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In this paper we test the statistical probability models for breast cancer survival data for race and ethnicity. Data was collected
from breast cancer patients diagnosed in United States during the years 1973–2009.We selected a stratified random sample of Black
Hispanic female patients from the Surveillance Epidemiology and End Results (SEER) database to derive the statistical probability
models. We used three common model building criteria which include Akaike Information Criteria (AIC), Bayesian Information
Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit tests and it was found that Black Hispanic
female patients survival data better fit the exponentiated exponential probability model. A novel Bayesian method was used to
derive the posterior density function for the model parameters as well as to derive the predictive inference for future response. We
specifically focused on Black Hispanic race. Markov Chain Monte Carlo (MCMC) method was used for obtaining the summary
results of posterior parameters. Additionally, we reported predictive intervals for future survival times. These findings would be of
great significance in treatment planning and healthcare resource allocation.

1. Introduction

1.1. Problem Statement: Breast Cancer in Black Hispanic
Women. Cancer is defined as a process that induces irre-
versible mutations in cellular genetic processes resulting in
uncontrolled growth and proliferations [1]. Tumor is defined
as any abnormal growth of cancer cells that form a lump or
mass. Human breast is primarily composed of fat, connective
tissues, lymphatic vessels, and organized lobules of milk
secreting glands.These lobules are connected exteriorly to the
nipple via secretory ducts. Most breast cancers are carcinoma

in situ (CIS) because they are confined by epithelial bound-
aries either to the duct (ductal carcinoma in situ (DCIS)) or
to the lobule (lobular carcinoma in situ (LCIS)).

Breast cancer is one of the most common life-threatening
cancers in women of any age group. According to the World
Health Organization (WHO) report 2004, breast cancer
comprises approximately 16% of all cancer types and causes
519,000 deaths annually worldwide. Surprisingly, 69% of
these deaths occurred in developing countries, refuting the
misconception that breast cancer is a disease of developed
world [2]. According to the American Institute of Cancer
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Research (AICR), over 226,000 cases of breast cancer are
diagnosed every year in USA and approximately 40,000
American women die of breast cancer every year [3].

1.2. Breast Cancer according to Race and Ethnicity. In the
United States breast cancer is one of the most frequently
diagnosed cancers across different racial and ethnic groups
[2]. Race/ethnicity specific incidence rates remained fairly
constant for all racial and ethnic groups during the years
2004–2008. [1]. Previously, it was believed that family history,
socioeconomic status, levels of education, frequency ofmam-
mograms, and access to health care resources were some of
themajor determinants affecting the prognosis of the disease.
However, recent studies have shown that racial and ethnic
factors also contribute significant risk for the prognosis of the
disease.

The American Cancer Society has found evidence that
there are notable differences in breast cancer death rates
between different states across various socioeconomic strata
and between different racial/ethnic groups [1]. Although age
is the strongest predictor for breast cancer risk, race/ethnicity
could also be a major risk factor [1]. Since the early 1990s,
breast cancer mortality rates have decreased among all ethnic
groups except the American Indians/Alaska Natives, thereby
showing another racial disparity associated with the disease.
In the United States,White women are more likely to develop
breast cancer than African-American, Hispanic, Asian, or
American Indian/Alaska native women [1].

1.3. Hispanic Black Women. Although Hispanics are the
fastest growing minority population in the United States,
there are notmuch breast cancer statistics onBlackHispanics,
specifically. Breast cancer data for Hispanics are usually
tabulated under one ethnic group (Hispanic), therefore, race-
specific breast cancer data for the Hispanic population is not
readily available. Overall, the incidence andmortality rates of
breast cancer among Hispanic (Black andWhite) women are
lower than non-HispanicWhite women [3]. Hispanic women
(Black and White) show lower levels of awareness about the
risk factors associated with the disease and have less access to
health care facilities when compared to women of any other
ethnicity.

Unfortunately, there are not many studies that elucidate
breast cancer disparities among different races within the
Hispanic ethnicity. Usual research findings describe breast
cancer incidence, mortality, and death rates and other vital
statistics associated with the disease among Hispanic women
without any details about interracial differences within the
ethnicity. Banegas and Li [4] have asserted that further study
of specific breast cancer outcomes among the different races
of Hispanic women could greatly enhance knowledge about
the distribution and determinants of the disease in this high
risk ethnic group. Their study showed that non-Hispanic
Blacks had a 1.5–2.5-fold greater risk of having stage IV breast
cancer types and 10–50% greater risk of breast cancer specific
mortality compared to non-Hispanic whites [4]. This finding
again shows the need for a study that tries to understand the

current state of affairs about breast cancer survival in this
subpopulation within United States.

1.4. Statistical Probability Models. Healthcare personnel has
collected vast amounts of phenomic and genomic data
which should bemaximally utilized for research perspectives.
These large databases should be tested with newer statistical
methods and statistical probability models. This would be
very useful to predict future patterns of diseasemorbidity and
mortality, thereby enhancing our understanding the severity
and outcomes.

Data may follow several statistical probability models
like exponential, gamma, Weibull, normal, half-normal, log-
normal, Rayleigh, inverse Gaussian, exponentiated expo-
nential (EE), exponentiated Weibull (EW), beta generalized
exponential (BGE), beta inverseWeibull (BIW), and so forth.
Statistical models are immensely useful to characterize the
data and derive reliable scientific inferences.

The biomedical and engineering fields often use exponen-
tiated exponentialmodel (EEM) for datamodeling.TheEEM,
a generalization of exponential distribution, was introduced
by Gupta and Kundu [5] and received rapid and widespread
acceptance. The EEM considers two parameters: “shape” and
“scale.” Moreover, Gupta and Kundu [6] observed that the
EEM is similar to the Weibull family and suggested the
possibility of using the EE distribution as a substitute for
Weibull model.

