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Reliable information processing in cells requires high sensitivity to changes in the input signal but low sensitivity to random
fluctuations in the transmitted signal. There are often many alternative biological circuits qualifying for this biological function.
Distinguishing theses biological models and finding the most suitable one are essential, as such model ranking, by experimental
evidence, will help to judge the support of the working hypotheses forming each model. Here, we employ the approximate
Bayesian computation (ABC) method based on sequential Monte Carlo (SMC) to search for biological circuits that can maintain
signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations.
By systematically analyzing three-component circuits, we rank these biological circuits and identify three-basic-biological-motif
buffering noise whilemaintaining sensitivity to long-term changes in input signals.We discuss in detail a particular implementation
in control of nutrient homeostasis in yeast. The principal component analysis of the posterior provides insight into the nature of
the reaction between nodes.

1. Introduction

A challenge in systems biology is to understand the mecha-
nism by which cells sense and process external information
using biochemical networks of interacting genes and
proteins. The precise nature of information flow through
a biological network, which is governed by factors such as
response sensitivities and noise buffering, greatly affects
the operation of biological systems. Quantitative analysis
of these properties is often difficult in naturally occurring
systems but can be greatly facilitated by studying simple
synthetic networks [1–3]. Generally, labeling “noise” or
“signal” depends on the object’s function. There exist a lot of
cases where noise is not a negative component for the system,

but it adds dynamical behavior such as the case of the bursts
in gene expression [4]. The “noise” in this work refers to the
object that can weaken wanted signal. Reliable information
processing requires high sensitivity to changes in the input
signal but low sensitivity to random fluctuations in the
transmitted signal. Recent studies have shown that linear
cascades display an interplay between sensitivity to changes
in input signal and the ability to buffer stochastic fluctuations
[5–7]. A key question is whether network connectivity, for
example, the presence of positive or negative feedbacks, can
modulate this interplay, reducing propagated noise while
maintaining high sensitivity. Dublanche et al. revealed the
negative feedback loop as being a way to control and decrease
transcriptional noise via experiment [8]. Becskel and Serrano
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and Simpson et al. also argued that negative feedbacks can
buffer noise relative to linear cascades [9, 10]. These studies,
however, did not consider the associated changes in signaling
sensitivity. Hornung and Barkai argued that negative
feedback can buffer noise, but this buffering comes at the
expense of an even greater reduction in signaling sensitivity
[3]. Guantes et al. [11] introduced an analytical framework
to study the amplitude and frequency response of a general
class of two-component genetic circuits and showed that the
presence of a feedback interaction in the detection module
imposes a trade-off on amplitude and frequency detection,
whose intensity depends on feedback strength. They also
observed that coherent feed-forward loops can act as good
frequency and amplitude noise-tolerant detectors [11].
Based on the framework of Hornung and Barkai’s handling
issues, we employ the approximate Bayesian computation
scheme to select the biochemical circuits that can buffer
propagated noise while maintaining signaling sensitivity.
Our approach allows us to exploit methods from Bayesian
statistics, including efficient exploration of models spaces
and high-dimensional parameter spaces and the ability
to rank models with respect to their ability to maintain
signaling sensitivity while minimizing noise propagation.

Gene expression is a stochastic or noisy process. This
noise comes about in twoways [12].The inherent stochasticity
of biochemical processes such as transcription and trans-
lation generates “intrinsic” noise. In addition, fluctuations
in the amounts or states of other cellular components lead
indirectly to variation in the expression of a particular gene
and thus represent “extrinsic” noise. In the current work,
we mainly focus on the case that the sole noise source is
fluctuations in the input node, namely, the “extrinsic” noise.
In the current study, the signal is defined as a long-term
change in the input, while the noise is characterized by rapid
stochastic fluctuation. Both signal and noise can be described
as time series, and the difference is mainly in the time scale
of changes.

