) and the set {𝑓
𝜀,𝜌

: 𝜀 > 0, 𝜌 < 1} is bounded
in𝐻𝑝,𝑞

𝛼,] . On the the other hand,

L𝑓
𝜀,𝜌

(0) =

∞

∑

𝑘=0

𝜌
𝑛

(𝑘 + 1) log1+𝜀 (𝑘 + 2)
→ ∞,

𝜀 → 0
+

, 𝜌 → 1
−

.

(113)

The result follows.

The case when 𝑞 ≤ 1 and 𝑝 > 2 is more delicate
and depends on Khinchin’s inequality and a deep result of
Khinchin and Kolmogorov ([28]; see [14, Ch. V, Sec. 8]).

Theorem H. Let 𝑅
𝑛

denote the sequence of Rademacher
functions, 𝑅

𝑛

(𝑡) = sign(sin(2𝑛𝜋𝑡)), 𝑛 ≥ 0, 0 ≤ 𝑡 ≤ 1. If {𝑐
𝑛

}

is a sequence in C such that ∑∞

𝑛=0

|𝑐
𝑛

|
2

= ∞, then the series
∑
∞

𝑛=0

𝑐
𝑛

𝑅
𝑛

(𝑡) diverges for almost all 𝑡 ∈ [0, 1] and moreover the
sequence of its partial sums is unbounded a.e.

We also need the following theorem of Khinchin [14, Ch.
V, Theorem (8.4)].
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Theorem I. Let {𝑐
𝑘

} be a finite sequence, and let 0 < 𝑞 < ∞.
Then

∫

1

0



∑

𝑘

𝑐
𝑘

𝑅
𝑘

(𝑡)



𝑞

≍ (∑

𝑘

𝑐𝑘

2

)

𝑞/2

, (114)

where the “involving” constants depend only on 𝑞.

Let

Δ
𝑛

(𝑧) = ∑

𝑘∈𝐼

𝑛

𝑧
𝑘

, Δ
𝑛

𝑔 = Δ
𝑛

∗ 𝑔. (115)

The following fact was proved in [29].

Lemma B. Let 1 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞, and 𝛼 > 0. A
function 𝑔 ∈ 𝐻(D) is in𝐻𝑝,𝑞

𝛼

if and only if

𝐾(𝑔) := (

∞

∑

𝑛=0

2
−𝑛𝛼𝑞
Δ 𝑛

𝑔

𝑞

𝑝

)

1/𝑞

< ∞, (†)

and we have 𝐾(𝑔) ≍ ‖𝑓‖𝑝,𝑞
𝛼

. In the case of 𝐻∞

𝛼

(resp., ℎ𝑝
𝛼

=

ℎ
𝑝

𝛼,0

), relation (†) means ‖Δ
𝑛

𝑔‖
𝑝

= O(2𝑛𝛼) (resp., ‖Δ
𝑛

𝑔‖ =

𝑜(2
𝑛𝛼

), as 𝑛 → ∞).
As a consequence of this lemma and Lemma 27 we have

the following.

Lemma 30. Let 1 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞, and 𝛼 > 0. A
function 𝑔 ∈ 𝐻(D) is in𝐻𝑝,𝑞

𝛼,] if and only if

𝐾] (𝑔) := (

∞

∑

𝑛=0

2
𝑛(]−𝛼)𝑞Δ 𝑛

𝑔

𝑞

𝑝

)

1/𝑞

< ∞, (‡)

and we have 𝐾](𝑔) ≍ ‖𝑓‖ 𝑝,𝑞
𝛼,]
. In the case of 𝐻𝑝

𝛼,], respectively,
ℎ
𝑝

𝛼,], relation (‡) is interpreted as ‖Δ
𝑛

𝑔‖
𝑝

= O(2(𝛼−])𝑛),
respectively, ‖Δ

𝑛

𝑔‖
𝑝

= 𝑜(2
(𝛼−])𝑛

).

