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Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota’s approach. The
dynamics of one-soliton solution and two-soliton interactions are also illustrated.The considered equation can reduce to nonlinear
Schrödinger equation with derivative as well as the solutions.

Some nonlinear partial differential equations are integrable
models with interesting physical applications. Much work
has been focused on those equations such as the celebrating
KdV, modified KdV, nonlinear Schrödinger equations, and
Toda lattice. Inverse scattering transform (IST), Darboux
transformation, Hirota’s approach, tanh-function method,
and algebraic-geometry method [1–25] have been used to
investigate the exact solutions and integrability of those equa-
tions. Among these methods, Hirota’s approach is usually
used to find 𝑁-soliton solutions for soliton equation. The
key is transforming the soliton equations to the bilinear ones
by introducing bilinear derivative and appropriate variable
transformation [4]. The Hirota approach has been general-
ized tomuchmore general bilinear equations recently [5].The
invariant subspace method is refined to present more unity
and more diversity of exact solutions by taking subspaces of
solutions to linear ordinary differential equations as invariant
subspaces that evolution equations admit [6].

Associating with Kaup-Newell (KN shortly) spectral
problem, there exist three types of derivative nonlinear
Schrödinger equations [7, 8]. Gauge transformations have
been found among them [9, 10]. The first well-known deriva-
tive nonlinear Schrödinger equation (DNLSE) is

𝑖𝑢
𝑡
+ 𝑢
𝑥𝑥
+ 𝑖(𝑢
2
𝑢
∗
)
𝑥
= 0, (1)

where 𝑢∗ denotes the complex conjugate of 𝑢. This equation
models Alfven waves and magnetohydrodynamic waves in

plasmas and also model subpicosecond or femtosecond
pulses in single-mode optical fibers in nonlinear optics [11,
12]. The equation is investigated in some literature (see, e.g.,
[13–15]). Its explicit form of the 𝑁-soliton solutions is also
obtained by some algebraic technique [16]. Through the 𝑛-
fold Darboux transformation the rogue wave solutions are
constructed explicitly by seed solutions recently [17]. The
standard NLS equation has a tri-Hamiltonian structure [18]
andDNLSE equations has some sl(2) generalizations [19] and
an so(3) generalization [20].

In the paper, we consider general nonlinear Schrödinger
equation with derivative (GDNLSE) as follows:

𝑞
𝑡
= 𝑞
𝑥𝑥
− 𝑖 (𝑞
2
𝑟)
𝑥
, (2a)

𝑟
𝑡
= −𝑟
𝑥𝑥
− 𝑖 (𝑞𝑟

2
)
𝑥
. (2b)

We show that through a variable transformation the bilinear
equations for (2a) and (2b) can be derived for constructing
its𝑁-soliton solutions.We also describe that themultisoliton
solutions of (1) can be derived by reduction.

Firstly, we deduce the Lax pair of GDNLSE (2a) and
(2b), which usually assures the complete integrability of a
nonlinear equation. From the Kaup-Newell spectral problem

(
𝜙
1

𝜙
2

)

𝑥

= 𝑀(
𝜙
1

𝜙
2

) , 𝑀 = (

−𝑖𝜂
2
𝜂𝑞

𝜂𝑟 𝑖𝜂
2

) , (3a)
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time evolution

(
𝜙
1

𝜙
2

)

𝑡

= 𝑁(
𝜙
1

𝜙
2

) , 𝑁 = (
𝐴 𝐵

𝐶 −𝐴
) , (3b)

and the related zero curvature equation

𝑀
𝑡
− 𝑁
𝑥
+ [𝑀,𝑁] = 0, (4)

one can derive the GDNLSE (2a) and (2b). Its corresponding
Lax pair (3a) and (3b) is governed by

𝐴 = −2𝜂
4
− 𝜂
2
𝑞𝑟, (5a)

𝐵 = −2𝑖𝜂
3
𝑞 + 𝜂 (𝑞

𝑥
− 𝑖𝑞
2
𝑟) , (5b)