Typically, there are often many possible alternative net-
work circuits that are capable of executing a particular
biological function. Some topologies may be more favorable
because of robustness. Distinguishingmodels and finding the
most suitable ones are an important challenge in systems
biology, as such model ranking, by experimental evidence,
will help to judge the support of the working hypotheses
forming each model. However, we often lack reliable infor-
mation about model parameters and the likelihood surfaces
of large models are complex. Here, we employ a novel
statistical tool, approximate Bayesian computation scheme,
that allows us to (i) compare the performance of different
models and (ii) estimate the posterior distributions of model
parameters. Approximate Bayesian computation (ABC) is a
popular approach to address inference problems, where the
likelihood function is intractable or expensive to calculate
[13–17]. In ABC methods, the evaluation of the likelihood is
replaced by a simulation-based procedure [18–22]. Despite
representing a substantial methodological advance, existing
methods based on rejection sampling or Markov chain
Monte Carlo can be inefficient and accordingly require more
iterations than may be practical to implement. Recently, the

ABC method based on sequential Monte Carlo (SMC) is
suggested to overcome these inefficiencies [23–26]. In this
work, to design themost favorable biological circuits that can
effectively buffer propagated noise while maintaining high
signaling sensitivity, we utilize the ABC method based on
sequential Monte Carlo to rank model structures and design
the corresponding model parameters.

2. Models and Methods

2.1. Models. To analyze the effect of network architecture
on the interplay between noise buffering and sensitivity, we
consider the network that is composed of three nodes, one
input node, 𝑛A, and two other components, 𝑛B and 𝑛C, as
shown in Figure 1(a). Generally, we define the node, 𝑛C, as the
output node. Based on the Fluctuation Dissipation Theorem
[27–29], the system of equations that describe the kinetic
response of the network is given by

𝑑𝑛
𝑖

𝑑𝑡

= 𝐽
+

𝑖
(𝑛A, 𝑛B, 𝑛C) − 𝐽

−

𝑖
(𝑛A, 𝑛B, 𝑛C) , (1)

where 𝐽
+

𝑖
and 𝐽

−

𝑖
are the total fluxes of production and

elimination of 𝑛
𝑖
and they are determined by Michaelis-

Menten constants and 𝑖 = A, B, C.
At a steady state the equations given in (1) equal zero;

hence,

⟨𝐽
+

𝑖
⟩ = ⟨𝐽

−

𝑖
⟩ = ⟨𝐽

𝑖
⟩ . (2)

The triangular brackets denote the steady-state average.

2.2. Methods. ABC methods have been conceived with the
aim of inferring posterior distributions, where likelihood
functions are computationally intractable or too costly to
evaluate.They exploit the computational efficiency ofmodern
simulation techniques by replacing the calculation of the
likelihood with a comparison between the observed and sim-
ulated data. The disadvantage of the ABC rejection sampler
is that the acceptance rate is low when the prior distribution
is very different from the posterior distribution. To avoid
this problem, the ABC algorithms based on SMC have been
developed [22, 23]. In ABC SMC, a number of sampled
parameter values (called particles), {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
}, sampled

from the prior distribution 𝜋(𝜃), are propagated through a
sequence of intermediate distributions, 𝑝(𝜃 | 𝐷

𝑡
< 𝜀
𝑡
),

𝑡 = 1, 2, . . . , 𝑇 − 1, until it represents a sample from the target
distribution 𝑝(𝜃 | 𝐷

𝑇
< 𝜀
𝑇
) with 𝑇 indicating the final

state, as shown in Figure 1(e); here 𝐷 relates model output
to the desired output characteristic. In Bayesian inference,
comparison of a discrete set of models can be performed
using the marginal posterior. We define 𝑀 as model space
and 𝜃 as the parameter space. Considering the joint space



The Scientific World Journal 3

Three-node network
Input

Output

𝜋0(𝜃)

D1 D2

𝜋2(𝜃 D2 < 𝜀2) 𝜋T(𝜃 DT < 𝜀T)

Intermediate 
distributions Posterior

||

y ∼fM𝑖
(𝜃)