A random variable 𝑥 is said to follow the exponentiated
exponential distribution if its probability density function
(pdf) is given by

𝑝 (𝑥) = 𝛼𝜆 exp {− (𝜆𝑥)} (1 − exp {− (𝜆𝑥)})
𝛼−1

, (1)

where 𝛼 > 0 is the shape parameter and 𝜆 > 0 is
the scale parameter. Gupta and Kundu [5] introduced the
above mentioned density function for exponentiated expo-
nential distribution. The random variable can be expressed
as 𝑥 ∼ EE(𝛼, 𝜆). Some interesting applications of EEM
include designing rainfall estimation in the Coast of Chiapas
[7], analysis of Los Angeles rainfall data [8], and software
reliability growth models for vital quality metrics [9]. A cure
rate model based on the generalized exponential distribution
that incorporates the effects of risk factors or covariates for
the probability of an individual being a long-time survivor
was proposed by Kannan et al. [10]. Also, Gompert’z form of
exponentiated exponential model was used to predict squid
axon voltage clamp conductance [11].

For a beta generalized exponential model, the probability
density function is given by

𝑝 (𝑥) =

𝛼𝜆

𝐵 (𝑎, 𝑏)

exp {− (𝜆𝑥)}

× (1 − exp {− (𝜆𝑥)})
𝑎𝛼−1

(1 − (1 − exp {− (𝜆𝑥)})
𝛼

)

𝑏−1

,

(2)

where 𝛼 > 0 is the shape parameter and 𝜆 > 0 is the
scale parameter. There are two additional parameters, 𝑎 >

0 and 𝑏 > 0. The role of these parameters is to describe
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skewness and tail weight [12]. The BGE model generalizes
some well-known models, for example, beta exponential and
generalized exponential models, as special cases.

A Swedish physicist called Weibull [13] introduced the
Weibull distribution primarily for examining the breaking
strength of materials. The first EW model with bathtub
shaped distribution and unimodal failure rates was intro-
duced by Mudholkar and Srivastava [14]. Since then, appli-
cation of the EW model to analyze lifetime data has been
recommended by Nassar and Eissa [15] and Choudhury [16].

For the EWmodel, the probability density function (pdf)
is given by

𝑝 (𝑥) = 𝛼𝛽𝜆𝑥
𝛽−1 exp {− (𝜆𝑥

𝛽

)} (1 − exp {− (𝜆𝑥
𝛽

)})

𝛼−1

,

(3)

where 𝛼 > 0 and 𝛽 > 0 are the shape parameters and 𝜆 > 0 is
the scale parameter.

The BIW model has several applications for problems
in engineering, health, and medical fields. It shows best fit
for several data sets, for instance, the amount of time taken
for breakdown of insulating fluids subjected to tensions [17].
For the BIW model, the probability density function (pdf) is
given by

𝑝 (𝑥) =

𝛽𝑥
−(𝛽+1)

𝐵 (𝑎, 𝑏)

exp {− (𝑥
−𝛽

)} (exp {− (𝑥
−𝛽

)})

𝛼−1

× (1 − exp {− (𝑥
−𝛽

)})

𝑏−1

,

(4)

where 𝛽 represents the shape parameter and two parameters,
𝑎 > 0 and 𝑏 > 0, represent skewness and tail weight.

A novel Bayesian method can be used to derive the
posterior probability for the parameters to calculate posterior
inference.Model parameters and data are considered random
variables in a Bayesian estimation technique. Their joint
probability distribution is stated by a probabilistic model.
Data are considered as “observed variables” and parameters
as “unobserved variables” in a Bayesian method. Multiplying
likelihood and prior gives the joint distribution for the
parameters. The “prior” contains information about the
parameter. The likelihood depends on the model of underly-
ing process andmeasured as a conditional distribution which
specifies the probability of the observed data. All the infor-
mation available about the parameters is combined by prior
and likelihood. Bymanipulating the joint distribution of prior
and likelihood, inference about parameters of the probability
model can be derived from the given data. The Bayesian
inference intends to develop the posterior distribution of the
parameters for given sets of observed data.

Readers can refer to Berger [18], Geisser [19], Bernardo
and Smith [20], Ahsanullah and Ahmed [21], Gelman [22],
and Baklizi [23, 24] for further information on Bayesian
methods. Khan et al. [25], Thabane [26], Thabane and Haq
[27], Ali-Mousa andAl-Sagheer [28], andRaqab [29, 30] have
discussed several additional applications of Bayesian method
for predictive inferences.

Objectives of this paper include (i) studying some demo-
graphic and socioeconomic variables; (ii) reviewing right

skewed models EE, EW, BGE, and BIW; (iii) justifying that
the given sample data follows a specific model by applying
model selection criteria through goodness of fit tests; (iv)
performing a Bayesian analysis of the posterior distribution
of the parameters; and (v) deriving Bayesian predictivemodel
for future response.

The structural organization of this paper is as follows:
Section 2 includes a real example of breast cancer data
discussed in detail; Section 3 includes the measure of good-
ness of fit tests, log-likelihood functions, and the posterior
inference for the model parameters for race/ethnicity (Black
Hispanic females only); Section 4 includes the Bayesian
predictive model which includes the likelihood function,
posterior density function, and the predictive density for a
future response given a set of observations from the best
model; Section 5 includes the results and discussions; and
Section 6 includes the conclusion.

2. Real Life Data Example

Breast cancer data (𝑁 = 657, 712) from Surveillance,
Epidemiology, and End Results (SEER, 1973–2009) website
has beenused as a real life data example.Data on breast cancer
patients collected from twelve states have been stored in SEER
database. Stratified random sampling scheme was used to
pick nine sates randomly from these twelve states. Data from
these nine states included state-wise race/ethnicity categories
for breast cancer distribution.