Lemma 31. If 0 < 𝑝 < ∞ and 0 < 𝑞 < ∞, and 𝑔
𝑡

(𝑧) =

∑
∞

𝑘=0

𝑐
𝑘

𝑧
𝑘

𝑅
𝑘

(𝑡), then

∫

1

0

Δ 𝑛

𝑔
𝑡


𝑞

𝑝

≍ (∑

𝑘∈𝐼

𝑛

𝑐𝑘

2

)

𝑞/2

, 𝑛 ≥ 0. (116)

Proof. In the case 𝑝 = 𝑞, the relation immediately follows
from Theorem I. Let 𝑝 > 𝑞. Then, by Jensen’s inequality for
the convex function 𝑥 → 𝑥𝑝/𝑞,

(∫

1

0

Δ 𝑛

𝑔
𝑡


𝑞

𝑝

𝑑𝑡)

𝑝/𝑞

≤ ∫

1

0

(
Δ 𝑛

𝑔
𝑡


𝑞

𝑝

)
𝑝/𝑞

= ∫

1

0

Δ 𝑛

𝑔
𝑡


𝑝

𝑝

𝑑𝑡

≍ (∑

𝑘∈𝐼

𝑛

𝑐𝑘

2

)

𝑝/2

.

(117)

On the other hand, since ‖Δ
𝑛

𝑔‖
𝑝

≥ ‖Δ
𝑛

𝑔‖
𝑞

, we have

∫

1

0

Δ 𝑛

𝑔
𝑡


𝑞

𝑝

𝑑𝑡 ≥ ∫

1

0

Δ 𝑛

𝑔
𝑡


𝑞

𝑞

𝑑𝑡

≍ (∑

𝑘∈𝐼

𝑛

𝑐𝑘

2

)

𝑞/2

.

(118)

This proves the result in the case 𝑝 > 𝑞. The remaining case
is discussed similarly.

Proposition 32. If 0 < 𝑞 ≤ 1, 2 < 𝑝 ≤ ∞, 𝛼 > 0, and
𝜅
𝑝,𝛼,] = 0, then L cannot be extended to a bounded operator
from𝐻𝑝,𝑞

𝛼,] to𝐻(D).

Proof. Consider first the case 2 < 𝑝 < ∞. Let

𝑔
𝑡

(𝑧) =

∞

∑

𝑘=0

(𝑘 + 1)
1/2−1/𝑝log−2/𝑞 (𝑘 + 2) 𝑅

𝑛

(𝑡) 𝑧
𝑘

,

0 ≤ 𝑡 ≤ 1.

(119)

Since
∞

∑

𝑘=0

((𝑘 + 1)
1/2−1/𝑝log−2/𝑞 (𝑘 + 2))

2

= ∞, (120)

because 2/𝑝 < 1, the sequence of partial sums of the series
𝑔
𝑡

(1) diverges on a set 𝐸 ⊂ [0, 1] such that |𝐸| = 1, which
follows from Theorem H. (We can assume that 𝐸 does not
contain points where 𝑅

𝑛

(𝑡) = 0 because the set of such points
is denumerable). On the other hand, by Lemma 31, we have

∫
𝐸

𝑔𝑡

𝑞

𝑝,𝑞

𝛼,]
≍ ∫

𝐸

∞

∑

𝑛=0

2
𝑛(1/𝑝−1)𝑞

Δ 𝑛

𝑔
𝑡


𝑞

𝑝

≍

∞

∑

𝑛=0

2
𝑛(1/𝑝−1)𝑞

Δ 𝑛

𝑔
𝑡


𝑞

2

≍

∞

∑

𝑛=0

2
𝑛(1/𝑝−1)𝑞

2
𝑛(1/2−1/𝑝)𝑞

2
𝑛𝑞/2

(𝑛 + 1)
−2

=

∞

∑

𝑛=0

(𝑛 + 1)
−2

< ∞.