𝐶 = −2𝑖𝜂
3
𝑟 − 𝜂 (𝑟

𝑥
+ 𝑖𝑞𝑟
2
) . (5c)

Secondly, we give the bilinear form of GDNLSE and fur-
ther its𝑁-soliton solutions. By the variable transformation

𝑞 =
𝑔𝑠

𝑓2
, 𝑟 =

ℎ𝑓

𝑠2
, (6)

GDNLSE (2a) and (2b) can be transformed to the bilinear
form

(𝐷
𝑡
− 𝐷
2

𝑥
) 𝑔 ⋅ 𝑓 = 0, (7a)

(𝐷
𝑡
+ 𝐷
2

𝑥
) ℎ ⋅ 𝑠 = 0, (7b)

(𝐷
𝑡
− 𝐷
2

𝑥
) 𝑓 ⋅ 𝑠 = 0, (7c)

𝐷
𝑥
𝑓 ⋅ 𝑠 = −

𝑖

2
𝑔ℎ, (7d)

where 𝑔, ℎ, 𝑓, and 𝑠 are complex functions and𝐷 is the well-
known Hirota bilinear operator defined as

𝐷
𝑚

𝑡
𝐷
𝑛

𝑥
𝑎 ⋅ 𝑏 = (𝜕

𝑡
− 𝜕
𝑡
)
𝑚

(𝜕
𝑥
− 𝜕
𝑥
)
𝑛

𝑎(𝑡, 𝑥)𝑏(𝑡

, 𝑥

)
𝑡=𝑡,𝑥=𝑥

.

(8)

To solve the system (7a), (7b), (7c), and (7d), we expand
𝑓, 𝑔, ℎ, and 𝑠 as

𝑓 = 1 +

∞

∑

𝑗=1

𝑓
(2𝑗)

𝜀
2𝑗
, 𝑔 =

∞

∑

𝑗=1

𝑔
(2𝑗−1)

𝜀
2𝑗−1

,

ℎ =

∞

∑

𝑗=1

ℎ
(2𝑗−1)

𝜀
2𝑗−1

, 𝑠 = 1 +

∞

∑

𝑗=1

𝑠
(2𝑗)

𝜀
2𝑗
.

(9)

Substituting (9) into (7a), (7b), (7c), and (7d) yields

𝑔
(1)

𝑡
− 𝑔
(1)

𝑥𝑥
= 0, (10a)

𝑔
(3)

𝑡
− 𝑔
(3)

𝑥𝑥
= (−𝐷

𝑡
+ 𝐷
2

𝑥
) 𝑔
(1)
⋅ 𝑓
(2)
, (10b)

𝑔
(5)

𝑡
− 𝑔
(5)

𝑥𝑥
= (−𝐷

𝑡
+ 𝐷
2

𝑥
) (𝑔
(1)
⋅ 𝑓
(4)
+ 𝑔
(3)
⋅ 𝑓
(2)
) ,

...
(10c)

ℎ
(1)

𝑡
+ ℎ
(1)

𝑥𝑥
= 0, (11a)

ℎ
(3)

𝑡
+ ℎ
(3)

𝑥𝑥
= − (𝐷

𝑡
+ 𝐷
2

𝑥
) ℎ
(1)
⋅ 𝑠
(2)
, (11b)

ℎ
(5)

𝑡
+ ℎ
(5)

𝑥𝑥
= − (𝐷

𝑡
+ 𝐷
2

𝑥
) (ℎ
(1)
⋅ 𝑠
(4)
+ ℎ
(3)
⋅ 𝑠
(2)
) ,

...
(11c)

𝑓
(2)

𝑡
− 𝑓
(2)

𝑥𝑥
− (𝑠
(2)

𝑡
+ 𝑠
(2)

𝑥𝑥
) = 0, (12a)

𝑓
(4)

𝑡
− 𝑓
(4)

𝑥𝑥
− (𝑠
(4)

𝑡
+ 𝑠
(4)

𝑥𝑥
) = (−𝐷

𝑡
+ 𝐷
2

𝑥
) 𝑓
(2)
⋅ 𝑠
(2)
, (12b)

𝑓
(6)

𝑡
− 𝑓
(6)

𝑥𝑥
− (𝑠
(6)

𝑡
+ 𝑠
(6)

𝑥𝑥
)

= (−𝐷
𝑡
+ 𝐷
2

𝑥
) (𝑓
(4)
⋅ 𝑠
(2)
+ 𝑓
(2)
⋅ 𝑠
(4)
) ,

...