This data included 4,269males and 653,443 females. Since
breast cancers are rare in males, data from females only
were used in our analysis. A simple random sampling (SRS)
method was used to select 298 female subjects from Black
Hispanic data.

Figure 1 shows the pedigree chart for the selection of
Black Hispanic breast cancer patients out of total female
breast cancer patients 𝑁 = 608, 032. In the total population,
there were 300 Black Hispanic female patients, but data were
missing for 2 participants. Figure 2 describes the nine states
(dark blue regions), which were randomly selected and were
followed by a random selection of Black Hispanic breast
cancer patients.

The descriptive statistics (frequency distribution and
summary statistics) are shown in Tables 1 and 2, respectively.
Table 1 contains the state wise frequency and its corre-
sponding percentages for the selected patients. Table 2 has
the descriptive statistics (mean, standard deviation, median,
quartiles, and variance) for somedemographic characteristics
(age at diagnosis, survival times, andmarital status at diagno-
sis) of the selected random sample of Black Hispanic breast
cancer patients.

We selected 2,000non-Hispanic Blacks out of 53,531 Black
non-Hispanics for comparing with 298 Black Hispanics in
this sample. The mean survival for non-Hispanic Blacks was
66.76 (standard deviation 30.20) and for Black Hispanics
71.38 (standard deviation 61.33). Cox Proportional Regres-
sion was used to calculate hazard ratios by ethnicity. Hazard
ratios compare the probability of an event occurring in one
group versus another and take into account the time elapsed
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Total female cancer patients 

Total Black female Hispanic 
cancer patients 

Selected Black female 
Hispanic cancer patients 

n = 298

N1 = 300

(1973–2009)
N = 608,032

Figure 1: Selection of stratified random sample of Black Hispanic
breast cancer patients from SEER (1973–2009) dataset represented
as a pedigree chart.
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Figure 2: The nine states from which the Black Hispanic breast
cancer patients were selected.Note.The Black Hispanic females (𝑛 =

298) patients were randomly selected from the dark blue colored
nine states in Figure 2.

Table 1: Frequency distribution of the selected Black Hispanic
breast cancer patients from the nine states.

States Black Hispanic
Count (%)

Georgia 94 31.5
Hawaii 1 0.3
Iowa 3 1.0
Michigan 44 14.8
New Mexico 5 1.7
Utah 4 1.3
Washington 9 3.0
California 67 22.5
Connecticut 71 23.8
Total 298 100

until the event should occur. In survival analysis, the event
under consideration is death. A hazard ratio of 1.0 represents
an equal risk of death between the groups being compared,
a hazard ratio above 1.0 means an increased risk of death,
and a hazard ratio below 1.0 represents a decreased risk
of death compared to the referent group. In this analysis,

Table 2: Given below is the marital status, survival time, and age
at diagnosis for female Black Hispanic breast cancer patients. Age
at diagnosis and survival time are classified by mean, standard
deviation (SD), median, range, and quartiles. Marital status is
classified into six categories and their respective frequencies are
reported.

Characteristics Categories Black Hispanic

Age at diagnosis (years)

Mean 54.11
SD 14.41
Median 52
Quartile

𝑄
1

44
𝑄
2

52
𝑄
3

64
Variance 207.65

Survival time (months)

Mean 71.38
SD 61.33
Median 50.50
Quartile

𝑄
1

25
𝑄
2

50.50
𝑄
3

101.25
Variance 3761.04

Marital status at diagnosis

Single 57
Married 124
Separated 7
Divorced 51
Widowed 50
Unknown 9

we used non-Hispanic Blacks as a referent group. Statistical
significance is established if the 95% confidence interval
did not include 1. Non-Hispanic Blacks had a significantly
increased risk of death compared to Black Hispanics (Hazard
ratio: 1.445 95% Wald Robust Confidence Limits 1.210–
1.724; 95%Profile LikelihoodConfidence Limits 1.265–1.659).
When compared to non-Hispanic Blacks, Hispanic Blacks
had a significantly decreased risk of death (hazard ratio:
0.692 95%Wald Robust Confidence Limits 0.580–0.826; 95%
Profile Likelihood Confidence Limits 0.603–0.791). These
results are consistent with the mean survival times for each
group as well as the observed survival curve, confirming the
longer survival among Hispanic Blacks and shorter survival
among non-Hispanic Blacks.

3. Methods of Goodness of Fit

Akaike Information Criterion (AIC), Deviance Information
Criterion (DIC), and Bayesian Information Criterion (BIC)
are themost commonly usedmodels tomeasure the goodness
of fit. DIC, a Bayesian measure of fit, is used for comparison
of different models, for example, the use of public data by
Congdon [31, 32]. The values of DIC can be either positive or
negative.Models with lower values are considered better than
others. DIC is similar to AIC and provides the same results
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as AIC when models with only fixed effects are fitted. BIC is
an asymptotic result which assumes that the data distribution
is an exponential family and can only be used to compare
estimated models when numerical values of the dependent
variable are identical for all estimates being compared. The
BIC penalizes free parameters more than AIC. As is the case
with AIC, given any two estimated models, the model with
lower value of BIC is preferred.

3.1. The Log-Likelihood Function and Reparameterization. A
reparameterization method from the Birnbaum-Saunders
lifetime model was proposed by Ahmed et al. [33]. Later,
Achcar et al. [34] considered a reparameterization from
certain skewedmodels. A reparameterizationmethodmay be
applied in terms of the log-likelihood functions considering
data x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) from the models described earlier

which are given in the following.
The log-likelihood function from the EE model is given

by

ℓ (𝛼, 𝜆 | x) = 𝑛 log (𝛼) + 𝑛 log (𝜆) + (𝛼 − 1)

×

𝑛

∑

𝑖=1

log (1 − exp {− (𝜆𝑥
𝑖
)}) − 𝜆

𝑛

∑

𝑖=1

𝑥
𝑖
.