(121)

It follows that 𝑔
𝜏

∈ 𝐻
𝑝,𝑞

𝛼,] for at least one 𝜏 ∈ 𝐸.
To complete the proof we consider the polynomials (∈

𝐻(D))

𝑠
𝑛

(𝑧) =

2

𝑛+1

−1

∑

𝑘=0

𝑔
𝜏

(𝑘) 𝑧
𝑘

. (122)

It follows fromLemmaB that ‖𝑠
𝑛

‖ ≤ 𝐶‖𝑔
𝜏

‖ < ∞ (in the norm
of𝐻𝑝,𝑞

𝛼,] ), where 𝐶 is independent of 𝑛. On the other hand, as
noted before, the sequence

L𝑠
𝑛

(0) =

2

𝑛+1

−1

∑

𝑘=0

(𝑘 + 1)
1/2−1/𝑝log−2 (𝑘 + 2) 𝑅

𝑛

(𝜏) (123)

is not bounded, which proves the result in the case 𝑝 < ∞.
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In the case of 𝐻∞,𝑞

𝛼,] we have ] + 1 − 𝛼 = 0. Hence, if
𝑔 ∈ 𝐻

𝑝,𝑞

𝛽,] and 𝜅𝑝,𝛽,] = 0, that is, ]−𝛽 = 1/𝑝−1, then it follows
from Proposition 9 that 𝐻𝑝,𝑞

𝛽,] ⊂ 𝐻
∞,𝑞

𝛼,] , continuously. The
desired result follows from the case 𝑝 < ∞.

Remark 33. If 𝑞 = ∞, 𝑝 > 2, ] = 0, and 𝜅 = 0, that is,
𝛼 = 1 − 1/𝑝, then we can take

𝑔
𝑡

(𝑧) =

∞

∑

𝑘=0

(𝑘 + 1)
1/2−1/𝑝

𝑅
𝑛

(𝑡) , (124)

and apply the above approach to show that there is a function
𝑔 ∈ 𝐻

𝑝,∞

𝛼

such that

𝑔 (𝑘)
 ≍ (𝑘 + 1)

1/2−1/𝑝

, (∗∗)

and hence

lim
𝑛→∞

𝑔 (𝑛)

𝑛 + 1
= ∞. (125)

It is not easy to give a concrete example of such a function. A
“natural” example is

𝑔 (𝑧) = (1 − 𝑧)
1/𝑝−3/2

, (126)

whose coefficients satisfy (∗∗). However,

∫

2𝜋

0


1 − 𝑟𝑒

𝑖𝜃



𝑝(1/𝑝−3/2)

𝑑𝜃 ≍ (1 − 𝑟)
1−3𝑝/2

. (127)

If 𝑔 ∈ 𝐻𝑝,∞

𝛼

, then

(1 − 𝑟)
1−3𝑝/2

≤ 𝐶(1 − 𝑟)
𝑝(1/𝑝−1)

, (128)

which implies 𝑝(1/𝑝−1) ≤ 1−3𝑝/2, while this implies 𝑝 ≤ 2,
a contradiction which shows that 𝑔 ∉ 𝐻𝑝,∞

𝛼

, for 𝑝 > 2.

5. Proof of Theorem 18

For technical reasons, we introduce the space

ℓ
1

−1

= {𝑔 ∈ 𝐻 (D) :
∞

∑

𝑛=0

𝑔 (𝑛)


𝑛 + 1
< ∞} . (129)

In the proof of Proposition 34 we use the following deep
result of Kisliakov [30].

Theorem J. For any sequence {𝑐
𝑘

}
𝑛

𝑘=𝑚

there is a polynomial
ℎ(𝑧) = ∑

𝑛

𝑘=𝑚

𝑏
𝑘

𝑧
𝑘 such that |𝑏

𝑘

| ≥ |𝑐
𝑘

| and

‖ℎ‖
∞

≤ 𝐶(

𝑛

∑

𝑘=𝑚

𝑐𝑘

2

)

1/2

, (130)

where 𝐶 is an absolute constant.