(12c)

𝑓
(2)

𝑥
− 𝑠
(2)

𝑥
= −

𝑖

2
𝑔
(1)
ℎ
(1)
, (13a)

𝑓
(4)

𝑥
− 𝑠
(4)

𝑥
= −𝐷
𝑥
𝑓
(2)
⋅ 𝑠
(2)
−
𝑖

2
(𝑔
(1)
ℎ
(3)
+ 𝑔
(3)
ℎ
(1)
) , (13b)

𝑓
(6)

𝑥
− 𝑠
(6)

𝑥
= −𝐷
𝑥
(𝑓
(2)
⋅ 𝑠
(4)
+ 𝑓
(4)
⋅ 𝑠
(2)
)

−
𝑖

2
(𝑔
(1)
ℎ
(5)
+ 𝑔
(3)
ℎ
(3)
+ 𝑔
(5)
ℎ
(1)
) ,

...

(13c)

In order to get one-soliton of GDNLSE (2a) and (2b), we
select 𝑔(1) and ℎ(1) for (10a) and (11a) as follows:

𝑔
(1)

= 𝑒
𝜉
1 , 𝜉

1
= 𝜔
1
𝑡 − 𝑘
1
𝑥 + 𝜉
(0)

1
, 𝜔
1
= 𝑘
2

1
, (14a)

ℎ
(1)

= 𝑒
𝜂
1 , 𝜂

1
= 𝜎
1
𝑡 + 𝑙
1
𝑥 + 𝜂
(0)

1
, 𝜎
1
= −𝑙
2

1
, (14b)

where 𝜉(0)
1
, 𝜂
(0)

1
are all constants. Substituting (14a) and (14b)

into (13a), one can obtain

𝑓
(2)

𝑥
− 𝑠
(2)

𝑥
= −

𝑖

2
𝑒
𝜉
1
+𝜂
1 . (15)

Then combining (15) with (12a) yields

𝑓
(2)

=
𝑖𝑘
1

2(𝑙
1
− 𝑘
1
)
2
𝑒
𝜉
1
+𝜂
1 , (16a)

𝑠
(2)

=
𝑖𝑙
1

2(𝑙
1
− 𝑘
1
)
2
𝑒
𝜉
1
+𝜂
1 . (16b)

Assuming that 𝑔(𝑖) = ℎ
(𝑖)

= 𝑓
(𝑗)

= 𝑠
(𝑗)

= 0, (𝑖 =

3, 5, 7, . . . , 𝑗 = 4, 6, 8, . . .), one can find that (10a), (10b) and
(10c)–(13a), (13b), and (13c) are still hold. Thus, let 𝜖 = 1,
substituting (9), (14a) and (14b) and (16a) and (16b) into (6),
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Figure 1: The shape of the one-soliton solution of GDNLSE given by (17). 𝑞

1
and 𝑟
1
with 𝑘

1
= 1 + 0.3𝑖, 𝑙

1
= −1 + 0.2𝑖, and 𝜉(0)

1
= 𝜂
(0)

1
= 0. (a)

|𝑞
1
|, (b) |𝑟

1
|.

one can arrive at one soliton solution for GDNLSE (2a) and
(2b):

𝑞
1
=

𝑒
𝜉
1 (1 + (𝑙

1
/2) 𝑒
𝜉
1
+𝜂
1
+(𝜋/2)𝑖+𝜃

13)

(1 + (𝑘
1
/2) 𝑒𝜉1+𝜂1+(𝜋/2)𝑖+𝜃13)

2
,

𝑟
1
=

𝑒
𝜂
1 (1 + (𝑘

1
/2) 𝑒
𝜉
1
+𝜂
1
+(𝜋/2)𝑖+𝜃

13)