𝜃∼ 𝜋(𝜃 | Mi)
ABC based on SMC

𝜋(𝜃 y) =
𝜋(𝜃)f(y | 𝜃)

∫
Θ
𝜋(𝜃)f(y | 𝜃)d𝜃 P

(𝜃
i
M
,D

)
P
(M

D
)

M

P(𝜃j M,D)

N
oi

se
 b

uff
er

in
g

Sensitivity Prior

|

|
|

|

· · ·

A

C

B

(a) (b) (c)

(d) (e)

(f)

Input

A

B

C

Output

𝜋1(𝜃 D1 < 𝜀1)|

Figure 1: The framework of the proposed method. (a) A three-node candidate network with “⊣” indicating negative regulation and “→ ”
indicating positive regulation. (b)The employedmodel selection tool. (c)Themodel posterior probability indicates the ability of each network
structure to buffer noise without losing sensitivity. The parameter posterior shows parameters that are sensitive or insensitive to the input-
output specification. (d) The noise buffering and sensitivity are employed to specify the input-output character of the three-node biological
network. (e) The model parameter is evolved using sequential Monte Carlo. (f) A typical profile of an input signal and a profile of the output
signal after going through a three-node network that can maintain signaling sensitivity while minimizing noise propagation.

defined by {𝑀, 𝜃} ∈ 𝑀 × Θ
𝑀
, Bayes theorem can then be

written as [24]

𝑝 (𝑀 | 𝑦) =

𝑝 (𝑦 | 𝑀)𝜋 (𝑀)

∫
𝑀
𝑝 (𝑦 | 𝑀


) 𝜋 (𝑀


) 𝑑𝑀


=

𝑝 (𝑦 | 𝑀)𝜋 (𝑀)

∑
𝑀
𝑝 (𝑦 | 𝑀


) 𝜋 (𝑀


)

,

(3)

where 𝑝(𝑦 | 𝑀) is the marginal likelihood. Therefore, model
selection can be incorporated into the ABC framework by
introducing the model indicator 𝑀 and proceeding with
inference on the joint space {𝑀, 𝜃}.

To capture the desired output characteristics, the distance
function 𝑑(𝑦, 𝑦

∗
) is introduced to specify how the model

output, 𝑦, approximates the desired output, 𝑦∗. In biological
model design, we would rarely insist on achieving the true
posterior distribution but would like toachieve the objective



4 The Scientific World Journal

A

C
B

1

A

C
B

2

A

C
B

3

A

C
B

4

A

C
B

8

A

C
B

6

A

C
B

5

A

C
B

7

Positive regulation
Negative regulation

(a)

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Model

Po
ste

rio
r

(b)

Figure 2: (a) 1–7: the top seven biological circuits. 8: a biological circuit ranked bottom. (b) Posterior probability for buffering noise while
maintaining sensitivity. The error bars indicate the variability in the marginal model posteriors over 10 separate runs.

within some tolerance 𝜀
𝑇
[23, 24]. To select the network

structures that can buffer propagated noisewhilemaintaining
high signaling sensitivity, we introduce two-component dis-
tance metric: {𝑁, 𝑆}, where 𝑁 and 𝑆 are the noise buffering
and sensitivity, respectively, as shown in Figure 1(d). Since
the noise amplification in a linear (unbranched) cascade
is precisely proportional to the sensitivity [3, 5], we take
this unbranched cascade for comparison with the biological
network designed. After that, the distance function can be
given by

𝑑 (𝑦, 𝑦
∗
) = {

𝑁
𝑈

𝑁
𝑗

,

𝑆
𝑈

𝑆
𝑗

} , (4)

where 𝑁
𝑈
and 𝑆

𝑈
are the noise buffering and sensitivity for

linear cascade network, respectively, while 𝑁
𝑗
and 𝑆
𝑗
are for

the biological network designed.
According to the works by Hornung and Barkai [3] and

Paulsson [27], we introduce two measures to analyze the
interplay between the sensitivity and the noise buffering.The
steady-state sensitivity, 𝑠