(5)

Assume 𝜌
1
= log(𝛼) and 𝜌

2
= log(𝜆). It is assumed that 𝜌

1
and

𝜌
2
are independently distributed. To obtain noninformative

prior for 𝜌
1
and 𝜌
2
, let a uniform prior distribution for 𝜌

𝑖
be

𝑈(−𝑐
𝑖
, 𝑐
𝑖
), for all 𝑖 = 1, 2. Then the joint posterior density is

given by

𝑝 (𝜌
1
, 𝜌
2
| x)

= 𝑝 (𝜌
1
, 𝜌
2
) × exp{𝑛𝜌

1
+ 𝑛𝜌
2
− 𝑛𝑥 exp {(𝜌

2
)}

+ (exp {(𝜌
1
)} − 1)

×

𝑛

∑

𝑖=1

log (1 − exp {−𝑥
𝑖
exp {(𝜌

2
)}})} .

(6)

The log-likelihood function from the beta generalized expo-
nentiated model is given by

ℓ (𝛼, 𝜆, 𝑎, 𝑏 | x) = 𝑛 log(𝛼,

𝜆

𝐵 (𝑎, 𝑏)

) − 𝜆

𝑛

∑

𝑖=1

𝑥
𝑖
+ (𝑎𝛼 − 1)

×

𝑛

∑

𝑖=1

log (1 − exp {− (𝜆𝑥
𝑖
)}) + (𝑏 − 1)

×

𝑛

∑

𝑖=1

log (1 − [1 − exp {− (𝜆𝑥
𝑖
)}]
𝛼

) .

(7)

Assume 𝜌
1

= log(𝑎); 𝜌
2

= log(𝑏); 𝜌
3

= log(𝛼); and
𝜌
4

= log(𝜆). We further assume that 𝜌
1
, 𝜌
2
, 𝜌
3
, and 𝜌

4
are

independently distributed. To obtain noninformative prior

for 𝜌
1
, 𝜌
2
, 𝜌
3
, and 𝜌

4
, let a uniform prior distribution for 𝜌

𝑗

be 𝑈(−𝑑
𝑗
, 𝑑
𝑗
), for all 𝑗 = 1, 2, 3, 4. Then the joint posterior

density is given by

𝑝 (𝜌
1
, 𝜌
2
, 𝜌
3
, 𝜌
4
| x)

= 𝑝 (𝜌
1
, 𝜌
2
, 𝜌
3
, 𝜌
4
)

× [𝑛 log(

𝑒
𝜌3+𝜌4

𝐵 (𝑒
𝜌1 , 𝑒
𝜌2)

) − 𝑒
𝜌4

𝑛

∑

𝑖=1

𝑥
𝑖
+ (𝑒
𝜌1+𝜌3

− 1)

×

𝑛

∑

𝑖=1

log (1 − exp {−𝑒
𝜌4
𝑥
𝑖
}) (𝑒
𝜌2

− 1)

×(

𝑛

∑

𝑖=1

log (1 − (1 − exp {−𝑒
𝜌4
𝑥
𝑖
})
𝑒𝜌3

))] .

(8)

The log-likelihood function from the EWmodel is derived by

ℓ (𝛼, 𝛽, 𝜆 | x)

= 𝑛 log (𝛼) + 𝑛 log (𝛽) + 𝑛 log (𝜆) + (𝛼 − 1)

×

𝑛

∑

𝑖=1

log (1 − exp {− (𝜆𝑥
𝛽

𝑖
)})

− 𝜆

𝑛

∑

𝑖=1

𝑥
𝛽

𝑖
+ (𝛽 − 1)

𝑛

∑

𝑖=1

log (𝑥
𝑖
) .

(9)

Assume 𝜌
1
= log(𝛼); 𝜌

2
= log(𝛽); and 𝜌

3
= log(𝜆). It is further

assumed that 𝜌
1
, 𝜌
2
, and 𝜌

3
are independently distributed. To

obtain non-informative prior for 𝜌
1
, 𝜌
2
, and 𝜌

3
, let a uniform

prior distribution for 𝜌
𝑘
be 𝑈(−𝑒

𝑘
, 𝑒
𝑘
), for all 𝑘 = 1, 2, 3.

Then the joint posterior density is derived by

𝑝 (𝜌
1
, 𝜌
2
, 𝜌
3
| x)

= 𝑝 (𝜌
1
, 𝜌
2
, 𝜌
3
) × exp{𝑛 (𝜌

1
+ 𝜌
2
+ 𝜌
3
)

− 𝑒
𝜌3

𝑛

∑

𝑖=1

𝑥
𝑒𝜌2

𝑖
+ (𝑒
𝜌1

− 1)

×

𝑛

∑

𝑖=1

log (1 − exp {−𝑒
𝜌3
𝑥
𝑒𝜌2

𝑖
})

+ (𝑒
𝜌2

− 1)

𝑛

∑

𝑖=1

log (𝑥
𝑖
)} .

(10)

The log-likelihood function from the BIWmodel is given by

ℓ (𝛽, 𝑎, 𝑏 | x)

= 𝑛 log(

𝛽

𝐵 (𝑎, 𝑏)

) − 𝑎

𝑛

∑

𝑖=1

𝑥
−𝛽

𝑖
+ (𝛽 − 1)

×

𝑛

∑

𝑖=1

log (𝑥
𝑖
) + (𝑏 − 1)

𝑛

∑

𝑖=1

log (1 − exp {−𝑥
−𝛽

𝑖
}) .