(1 + (𝑙
1
/2) 𝑒𝜉1+𝜂1+(𝜋/2)𝑖+𝜃13)

2
,

(17)

where 𝜉
1
, 𝜂
1
are defined by (14a) and (14b), 𝑘

1
, 𝑙
1
are all

arbitrary constants, and 𝑒𝜃13 = (1/(𝑙
1
− 𝑘
1
)
2
). We depict |𝑞

1
|

and |𝑟
1
| in Figure 1. For convenience, we replace 𝑡 by −𝑖𝑡 and

𝑥 by −𝑥.
To get two-soliton of GDNLSE (2a) and (2b), we select

𝑔
(1) and ℎ(1) for (10a) and (11a) as follows:

𝑔
(1)

= 𝑒
𝜉
1 + 𝑒
𝜉
2 , 𝜉

𝑗
= 𝜔
𝑗
𝑡 − 𝑘
𝑗
𝑥 + 𝜉
(0)

𝑗
, 𝜔
𝑗
= 𝑘
2

𝑗
,

(𝑗 = 1, 2) ,

(18a)

ℎ
(1)

= 𝑒
𝜂
1 + 𝑒
𝜂
2 , 𝜂
𝑗
= 𝜎
𝑗
𝑡 + 𝑙
𝑗
𝑥 + 𝜂
(0)

𝑗
, 𝜎
𝑗
= −𝑙
2

𝑗
, (18b)

where 𝜉(0)
𝑗
, 𝜂
(0)

𝑗
are all constants. Substituting (18a) and (18b)

into (13a), one can obtain

𝑓
(2)

𝑥
− 𝑠
(2)

𝑥
= −

𝑖

2
(𝑒
𝜉
1
+𝜂
1 + 𝑒
𝜉
1
+𝜂
2 + 𝑒
𝜉
2
+𝜂
1 + 𝑒
𝜉
2
+𝜂
2) . (19)

Then combining (19) with (12a) yields

𝑓
(2)

=
𝑘
1

2
(𝑒
𝜉
1
+𝜂
1
+(𝜋/2)𝑖+𝜃

13 + 𝑒
𝜉
1
+𝜂
2
+(𝜋/2)𝑖+𝜃

14)

+
𝑘
2

2
(𝑒
𝜉
2
+𝜂
1
+(𝜋/2)𝑖+𝜃

23 + 𝑒
𝜉
2
+𝜂
2
+(𝜋/2)𝑖+𝜃

24) ,

(20a)

𝑠
(2)

=
𝑙
1

2
(𝑒
𝜉
1
+𝜂
1
+(𝜋/2)𝑖+𝜃

13 + 𝑒
𝜉
2
+𝜂
1
+(𝜋/2)𝑖+𝜃

23)

+
𝑙
2

2
(𝑒
𝜉
1
+𝜂
2
+(𝜋/2)𝑖+𝜃

14 + 𝑒
𝜉
2
+𝜂
2
+(𝜋/2)𝑖+𝜃

24) .

(20b)

Substituting (18b) and (20a) into (10b), by some computa-
tions, we obtain

𝑔
(3)

=
𝑙
1

2
𝑒
𝜉
1
+𝜉
2
+𝜂
1
+(𝜋/2)𝑖+𝜃

13
+𝜃
23
+𝜃
12

+
𝑙
2

2
𝑒
𝜉
1
+𝜉
2
+𝜂
2
+(𝜋/2)𝑖+𝜃

14
+𝜃
24
+𝜃
12 ,

(21)

where

𝑒
𝜃
13 =

1

(𝑙
1
− 𝑘
1
)
2
, 𝑒

𝜃
23 =

1

(𝑙
1
− 𝑘
2
)
2
,

𝑒
𝜃
14 =

1

(𝑙
2
− 𝑘
1
)
2
, 𝑒

𝜃
24 =

1

(𝑙
2
− 𝑘
2
)
2
,

𝑒
𝜃
12 = (𝑘

1
− 𝑘
2
)
2

.