𝑗
, of component 𝑗 (𝑗 = B,C) to

changes in the input 𝑛
𝐴
is given by

𝑠
𝑗
=

⟨𝑛A⟩

⟨𝑛
𝑗
⟩

𝑑 ⟨𝑛
𝑗
⟩

𝑑 ⟨𝑛A⟩
=

𝑑 ln ⟨𝑛
𝑗
⟩

𝑑 ln ⟨𝑛A⟩
, (5)

with all quantities measured at steady state. For node 𝑗 (𝑗 =
B,C), the measure for noise buffering 𝑁

𝑗
is defined as the

ratio between the output and input noise:

𝑁
𝑗
=

𝜂
𝑗

𝜂A
=

std (𝑛
𝑗
) / ⟨𝑛
𝑗
⟩

std (𝑛A) / ⟨𝑛A⟩
. (6)

As above, all quantities are measured at steady state.
Both 𝑆 and 𝑁 depend on the different parameters of the

system, such as the Michaelis-Menten constants. Following
the formalism presented by Paulsson [27], we employed
the Fluctuation Dissipation Theorem to derive an analytical
formula for sensitivity and noise buffering. Differentiating (1)
at the steady state with respect to 𝑛A and then multiplying by
⟨𝑛A⟩/⟨𝐽𝑖⟩, we obtain

⟨𝑛A⟩

⟨𝐽
𝑖
⟩

(

𝜕 ⟨𝐽
+

𝑖
⟩
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)
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−

𝑖
⟩
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)
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𝑑 ⟨𝑛A⟩

+

⟨𝑛C⟩

⟨𝐽
𝑖
⟩

(
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+

𝑖
⟩
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−

𝜕 ⟨𝐽
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𝑖
⟩
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)

⟨𝑛A⟩

⟨𝑛C⟩

𝑑 ⟨𝑛C⟩
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= 0.

(7)

Using (2), we obtain

𝐻
𝑖A + 𝐻𝑖B𝑠B + 𝐻𝑖C𝑠C = 0, (8)

where the 𝐻
𝑖𝑗
(𝑖, 𝑗 = A,B,C) terms are the reaction flux

elasticities [25, 26]:

𝐻
𝑖𝑗
=

𝜕 ln ⟨𝐽−
𝑖
⟩

𝜕 ln 𝑛
𝑗

−

𝜕 ln ⟨𝐽+
𝑖
⟩

𝜕 ln 𝑛
𝑗

. (9)

The elasticity, 𝐻
𝑖𝑗
, is used to measure how the balance

between production and elimination of 𝑛
𝑖
is affected by

𝑛
𝑗
. These scale-free parameters are closely related to the

elasticities of metabolic control analysis and the apparent
kinetic orders of biochemical systems theory [27]. With the
definition of elasticity, the sensitivity of the output can be
given by [3]

𝑠C =










𝐻BA𝐻CB − 𝐻BB𝐻CA
𝐻BB𝐻CC − 𝐻BC𝐻CB










. (10)
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The absolute value facilitates a comparison between systems
that increase or decrease their output, when the input goes
up. Noise amplification can be found by solving the matrix
equation [3, 28]:

𝑀𝜂 + 𝜂𝑀
𝑇
+ 𝐸 = 0, (11)

where the matrix 𝜂 is composed of the normalized noise
terms and𝑀 represents a 3 × 3matrix.Thematrix𝐸 is related
to the elasticities and time scales, and the matrix 𝐸 contains
a single term corresponding to noise input from 𝑛A. In the
construction of 𝐸, we assume that the sole noise source is
fluctuations in 𝑛A. The framework of the proposed method
is given in Figure 1.

Note that the stability of a system is a prerequisite in our
method for model selection. Now that we have introduced
the reaction flux elasticity, 𝐻, the criteria for stability of the
three-node network can be given by [3]

𝐻BB
𝑎
1

+

𝐻CC
𝑎
2

> 0,

𝐻BB𝐻CC + 𝐻BC𝐻CB > 0,

(12)

with the 𝑎
1
and 𝑎

2
terms defined as the degradation time

scales for components B and C, respectively.