(11)
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Table 3: Selection of the best model for Black Hispanic females on
the basis of AIC, BIC, and DIC criterions.

Model criterions AIC BIC DIC
Exponentiated exponential 3136.72 3144.11 3136.732
Exponentiated Weibull 3184.25 3191.64 3182.328
Beta generalized exponential 3262.20 3276.98 3256.208
Beta inverse Weibull 3323.65 3334.74 3317.650

Assume 𝜌
1
= log(𝛽); 𝜌

2
= log(𝑎); and 𝜌

3
= log(𝑏). We further

assume that 𝜌
1
, 𝜌
2
, and 𝜌

3
are independently distributed. To

obtain non-informative prior for 𝜌
1
, 𝜌
2
, and 𝜌

3
, let a uniform

prior distribution for 𝜌
ℎ
be 𝑈(−𝑓

ℎ
, 𝑓
ℎ
), for all ℎ = 1, 2, 3.

Then the joint posterior density is given by

𝑝 (𝜌
1
, 𝜌
2
, 𝜌
3
| x)

= 𝑝 (𝜌
1
, 𝜌
2
, 𝜌
3
) [𝑛 log(

𝑒
𝜌1

𝐵 (𝑒
𝜌2 , 𝑒
𝜌3)

)

− 𝑒
𝜌2

𝑛

∑

𝑖=1

𝑥
−𝑒𝜌1

𝑖
+ (𝑒
𝜌1

− 1)

×

𝑛

∑

𝑖=1

log (𝑥
𝑖
) + (𝑒
𝜌3

− 1)

×

𝑛

∑

𝑖=1

log(1 − exp {−𝑒
−𝑥𝑖

−𝑒
𝜌1

})] .

(12)

A better performance of the posterior distributions for the
parameters can be achieved with the reparameterization
method. Table 3 gives the results of the measures of goodness
of fit for Black Hispanic females. Tables 4–7 summarize the
results of the posterior parameters. Figures 3–6 show the
posterior kernel densities for the parameters.

3.2.The Results of Goodness of Fit Tests and Posterior Inference
for the Parameters from the Black Hispanic Survival Data.
Table 3 includes the AIC, BIC, and DIC values for the EE,
EW, BGE, and BIWmodels. Better model fit is inferred if the
values of AIC, BIC, and DIC are the least. The data fits EE
model better than the other models. The estimated value of
AIC is the lowest (3136.72), while the DIC value is very close
to AIC. Comparing the estimated values of all AIC, BIC, and
DIC for the models, the EEM fits better for the survival days
because it produces smaller values for all three criteria AIC,
BIC, and DIC.

Table 4 summarizes the results of the posterior distri-
bution of the parameters from the EE for the Black His-
panic breast cancer patients’ survival data. In the Bayesian
approach, the knowledge of the distribution of the parameters
is updated through the use of observed data, resulting in what
is known as the posterior distribution of the parameters. In
the case of breast cancer data, we are interested in estimating
the posterior distribution of the parameters assuming that
observed random sample form an appropriate statistical
probability distribution.

The values of the 𝜌
1
and 𝜌

2
are generated from the data

and the results of the posterior distribution parameters 𝛼

and 𝜆 are estimated using the MCMCmethod. Samples from
a probability distribution can be generated using Markov
Chain Monte Carlo which is a class of algorithms used
in statistics [35]. The EE model is used to derive the log-
likelihood function and the parameter values are assigned
to the appropriate theoretical probability distributions. The
summary results (mean, SD, MC error, median, and con-
fidence intervals) of the parameters are obtained by using
the WinBUGS software. In this process the early iterations
up to 1,000 are ignored in order to remove any biases of
estimated values of the parameters resulting from the value
of x utilized to initialize the chain. This process is known as
burn-in. The remaining samples are treated as if the samples
are from the original distribution (after elimination of the
burn-in samples). Fifty thousand (50,000) Monte Carlo rep-
etitions were used to produce the inference for the posterior
parameters as shown in Table 4.The graphical representation
of the parameters’ behavior is displayed in Figure 3. After
50,000 Monte Carlo repetitions, the kernel densities for both
shape and scale parameters follow approximately symmetric
distributions.

Table 5 shows the summary results of the posterior dis-
tribution of the parameters from the exponentiated Weibull.
The Black Hispanic female breast cancer patients’ survival
data has been used for these results. The values 𝜌

1
, 𝜌
2
, and

𝜌
3
have been generated from the data. Using the MCMC

method, the results of the posterior distribution parameters
𝛼, 𝛽, and 𝜆 are estimated by setting the generated values.
The log-likelihood function is derived from the EW model.
Subsequently, the parameter values which are assigned to
appropriate probability distributions are derived. The sum-
mary results (mean, SD, MC Error, median, and confidence
intervals) of the parameters are derived using the WinBugs
software. The graphical representation of distributions of the
parameter behaviors has been summarized in Figure 4. The
shape parameters𝛽 and 𝜌

2
show a normal distribution, while

other model parameters show skewed distributions.
Table 6 shows the summary results of posterior distribu-

tion of the parameters from the BGE model. Black Hispanic
female breast cancer patients’ data has been used for these
results. We used the WinBugs software to obtain the sum-
mary results (mean, SD, MC error, median, and confidence
intervals) of the parameters. The graphical representation
of the parameters for female in the case of BGE has been
displayed in Figure 5. A symmetrical pattern of distribution
is shown by the parameters 𝜆 and 𝜌

4
, while a nonsymmetrical

distribution is shown by other parameters.
Table 7 shows the summary results of the posterior

distribution of the parameters from the BIW model. The
Black Hispanic female breast cancer patients’ survival data
has been used. The summary results which include (mean,
SD, MC error, median, and confidence intervals) of the
parameters have been derived by using theWinBugs software.
The graphical representations of the parameters for females
in the case of BIW model have been displayed in Figure 6.
It is noted that the skewed distribution pattern is shown by
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Table 4: Summary of the results of the posterior parameters from exponentiated exponential for BlackHispanic females breast cancer patients
(𝑛 = 298).