(22)

Then substituting (18b) and (20b) into (11b), by some compu-
tations, we obtain

ℎ
(3)

=
𝑘
1

2
𝑒
𝜉
1
+𝜂
1
+𝜂
2
+(𝜋/2)𝑖+𝜃

13
+𝜃
14
+𝜃
34

+
𝑘
2

2
𝑒
𝜉
2
+𝜂
1
+𝜂
2
+(𝜋/2)𝑖+𝜃

23
+𝜃
24
+𝜃
34 ,

(23)

where 𝑒𝜃34 = (𝑙
1
− 𝑙
2
)
2. Substituting (21) and (23) into (12b)

and (13b), we obtain

𝑓
(4)

=
𝑘
1
𝑘
2

4
𝑒
𝜉
1
+𝜉
2
+𝜂
1
+𝜂
2
+𝜋𝑖+𝜃

12
+𝜃
13
+𝜃
14
+𝜃
23
+𝜃
24
+𝜃
34 , (24a)

𝑠
(4)

=
𝑙
1
𝑙
2

4
𝑒
𝜉
1
+𝜉
2
+𝜂
1
+𝜂
2
+𝜋𝑖+𝜃

12
+𝜃
13
+𝜃
14
+𝜃
23
+𝜃
24
+𝜃
34 . (24b)
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Figure 2: The interaction of two-soliton solution of GDNLSE given by (6). 𝑞
2
and 𝑟
2
with 𝑘

1
= 1 + 0.3𝑖, 𝑘

2
= 1 + 0.9𝑖, 𝑙

1
= −1 + 0.2𝑖, 𝑙

2
=

−1 + 0.8𝑖, and 𝜉(0)
1

= 𝜉
(0)

2
= 𝜂
(0)

1
= 𝜂
(0)

2
= 0. (a) |𝑞

2
|, (b) |𝑟

2
|.

Assuming that 𝑔(𝑖) = ℎ
(𝑖)
= 𝑓
(𝑗)

= 𝑠
(𝑗)

= 0, (𝑖 = 5, 7, . . . , 𝑗 =

6, 8, . . .), one can find that (10a), (10b) and (10c)–(13a), (13b),
and (13c) are still hold. Thus, let 𝜖 = 1, we have two-soliton
solution for GDNLSE (2a) and (2b):

𝑞 =

(𝑔
(1)
+ 𝑔
(3)
) (1 + 𝑠

(2)
+ 𝑠
(4)
)

(1 + 𝑓(2) + 𝑓(4))
2

,

𝑟 =

(ℎ
(1)
+ ℎ
(3)
) (1 + 𝑓

(2)
+ 𝑓
(4)
)

(1 + 𝑠(2) + 𝑠(4))
2

.

(25)

Figure 2 gives the interaction of two-soliton solution.
So, by the standard Hirota’s approach, one can derive𝑁-

soliton (𝑁 = 1, 2, . . .) in terms of 𝑓, 𝑔, ℎ, and 𝑠:

𝑔
𝑁
(𝑡, 𝑥) = ∑

𝜇=0,1

𝐴
2
(𝜇) exp[

[

2𝑁

∑

𝑗=1

𝜇
𝑗
𝜉


𝑗
+

2𝑁

∑

1≤𝑗<𝜌

𝜇
𝑗
𝜇
𝜌
𝜃
𝑗𝜌
]

]

,

(26a)

𝑓
𝑁
(𝑡, 𝑥) = ∑

𝜇=0,1

𝐴
1
(𝜇) exp[

[

2𝑁

∑

𝑗=1

𝜇
𝑗
𝜉


𝑗
+

2𝑁

∑

1≤𝑗<𝜌

𝜇
𝑗
𝜇
𝜌
𝜃
𝑗𝜌
]

]

,

(26b)

ℎ
𝑁
(𝑡, 𝑥) = ∑

𝜇=0,1

𝐴
3
(𝜇) exp[

[

2𝑁

∑

𝑗=1

𝜇
𝑗
𝜂


𝑗
+

2𝑁

∑

1≤𝑗<𝜌

𝜇
𝑗
𝜇
𝜌
𝜃
𝑗𝜌
]

]

,

(26c)