3. Results and Discussions

In this work, we require a connection from 𝑛B to 𝑛C. This
connection can either be repressing or activating. There are
five additional possible connections in the network (A→B,
A→C, B→C, B→B, and C→C) which can be repressing,
activating, or nonexisting. Thus we study 2 × 3

5
− 2 × 3

3

= 432 specific biological circuits. The prior distributions for
elasticity, 𝐻, and degradation time scale, 𝑎, are taken to be
uniform, and the perturbation kernels for both parameters
are uniform, 𝐾

𝑡
= 𝜎𝑈(−1, 1), with 𝜎 = 0.2. The number

of particles in each population is 1500. We ranked the 432
biological circuits based on their abilities to buffer noise while
maintaining sensitivity. The top 7 network architectures are
sequentially shown in Figure 2(a).The posterior probabilities
of these models are given in Figure 2(b).

The posterior distribution shows which parameters
are correlated. The posterior for model 1 is shown in
Figure 3(a). The posterior shows in particular that the self-
reaction flux elasticity, 𝐻BB, and the degradation time scale,
𝑎
1
, are anticorrelated. A principal component analysis (PCA)

of the posterior (Figure 3(b)) shows other correlated param-
eters on the first few principal components.The last principal
component indicates the direction of least variance, also
the most sensitive parameters. From Figure 3(b) we can
deduce that the reaction between node A and node C is less
important.

Hornung and Barkai used to study noise propagation and
signaling sensitivity in biological networks and they high-
lighted the role of positive feedback for buffering propagated
noise while maintaining sensitivity [3]. Our analysis shows
that the positive feedback motif in a biological circuit is
just a necessary condition for buffering propagated noise

while maintaining sensitivity, not the sufficient and necessary
condition. We analyzed 81 biological circuits that contain
positive linear cascade (the links from A to B and from B to
C are all positive). Note that the criteria of model selection
used in our method are stricter than that of Hornung and
Barkai [3]. For example, the biological circuit shown in
Figure 4(a) does not satisfy the requirement for buffer-
ing propagated noise without a reduction in sensitivity in
our analysis, while this biological circuit is competent for
buffering noise while maintaining sensitivity in [3]. This is
mainly due to two reasons. First, we employ the same group
parameters to compare the candidate biological model with
the linear cascademodel. Second, the distance function in our
method is much more rigorous.

Analysis of these eighty-one biological circuits is shown
in Figure 4(e). There are twenty-four three-node biological
circuits without positive feedback falling into the green area
and these twenty-four biological networks are not competent
for buffering noise whilemaintaining sensitivity.Thirty-three
biological circuits with positive feedback (falling into gray
area) fail in buffering noise while maintaining sensitivity.
We find that there are three basic biological motifs that
are indispensable for a biological circuit to be qualified for
buffering noise without a reduction in sensitivity. The first
basic motif is a self-positive feedback with a repressor, as
shown in Figure 4(b), and we call it “Motif 1.” The second
one is an indirect positive feedback with a repressor as
shown in Figure 4(c), and we call it “Motif 2.” The third
basic motif is an indirect positive feedback though a self-
repressing node (Figure 4(d)), and we call it “Motif 3.” The
biological circuits that behave well in buffering noise while
maintaining sensitivity contain at least one of the three
basic motifs. From Figure 4(e), we can find that there are
eight biological circuits containing “Motif 1,” fifteen biolog-
ical circuits containing “Motif 2,” nine biological circuits
containing “Motif 3,” falling into the yellow area, dark red
area, and luminous red area, respectively. There are three
biological circuits with the combination of “Motif 1” and
“Motif 2,” five biological circuits with the combination of
“Motif 2” and “Motif 3,” and one biological circuit with
the combination of “Motif 1,” “Motif 2,” and “Motif 3.”
Therefore, there are forty-one biological circuits that are
qualified for buffering noise while maintaining sensitivity. To
better understand the mechanism underlying the ability of
biological circuits to buffer noise for a given sensitivity, we
analyzed a real noise-buffering biological circuit in the next
section.