Node Mean SD MC error Median 95% CI Sample
𝛼 1.234 0.09684 8.94𝐸 − 04 1.231 (1.053, 1.434) 50000
𝜆 0.01595 0.001142 1.06𝐸 − 05 0.01593 (0.01377, 0.01824) 50000
𝜌
1

0.2073 0.07844 7.26𝐸 − 04 0.2076 (0.05193, 0.3608) 50000
𝜌
2

−4.141 0.07182 6.69𝐸 − 04 −4.139 (−4.285, −4.004) 50000
Dbar Dhat pD

Zeros 3134.730 3132.720 2.006
Total 3134.730 3132.720 2.006
Dbar: post.mean of −2 log𝐿; Dhat: −2 log𝐿 at post.mean of stochastic nodes.
𝜌
1
∼dunif (−10, 10); 𝜌

2
∼dunif (−10, 10).

Table 5: Summary results of the posterior parameters for exponentiatedWeibull for Black Hispanic females breast cancer patients (𝑛 = 298).

Node Mean SD MC error Median 95% CI Sample
𝛼 2.743 0.02486 2.43𝐸 − 04 2.736 (2.719, 2.809) 50000
𝛽 0.8414 0.01005 9.04𝐸 − 05 0.841 (0.8227, 0.8625) 50000
𝜆 0.04858 0.001167 1.31𝐸 − 05 0.04892 (0.04547, 0.04976) 50000
𝜌
1

1.009 0.008985 8.77𝐸 − 05 1.006 (1.000, 1.033) 50000
𝜌
2

−0.1728 0.01193 1.07𝐸 − 04 −0.1731 (−0.1952, −0.1479) 50000
𝜌
3

−3.025 0.02458 2.77𝐸 − 04 −3.018 (−3.091, −3.001) 50000
Dbar Dhat pD

Zeros 3181.290 3180.250 1.039
Total 3181.290 3180.250 1.039
Dbar: post.mean of −2 log𝐿; Dhat: −2 log𝐿 at post.mean of stochastic nodes.
𝜌
1
∼dunif (1, 2); 𝜌

2
∼dunif (−10, 1); 𝜌

3
∼dunif (−4, −3).

parameters 𝛽 and 𝜌
1
from the BIW, while other parameters

show approximately uniform distributions.

4. The Bayesian Predictive Survival Model

Due to the current economic crisis, health care costs are
increasing tremendously. It is important for health care
researchers and providers to promptly identify the high
risk population variables for several diseases. The goal is
to identify and provide preventive interventions without
significantly increasing the cost of management. Currently,
predictive modeling is a popular technique used for high-
risk assessment at very low costs. Health care providers and
researcherswill greatly benefit frompredictivemodeling both
to improve present health care services and reduce future
health care costs.

Predictive modeling is a process that can be applied to
available healthcare data, for instance, identification of people
who have high medical need and who are “at risk” for above-
average future medical service utilization. We are deriving a
novel Bayesian method which can predict the breast cancer
survival days based on past data collected from patients.

The Bayesian predictive method is growing extremely
popular, finding newer applications in the fields of health
sciences, engineering, environmental sciences, business and
economics, and social sciences, among others. The Bayesian
predictive approach is used for the design and analysis of
survival research studies in the health sciences. It is widely

used to reduce healthcare costs and to economically allocate
healthcare resources.

In this section, a predictive survival model for breast
cancer patients is developed by using a novel Bayesian
method. It is found that the Black Hispanic female breast
cancer patients’ data follow the EE model.

Let us assume that the data x = (𝑥
1
, . . . , 𝑥

𝑛
) represents 𝑛

female breast cancer patients survival days that follow the EE
model, and let 𝑧 be a future response (or future survival days).
The predictive density of 𝑧 for the observed data x is

𝑝 (𝑧 | x) = ∬𝑝 (𝑧 | 𝛼, 𝜆) 𝑝 (𝛼, 𝜆 | x) 𝑑𝜆 𝑑𝛼, (13)

where 𝑝(𝛼, 𝜆 | x) is the posterior density function and
𝑝(𝑧 | 𝛼, 𝜆) represents the probability density function of a
future response (𝑧) that may be defined from model (1). The
posterior density is given by

𝑝 (𝛼, 𝜆 | x) = Ψ (x) 𝐿 (𝛼, 𝜆 | x) 𝑝 (𝛼, 𝜆) , (14)

where 𝐿(𝛼, 𝜆 | x) is the likelihood function, 𝑝(𝛼, 𝜆) is the
prior density for the parameters, and the reciprocal of the
normalizing constant is

Ψ(x)−1 = ∬𝐿 (𝛼, 𝜆 | x) 𝑝 (𝛼, 𝜆) 𝑑𝜆 𝑑𝛼. (15)

To derive the likelihood function, let 𝑥
1
, . . . , 𝑥

𝑛
be a ran-

dom sample of size 𝑛 from model (1). Thus, x = (𝑥
1
, . . . , 𝑥

𝑛
)
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Table 6: Summary results of the posterior parameters in the case of BGE for Black Hispanic females breast cancer patients (𝑛 = 298).