𝑠
𝑁
(𝑡, 𝑥) = ∑

𝜇=0,1

𝐴
1
(𝜇) exp[

[

2𝑁

∑

𝑗=1

𝜇
𝑗
𝜂


𝑗
+

2𝑁

∑

1≤𝑗<𝜌

𝜇
𝑗
𝜇
𝜌
𝜃
𝑗𝜌
]

]

,

(26d)

where

𝜉
𝑗
= −𝑘
𝑗
𝑥 + 𝜔
𝑗
𝑡 + 𝜉
(0)

𝑗
, 𝜔
𝑗
= 𝑘
2

𝑗
, (𝑗 = 1, 2, . . . , 𝑁) (27a)

𝜂
𝑗
= 𝑙
𝑗
𝑥 + 𝜎
𝑗
𝑡 + 𝜂
(0)

𝑗
, 𝜎
𝑗
= −𝑙
2

𝑗
, (27b)

𝜉


𝑗
= 𝜉
𝑗
, 𝜉



𝑁+𝑗
= 𝜂
𝑗
+ ln 𝑙
𝑗
+
𝜋

2
𝑖,

𝜉


𝑗
= 𝜉
𝑗
+ ln 𝑘

𝑗
+
𝜋

2
𝑖, 𝜉



𝑁+𝑗
= 𝜂
𝑗
,

(27c)

𝜂


𝑗
= 𝜉
𝑗
+ ln 𝑘

𝑗
+
𝜋

2
𝑖, 𝜂



𝑁+𝑗
= 𝜂
𝑗
,

𝜂


𝑗
= 𝜂
𝑗
+ ln 𝑙
𝑗
+
𝜋

2
𝑖, 𝜂



𝑁+𝑗
= 𝜉
𝑗
,

(27d)

𝑒
𝜃
𝑗,𝑁+𝜌 =

1

(𝑘
𝑗
− 𝑙
𝜌
)
2
, (𝑗, 𝜌 = 1, 2, . . . , 𝑁) , (27e)

𝑒
𝜃
𝑗,𝜌 = (𝑘

𝑗
− 𝑘
𝜌
)
2

, (𝑗 < 𝜌 = 2, 3, . . . , 𝑁) , (27f)

𝑒
𝜃
𝑁+𝑗,𝑁+𝜌 = (𝑙

𝑗
− 𝑙
𝜌
)
2

, (𝑗 < 𝜌 = 2, 3, . . . , 𝑁) . (27g)

𝑘
𝑗
, 𝑙
𝑗
, 𝜉
(0)

𝑗
, 𝜂
(0)

𝑗
are all arbitrary constants; 𝐴

1
(𝜇), 𝐴

2
(𝜇),

𝐴
3
(𝜇) take over all possible combinations of 𝜇

𝑗
= 0, 1 (𝑗 =

1, 2, . . . , 2𝑁) and satisfy the following condition:

𝑁

∑

𝑗=1

𝜇
𝑗
=

𝑁

∑

𝑗=1

𝜇
𝑁+𝑗

,

𝑁

∑

𝑗=1

𝜇
𝑗
=

𝑁

∑

𝑗=1

𝜇
𝑁+𝑗

+ 1,

1 +

𝑁

∑

𝑗=1

𝜇
𝑗
=

𝑁

∑

𝑗=1

𝜇
𝑁+𝑗

,

(28)

respectively.
We replace 𝑒𝜉

(0)

1 , 𝑒
𝜉
(0)

2 , 𝑒
𝜂
(0)

1 and 𝑒𝜂
(0)

2 by (𝛼𝑒𝜉
(0)

1 /(𝑘
1
− 𝑘
2
)),

(𝛼𝑒
𝜉
(0)

2 /(𝑘
2
− 𝑘
1
)), (𝛽𝑒

𝜂
(0)

1 /(𝑙
1
− 𝑙
2
)) and (𝛽𝑒𝜂

(0)

2 /(𝑙
2
− 𝑙
1
)) (𝛼 and
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Figure 3: The shape of the one-soliton and the interaction of two-soliton of DNLSE (1). (a) One-soliton 𝑢
1
with 𝑘

1
= 1 + 0.3𝑖 and 𝜉(0)

1
= 0,

(b) one-soliton 𝑢
1
with 𝑘

1
= 1 − 0.3𝑖 and 𝜉(0)

1
= 0, and (c) two-soliton 𝑢

2
with 𝑘

1
= 1 + 0.3𝑖, 𝑘

2
= 1 − 0.3𝑖, and 𝜉(0)

1
= 𝜉
(0)

2
= 0.