Proposition 34. Let 𝜅
𝑝,𝛼,] > 0. If (1) 1 < 𝑞 ≤ ∞, 2 < 𝑝 ≤ ∞,

and ] − 𝛼 ≤ −1/2, or (2) 0 < 𝑞 ≤ 1, 2 < 𝑝 ≤ ∞, and ] − 𝛼 <
−1/2, then𝐻𝑝,𝑞

],𝛼 ̸⊆ ℓ
1

−1

.

Proof. We have
Case (1), (𝑝 < ∞). Let 𝑞 = ∞ and let

𝑔
𝑡

(𝑧) =

∞

∑

𝑘=0

𝑐
𝑘

𝑅
𝑘

(𝑡) 𝑧
𝑘

, (131)

where

(∑

𝑘∈𝐼

𝑛

𝑐𝑘

2

)

1/2

≤ 𝐶2
𝑛(𝛼−])

. (132)

Take 𝑐
𝑘

= (𝑘 + 1)
𝜉. Then

(∑

𝑘∈𝐼

𝑛

𝑐
2

𝑘

)

1/2

≍ 2
𝑛𝜉

2
𝑛/2

≤ 𝐶2
𝑛(𝛼−])

, (133)

whence we can choose 𝜉+1/2 = 𝛼−]; that is, 𝜉 = 𝛼−]−1/2 ≥
0.

We have, by Lemma 31,

∫

1

0

Δ 𝑛

𝑓
𝑡

𝑝 ≤ 𝐶(∑

𝑘∈𝐼

𝑛

𝑐
2

𝑘

)

1/2

≤ 𝐶2
𝑛(𝛼−])

.

(134)

This implies that there is a sequence 𝜀
𝑛

∈ {−1, 1} such that
the function

ℎ (𝑧) =

∞

∑

𝑘=0

𝑐
𝑘

𝜀
𝑘

𝑧
𝑘 (135)

belongs to𝐻𝑝,∞

𝛼,] . On the other hand,

∞

∑

𝑘=0


ℎ̂ (𝑘)


𝑘 + 1
= ∞. (136)

If 1 < 𝑞 < ∞, we consider the function

𝑔
𝑡

(𝑧) =

∞

∑

𝑛=0

𝑐
𝑛

𝑅
𝑛

(𝑡) 𝑧
𝑘

, where 𝑐
𝑛

=
(𝑛 + 1)

𝜉

log (𝑛 + 2)
, (137)

and proceed as above to get the result.

Case (1), (𝑝 = ∞). Choose {𝑐
𝑘

} as above and consider the
function ℎ(𝑧) = ∑∞

𝑘=0

𝑏
𝑘

𝑧
𝑘, where |𝑏

𝑘

| ≥ 𝑐
𝑘

and ‖Δ
𝑛

ℎ‖
∞

≤

𝐶(∑
𝑘∈𝐼

𝑛

𝑐
2

𝑘

)
1/2 (Theorem J, Kisliakov). Finally we use the

inequality

‖ℎ‖
𝑝,𝑞

𝛼,] ≤ 𝐶(∑
𝑘∈𝐼

𝑛

2
(]−𝛼)𝑞Δ 𝑛

ℎ

𝑞

∞

)

1/𝑞

, (138)

(see [29, Theorem 2.1(a)]) to finish the proof of Case (1).
In Case (2) we choose 𝑔(𝑛) = (𝑛 + 1)𝜉, where 0 < 𝜉 <

𝛼 − ] − 1/2, and repeat the above reasoning to complete the
proof.
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Proposition 35. If ] − 𝛼 = −1/2, 0 < 𝑞 ≤ 1, and 2 < 𝑝 ≤ ∞,
then𝐻𝑝,𝑞

𝛼,] ⊂ ℓ
1

−1

.

Proof. We have

∞

∑

𝑛=0

2
𝑛(]−𝛼)𝑞Δ 𝑛

𝑔

𝑞

𝑝

≥

∞

∑

𝑛=0

2
𝑛(]−𝛼)𝑞Δ 𝑛

𝑔

𝑞

2

≥ (

∞

∑

𝑛=0

2
𝑛(]−𝛼)Δ 𝑛

𝑔
2)

𝑞

= (

∞

∑

𝑛=0

2
−𝑛/2
Δ 𝑛

𝑔
2)

𝑞

≥ (

∞

∑

𝑛=0

2
−𝑛

∑

𝑘∈𝐼

𝑛

𝑔 (𝑘)
)

𝑞

,

(139)

which completes the proof of the proposition.