Node Mean SD MC error Median 95% CI Sample
a 2.735 0.01647 1.64𝐸 − 04 2.73 (2.719, 2.779) 50000
𝛼 1.006 0.005935 5.38𝐸 − 05 1.004 (1.000, 1.022) 50000
b 1.029 0.02016 1.55𝐸 − 04 1.025 (1.001, 1.069) 50000
𝜆 0.02494 0.001025 7.24𝐸 − 06 0.02492 (0.02298, 0.02698) 50000
𝜌
1

1.006 0.005986 5.94𝐸 − 05 1.004 (1.00, 1.022) 50000
𝜌
2

0.02805 0.01952 1.51𝐸 − 04 0.02482 (0.001068, 0.06674) 50000
𝜌
3

0.005888 0.005865 5.32𝐸 − 05 0.004063 (1.48𝐸 − 04, 0.02165) 50000
𝜌
4

−3.692 0.04112 2.91𝐸 − 04 −3.692 (−3.773, −3.613) 50000
Dbar Dhat pD

Zeros 3255.200 3254.200 1.004
Total 3255.200 3254.200 1.004
Dbar: post.mean of −2 log𝐿; Dhat: −2 log𝐿 at post.mean of stochastic nodes.
𝜌
1
∼dunif (1, 2), 𝜌

2
∼dunif (0, 0.07), 𝜌

3
∼dunif (0, 1), and 𝜌

4
∼dunif (−4, −3).

Table 7: Summary of the posterior parameters in the case of BIW for Black Hispanic females breast cancer patients (𝑛 = 298).

Node Mean SD MC error Median 95% CI Sample
a 1.031 0.01789 8.38𝐸 − 05 1.03 (1.001, 1.06) 50000
b 1.047 0.02736 1.21𝐸 − 04 1.047 (1.002, 1.092) 50000
𝛽 402.1 1.344 0.01014 402.5 (398.4, 403.4) 50000
𝜌
1

5.997 0.003353 2.53𝐸 − 05 5.998 (5.988, 6.000) 50000
𝜌
2

0.03002 0.01736 8.14𝐸 − 05 0.02997 (0.001484, 0.05849) 50000
𝜌
3

0.0454 0.02614 1.16𝐸 − 04 0.04559 (0.00228, 0.08786) 50000
Dbar Dhat pD

Zeros 3317.650 3317.650 −0.000
Total 3317.650 3317.650 −0.000
Dbar: post.mean of −2 log𝐿; Dhat: −2 log𝐿 at post.mean of stochastic nodes.
𝜌
1
∼dunif (0, 6), 𝜌

2
∼dunif (0, 0.06), and 𝜌

3
∼dunif (0, 0.09).
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Figure 3: Kernel density of the posterior parameters in the case of exponentiated exponential for BlackHispanic females breast cancer patients
(𝑛 = 298).



The Scientific World Journal 9

0.0

10.0

20.0

30.0

40.0

0.0

10.0

20.0

30.0

40.0

0.975 1.0 1.025 1.075

0.0

25.0

50.0

75.0

100.0

0.035 0.04 0.045

0.0

200.0

400.0

600.0

800.0

0.8 0.825 0.85 0.875

0.0

20.0

40.0

60.0

2.7 2.8 2.9

0.0

10.0

20.0

30.0

40.0

𝛼 sample: 50000 𝛽 sample: 50000

𝜆 sample: 50000 𝜌1 sample: 50000

𝜌2 sample: 50000 𝜌3 sample: 50000

−0.25 −0.2 −0.15 −3.3 −3.2 −3.1 −3.0

Figure 4: Kernel density of the posterior parameters for the exponentiated Weibull for Black Hispanic females breast cancer patients
(𝑛 = 298).

forms an observed sample. Then given a set of data x =

(𝑥
1
, . . . , 𝑥

𝑛
) from (1), the likelihood function is given by

𝐿 (𝛼, 𝜆 | x) ∝ (𝛼𝜆)
𝑛 exp{−

𝑛

∑

𝑖=1

(𝜆𝑥
𝑖
)}

× [

𝑛

∏

𝑖=1

(1 − exp {− (𝜆𝑥
𝑖
)})
𝛼−1

] .

(16)

An estimation theory under uncertain prior information
was discussed in detail by Ahmed [36]. Further details
on Bayes and empirical Bayes estimates of survival and
hazard functions of a class of distribution were discussed by
Ahsanullah and Ahmed [21]. The estimation of lognormal
mean by making use of uncertain prior information was
also discussed by Ahmed and Tomkins [37]. The Bayesian
predictive model from the Weibull life model, by means of
a conjugate prior for the scale parameter and a uniform prior
for the shape parameter, has been discussed at length byKhan
et al. [25]. The prior density for the scale parameter (𝜆) can
be given by

𝑝 (𝜆) ∝ 𝜆 exp {−𝜆} , 𝜆 > 0. (17)

With reference from Khan et al. [25], the shape parameter, 𝛼,
has a uniform prior over the interval (0, 𝛼), which is given as
follows:

𝑝 (𝛼) ∝

1

𝛼

, 𝛼 > 0. (18)

Thus, the joint prior density is

𝑝 (𝛼, 𝜆) ∝

𝜆 exp {−𝜆}

𝛼

, 𝛼, 𝜆 > 0. (19)

Considering the prior density in (19), the posterior density of
𝛼 and 𝜆 is given by

𝑝 (𝛼, 𝜆 | x) = Ψ
0
(x) (𝛼)

𝑛−1

𝜆
𝑛+1 exp{−

𝑛

∑

𝑖=1

(𝜆𝑥
𝑖
) − 𝜆}

× [

𝑛

∏

𝑖=1

(1 − exp {− (𝜆𝑥
𝑖
)})
𝛼−1

] ,

(20)

where Ψ
0
(x) is a normalizing constant.
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Figure 5: Kernel density of the posterior parameters in the case of beta generalized exponential for Black Hispanic females breast cancer
patients (𝑛 = 298).