𝛽 are arbitrary real constants), respectively. Then the two-
soliton solution (25) under the limit of 𝑘

2
→ 𝑘
1
, 𝑙
2
→ 𝑙
1

leads to the limit solution

𝑞 =
𝑔 𝑠

𝑓
2
, 𝑟 =

ℎ𝑓

𝑠
2
, (29)

where

𝑔 = (2𝑘
1
𝑡 − 𝑥) 𝑒

𝜉
1 −

𝑙
1
𝛼
2
𝑒
2𝜉
1
+𝜂
1
+(𝜋/2)𝑖

(𝑙
1
− 𝑘
1
)
4

,

ℎ = (−2𝑙
1
𝑡 + 𝑥) 𝑒

𝜂
1 −

𝑘
1
𝛽
2
𝑒
𝜉
1
+2𝜂
1
+(𝜋/2)𝑖

(𝑙
1
− 𝑘
1
)
4

,

(30a)

𝑓 = 1 +
2𝑘
1

(𝑙
1
− 𝑘
1
)
2
𝑒
𝜉
1
+𝜂
1
+(𝜋/2)𝑖

+
𝛼
2
𝛽
2
𝑘
2

1

4(𝑙
1
− 𝑘
1
)
8
𝑒
2𝜉
1
+2𝜂
1
+𝜋𝑖
,

(30b)

𝑠 = 1 +
2𝑙
1

(𝑙
1
− 𝑘
1
)
2
𝑒
𝜉
1
+𝜂
1
+(𝜋/2)𝑖

+
𝛼
2
𝛽
2
𝑙
2

1

4(𝑙
1
− 𝑘
1
)
8
𝑒
2𝜉
1
+2𝜂
1
+𝜋𝑖
.

(30c)

𝛼 and 𝛽 are arbitrary constants. This is the so-called one-
double-pole solution. This kind of limit procedure can be
found in [21, 22], which builds a bridge between Hirota’s
approach and the inverse scattering transform on the level of
double-pole solution. Zhou and the coauthors find that the
limit solutions for classical 2𝑁-solitons are nothing but the
𝑁-double-pole solutions [23].

Now, we consider the derivative nonlinear Schrödinger
equation (1).We shall give its bilinear equation and𝑁-soliton
solutions by reduction. Setting 𝑟 = 𝑞

∗
= 𝑢
∗ and replacing 𝑡

by −𝑖𝑡 and 𝑥 by −𝑥 in (2a) and (2b), one can find that (2a)
and (2b) reduce to DNLSE (1). Taking 𝑠 = 𝑓

∗
, ℎ = 𝑔

∗ and
replacing 𝑡 by−𝑖𝑡 and𝑥 by−𝑥, (7a), (7b), (7c), and (7d) reduce
to the bilinear forms of DNLSE (1):

(𝑖𝐷
𝑡
+ 𝐷
2

𝑥
) 𝑔 ⋅ 𝑓 = 0, (31a)

(𝑖𝐷
𝑡
+ 𝐷
2

𝑥
) 𝑓 ⋅ 𝑓

∗
= 0, (31b)

𝐷
𝑥
𝑓 ⋅ 𝑓
∗
=
𝑖

2
𝑔𝑔
∗
, (31c)
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Figure 4: The 2D plot of two-soliton of DNLSE. 𝑞
2
with 𝑘

1
= 1 + 0.3𝑖, 𝑘

2
= 1 − 0.3𝑖, and 𝜉(0)

1
= 𝜉
(0)

2
= 0 at 𝑡 = 6, 𝑡 = 2, 𝑡 = −2, and 𝑡 = −6.