Proposition 36. If 2 < 𝑝 ≤ ∞, 𝜅
𝑝,𝛼,] > 0, 0 < 𝑞 ≤ ∞, and

] − 𝛼 > −1/2, then𝐻𝑝,𝑞

𝛼,] ⊂ ℓ
1

−1

.

Proof. Let 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] . Then 𝑔 ∈ 𝐻𝑝,∞

𝛼,] , and hence 𝑔 ∈ 𝐻2,∞

𝛼,] . It
follows that ‖Δ

𝑛

𝑔‖
2

≤ 𝑐2
𝑛(𝛼−]). On the other hand,

∞

∑

𝑛=0

2
−𝑛

∑

𝑘∈𝐼

𝑛

𝑔 (𝑘)
 ≤ 𝐶

∞

∑

𝑛=0

2
−𝑛/2
Δ 𝑛

𝑔
2

≤ 𝐶

∞

∑

𝑛=0

2
−𝑛/2

2
𝑛(𝛼−])

< ∞,

(140)

because −1/2 + 𝛼 − ] < 0. This proves the proposition.

The following proposition completes the proof of
Theorem 18.

Proposition 37. If 1 ≤ 𝑝 ≤ 2, 𝜅
𝑝,𝛼,] > 0, and 0 < 𝑞 ≤ ∞, then

𝐻
𝑝,𝑞

𝛼,] ⊂ ℓ
1

−1

.

Proof. Let 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] . Choose 𝛽 so that 𝜅
𝑝,𝛼,] = 𝜅2,𝛽,]; that

is, 𝛼 = 𝛽 + 1/2 − 1/𝑝. Then, by Proposition 9(b), we have
𝐻

𝑝,𝑞

𝛼,] ⊂ 𝐻
2,𝑞

𝛽,] .This implies that𝐻𝑝,𝑞

𝛼,] ⊂ 𝐻
2,∞

𝛽,] whichmeans that
‖Δ

𝑛

𝑔‖
2

≤ 𝐶2
𝑛(𝛽−]), and so

2
−𝑛/2
Δ 𝑛

𝑔
2 ≤ 𝐶2

𝑛(𝛽−]−1/2)
. (141)

It follows that

2
−𝑛

∑

𝑘∈𝐼

𝑛

𝑔 (𝑘)
 ≤ 𝐶2

𝑛(𝛽−]−1/2)

= 𝐶2
𝑛(𝛼−]+1/𝑝−1)

= 𝐶2
−𝑛𝜅

𝑝,𝛼,] .

(142)

The result follows.

6. On the Condition |𝑔(𝑛)| ≥ (𝑛+1)𝜂, 𝜂>0

In this section we suppose that 𝑘
𝑝,𝛼,] = ] − 𝛼 + 1 − 1/𝑝 > 0;

that is,L acts as an operator from𝐻𝑝,𝑞

𝛼,] into𝐻
𝑝,𝑞

𝛼,] (𝛼 > 0). We
want to analyze the proof of Proposition 34 more carefully.
Throughout the section we assume that 2 < 𝑝 ≤ ∞ and
𝜅
𝑝,𝛼,] > 0, so thatLmaps𝐻𝑝,𝑞

𝛼,] into𝐻
𝑝,𝑞

𝛼,] byTheorem 11.

Proposition 38. Let 𝑞 = ∞ and ] − 𝛼 ≤ −1/2. Then (i) there
exists a function 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that |𝑔(𝑛)| ≥ (𝑛 + 1)𝜉, where
𝜉 = 𝛼 − ] − 1/2 ≥ 0. (ii) The exponent 𝜉 is best possible. (iii) If
𝜉 > 0, then there is an 𝜂 > 0 and a function 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that
|𝑔(𝑛)| ≥ (𝑛 + 1)

𝜂.