4.1. Predictive Density for a Single Future Response. Let 𝑧 be a
single future response from the model specified by (1), where
𝑧 is independent of the observed data. Then, the predictive
density for a single future response (𝑧) given x = (𝑥

1
, . . . , 𝑥

𝑛
)

is

𝑝 (𝑧 | x) = ∫

+∞

𝛼=0

∫

+∞

𝜆=0

𝑝 (𝑧 | 𝛼, 𝜆) 𝑝 (𝛼, 𝜆 | x) 𝑑𝜆 𝑑𝛼,

(21)

where 𝑝(𝑧 | 𝛼, 𝜆) may be defined from model (1). Thus, the
predictive density for a single future response is given by

𝑝 (𝑧 | x)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

Ψ
1
(x) ∫
+∞

𝛼=0

∫

+∞

𝜆=0

(𝛼)
𝑛

𝜆
(𝑛+2)

× exp {− (𝜆𝑧)} (1 − exp {− (𝜆𝑧)})
𝛼−1

× exp{−

𝑛

∑

𝑖=1

(𝜆𝑥
𝑖
) − 𝜆}

×[

𝑛

∏

𝑖=1

(1−exp {− (𝜆𝑥
𝑖
)})
𝛼−1

]𝑑𝜆𝑑𝛼, for 𝑧>0; 𝛼, 𝜆>0,

0 elsewhere,
(22)

where Ψ
1
(x) is a normalizing constant.
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Figure 6: Kernel density of the posterior parameters in the case of BIW for Black Hispanic females breast cancer patients (𝑛 = 298).

0.014

0.012

0.010

0.008

0.006

0.004

0.002

Pd
f

Hispanic

100 200 300 400

z

Figure 7: The predictive density for a single future response for
Black Hispanic survival data.

Figure 7 shows the graphical representation of the predic-
tive density based on the Black Hispanic female breast cancer
patients’ survival days. It is noted that the predictive density
formed right skewed model.

The summary results of Black Hispanic female predictive
means, standard errors, and predictive intervals for future
survival days are given in Table 8. The predictive shape char-
acteristics, raw moments, corrected moments, and measures
of skewness and kurtosis are also presented in Table 8. These
findings are very important for health care researchers to

characterize future disease patterns and to make an effective
future plans for prevention strategies for the diseases.

5. Results and Discussion

The mean ± SD of age at diagnosis is 54.11 ± 14.41 years
for Black Hispanic group. The minimum age at diagnosis for
Black Hispanic was 24 years. The mean ± SD of survival time
(months) for Black Hispanic females was 71.38 ± 61.33. The
majority of these patients were married.

The EE model is shown to be a better fit compared to
other models for Black Hispanic survival data. The lowest
DIC value for Black Hispanics is 3136.732. In the case of the
EE model, mean ± SD for 𝛼 and 𝜆 values is 1.234 ± 0.09684

and 0.01595 ± 0.001142, respectively. Rho (𝜌) values are as
follows: 𝜌

1
= (−10, 10) and 𝜌

2
= (−10, 10).

We used the Bayesian method to determine the inference
for posterior parameters given the breast cancer survival
model. Tables 4–7 summarize the inferences for the poste-
rior parameters using less Markov Chain errors for Black
Hispanic females. Figures 3–6, report the dynamic kernel
densities for each of the parameters for Black Hispanic
females. This helps us to observe the shapes of the kernel
densities.

The graphical representation of Black Hispanic females’
based on future survival times is shown in Figure 7. It should
be noted that future survival times forHispanic Black females
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Table 8: Predictive inference for Black Hispanic female breast
cancer patients survival data.

Summary Black Hispanic
Mean 89.7881
SE 1.2802
Raw moments

𝑚
1

89.7881
𝑚
2

11339.90
𝑚
3

2.0034 × 10
6

𝑚
4

4.39016 × 10
8

Corrected moments
𝜇
1

89.7881
𝜇
2

3277.84
𝜇
3

396582
𝜇
4

7.3029 × 10
7

Skewness and Kurtosis
𝛽
1

4.46582
𝛽
2

6.79703
𝛾
1

2.11325
𝛾
2

3.79703
Predictive intervals

90% (28.532, 325.350)
95% (24.120, 332.450)
98% (22.013, 346.092)
99% (21.051, 358.301)

show positively skewed distribution. Table 8 summarizes the
predictive raw and corrected moments, predictive skewness
and kurtosis, and predictive intervals for future response for
Black Hispanic female future survival times.

6. Conclusions

There were four types of statistical probability models used
to the Black Hispanic females cancer survival data. The
exponentiated exponential model was found to be the best
fitted model to the Black Hispanic females cancer survival
data compared to the other widely used models.

The results of the predictive inference under the fitted
model were obtained and it was noticed that the shape of the
future survival model for BlackHispanic is positively skewed.
Given the patient’s current and past history of reported
conditions, these models help the healthcare providers and
researchers to predict a patient’s future survival outcomes.
Thus a combination of current knowledge and future predic-
tions can be used to enhance and improve the rationales for
better utilization of current facilities and planned allocation
of future resources.

Descriptive statistics were obtained by using the SPSS
software version 19.0. The geographic maps of the randomly
selected nine states out of the twelve states were derived using
the “Google fusion table” [38]. We used the SPSS version
19.0 software [39] to obtain basic summary statistics for the
breast cancer survival times for Black Hispanic subset. To
show the graphical representations of the predictive density

for a single future response for Black Hispanic women,
we used advanced computational software package called
“Mathematica version 8.0” [40].Weused the same software to
derive additional predictive inferences for the ethnicity about
their survival times. We used the WinBugs software to check
the goodness of fit tests, to derive the summary results of the
posterior parameters, to determine the kernel densities of the
parameters, and to carry out all related calculations.
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