which can be also directly obtained from (1) through the
transformation 𝑢 = (𝑔𝑓

∗
/𝑓
2
). If we take 𝑙

𝑗
= −𝑘
∗

𝑗
, 𝜂
(0)

𝑗
=

𝜉
(0)∗

𝑗
in (26a), (26b), (26c), and (26d) and (27a), (27b), (27c),

(27d), (27e), (27f), and (27g), then 𝜂
𝑗

= 𝜉
∗

𝑗
, 𝑒
𝜃
𝑗,𝑁+𝜌
∗

=

𝑒
𝜃
𝜌,𝑁+𝑗 , 𝑒

𝜃
𝑗,𝜌
∗

= 𝑒
𝜃
𝑁+𝑗,𝑁+𝜌 . Thus we can also have 𝑠 =

𝑓
∗
, ℎ = 𝑔

∗, and obtain 𝑁-soliton solutions of DNLSE (1)
by reduction:

𝑔
𝑁
(𝑡, 𝑥) = ∑

𝜇=0,1

𝐴
2
(𝜇) exp[

[

2𝑁

∑

𝑗=1

𝜇
𝑗
𝜉


𝑗
+

2𝑁

∑

1≤𝑗<𝜌

𝜇
𝑗
𝜇
𝜌
𝜃
𝑗𝜌
]

]

,

(32a)

𝑓
𝑁
(𝑡, 𝑥) = ∑

𝜇=0,1

𝐴
1
(𝜇) exp[

[

2𝑁

∑

𝑗=1

𝜇
𝑗
𝜉


𝑗
+

2𝑁

∑

1≤𝑗<𝜌

𝜇
𝑗
𝜇
𝜌
𝜃
𝑗𝜌
]

]

,

(32b)

where

𝜉
𝑗
= 𝑘
𝑗
𝑥 − 𝑖𝑘

2

𝑗
𝑡 + 𝜉
(0)

𝑗
,

𝜉


𝑗
= 𝜉
𝑗
,

𝜉


𝑁+𝑗
= 𝜉
∗

𝑗
+ ln (−𝑘∗

𝑗
) ,

(33a)

𝜉


𝑗
= 𝜉
𝑗
+ ln 𝑘

𝑗
, 𝜉


𝑁+𝑗
= 𝜉
∗

𝑗
, (𝑗 = 1, 2, . . . , 𝑁) , (33b)

𝑒
𝜃
𝑗,𝑁+𝜌 =

1

2(𝑘
𝑗
+ 𝑘∗
𝜌
)
2
, (𝑗, 𝜌 = 1, 2, . . . , 𝑁) , (33c)

𝑒
𝜃
𝑗,𝜌 = 2(𝑘

𝑗
− 𝑘
𝜌
)
2

, (𝑗 < 𝜌 = 2, 3, . . . , 𝑁) , (33d)

𝑘
𝑗
, 𝜉
(0)

𝑗
are all arbitrary constants; 𝐴

1
(𝜇), 𝐴

2
(𝜇) take over

all possible combinations of 𝜇
𝑗
= 0, 1 (𝑗 = 1, 2, . . . , 2𝑁)

and satisfy the condition (28). If replacing 𝑘
𝑗
for 𝑝
𝑗
, 𝑒𝜉
(0)

𝑗

for 𝛼
𝑗
, and 𝑡 for −𝑡, (32a) and (32b) are in accord with the

𝑁-soliton solutions in [14], where the solutions of DNLSE
(1) are reduced by a multicomponent modified nonlinear
Schrödinger equation. Dynamics for one- and two-soliton
solutions for DNLSE (1) are described in Figures 3 and 4.
Figure 4 depicts 2D plot of two-soliton of DNLSE.

In summary, we present multisoliton solutions for a
general nonlinear Schrödinger equation with derivative by
Hirota’s approach. By reductions, we also directly obtain the
multisoliton solutions for nonlinear derivative Schrödinger
equation. We demonstrate that the solitons of general non-
linear Schrödinger equation with derivative and nonlinear
derivative Schrödinger equations result in elastic scattering.
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