Proof. Statement (i) follows from the proof of Proposition 34.
(ii) In order to prove that 𝜉 is best possible we use Lemma 30,
which states that 𝑔 ∈ 𝐻𝑝,∞

𝛼,] if and only if ‖Δ
𝑛

𝑔‖
𝑝

≤

𝐶2
𝑛(𝛼−]), which implies that ‖Δ

𝑛

𝑔‖
2

≤ 𝐶2
(𝛼−])𝑛. Assuming

that |𝑔(𝑘)| ≥ (𝑛 + 1)𝑠 we get

2
𝑛𝑠

2
𝑛/2

≤ 𝐶2
𝑛(𝛼−])

, (143)

whence 𝑠 + 1/2 ≤ 𝛼 − ]; that is, 𝑠 ≤ 𝛼 − ] − 1/2 = 𝜉.
(iii) This follows from (i).

Proposition 39. Let 1 < 𝑞 < ∞ and ] − 𝛼 ≤ −1/2. Then
(i) there exists a function 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that |𝑔(𝑛)| ≥ (𝑛 +
1)

𝜉

/ log(𝑛 + 2). (ii) There is no function 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that
|𝑔(𝑛)| ≥ (𝑛 + 1)

𝜉. (iii) If 𝜉 > 0 and 0 < 𝜂 < 𝜉, then there exists
a function 𝑔 such that |𝑔(𝑛)| ≥ (𝑛 + 1)𝜂.

Proof. Assertion (i) is part of the proof of Proposition 34. To
prove (ii) we use the fact that𝐻𝑝,𝑞

𝛼,] ⊂ ℎ
𝑝

𝛼,], which implies that
‖Δ

𝑛

𝑔‖
2

= 𝑜(2
𝑛(𝛼−])

). If |𝑔(𝑛)| ≥ (𝑛+1)𝜉, then the latter implies
that

2
𝑛𝜉

2
𝑛/2

= 𝑜 (2
𝑛(𝛼−])

) , (144)

and hence 1 = 𝑜(1), which is impossible.

In a similar way one proves the following.

Proposition 40. Let 𝑞 ≤ 1 and 𝜉 = 𝛼 − ] − 1/2 > 0. Then
(i) if 0 < 𝜂 < 𝜉, then there is a function 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that
|𝑔(𝑛)| ≥ (𝑛 + 1)

𝜂. (ii) In (i), 𝜂 cannot be replaced by 𝜉.

Combining the above propositions we get the following.

Theorem 41. LetLmap𝐻𝑝,𝑞

𝛼,] into itself, and 𝑝 > 2. Then the
following statements are equivalent:

(a) there is a function 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that |𝑔(𝑛)| ≥ (𝑛 + 1)
𝜂

for some 𝜂 > 0;
(b) ] − 𝛼 < −1/2.

Moreover, if ] − 𝛼 < −1/2 and 𝜂 ∈ (0, 𝛼 − ] + 1/2) is arbitrary,
then there is 𝑔 ∈ 𝐻𝑝,𝑞

𝛼,] such that |𝑔(𝑛)| ≥ (𝑛+1)
𝜂. If in addition

𝑞 = ∞, we can take 𝜂 = 𝛼 − ] − 1/2.
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[15] D. Girela, M. Pavlović, and J. Á. Peláez, “Spaces of analytic func-
tions of Hardy-Bloch type,” Journal d’Analyse Mathematique,
vol. 100, pp. 53–81, 2006.
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[19] S. Stević, “On Libera-type transforms on the unit disc, polydisc
and the unit ball,” Integral Transforms and Special Functions, vol.
19, no. 11, pp. 785–799, 2008.

[20] J. I.-H. Shi and G.-B. Ren, “Boundedness of the Cesàro operator
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with positive coeffcients and Hardy spaces,” Proceedings of the
AmericanMathematical Society, vol. 87, no. 2, pp. 309–316, 1983.
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