3.1. A Biological Example of Buffering Noise without a
Reduction in Sensitivity. A well-studied biological example
of buffering noise for a given sensitivity is the network
involved in nitrogen homeostasis in yeast [3, 30, 31]. Here,
a transcription factor (Gat1p), which is activated by nuclear
Gln3p, feeds back to enhance its own transcription and in
addition induces a transcriptional repressor (Dal80p) that
competes with Gat1p for the same DNA binding sites (as
shown in Figure 5(a)). This competition effectively weakens
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Figure 3: Continued.
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Figure 3: (a) Parameter posterior distribution for biological circuit 1. 𝑎
0
and 𝑎

1
are the normalized degradation time scales for components A

andB, respectively. (b) Principal component analysis of the posterior distribution formodel 1. PC1 is the first principal component (accounting
for as much of the variability in the data as possible), while PC9 describes the direction of least variance and therefore the most sensitive
parameters. 𝑎

0
, 𝑎
1
, and 𝑎

2
are the degradation constants for components A, B, and C, respectively. 𝜆 indicates the eigenvalue of variance

covariance matrix.

the positive feedback and ensures stability. Note that the sixth
biological circuit in Figure 2(a) is the simplified form of this
real biological case.

Denoting the input signal to the system by 𝑛A, the output
Gat1p by 𝑛C, and the repressor Dal80p by 𝑛B, the system can
be modeled by the following differential equations [30]:

𝑑𝑛B
𝑑𝑡

= 𝛽
1

𝑛C

𝑘BC + 𝑛C + 𝑘BC(𝑛B/𝑘BB)
2
− 𝑎
1
𝑛B,

𝑑𝑛C
𝑑𝑡

= 𝛽
2

𝑛A𝑛C
𝑘CC + 𝑛C + 𝑘CC (𝑛B/𝑘CB)

− 𝑎
2
𝑛C,

(13)

where 𝛽
𝑖
and 𝑎
𝑖
denote the maximum transcription rate and

degradation constants. The 𝑘
𝑖𝑗
(𝑖, 𝑗 = B,C) coefficients in the

protein production terms are dissociation constants.
To operate as a sensitive noise buffer, this model must

work in a regime where all interactions are unsaturated [3,

30]. Therefore, all the binding constants of the repressor, 𝑘
𝑖B,

must be small, while all binding constants of the activator, 𝑘
𝑖C,

must be large. Besides, the repressor, Dal80p, often responds
more rapidly than Gat1p and Gln3p [3, 30] and it can be
assumed to be at quasi-steady state. Taking (13) and the above
conditions into consideration, we obtain

𝑑𝑛C
𝑑𝑡

= 𝛽
2
𝑛A

𝑘CB
𝑘CC

(

𝛽
1

𝜏
1

𝑘
2

BB
𝑘BC

)𝑛C
2/3

− 𝜏
2
𝑛C. (14)

Based on the definition of elasticity, the power law
dependence of the transcription rate on 𝑛C results in an
almost-constant elasticity𝐻CC = 1/3 [3]. Hence, this network
can buffer noise and maintain sensitivity for a large range
of concentrations at which it remains unsaturated. Detailed
simulations confirm that this biological circuit can indeed
buffer propagated noise without a reduction in sensitivity. It
ranks sixth in 432 biological circuits, as shown in Figure 2(a).
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Figure 4: (a) A biological circuit that is not competent for buffering noise while maintaining sensitivity. (b) Motif 1: self-positive feedback
with a repressor. (c) Motif 2: indirect positive feedback with a repressor. (d) Motif 3: indirect positive feedback though a self-repressing node.
(e) Venn diagram of biological circuits with different characters. PF is short for positive feedback.

The posterior distribution obtained via approximate Bayesian
computation also confirms the range of elasticity 𝐻CC, as
shown in Figure 5(c).

From Figure 5(c), we can see that the self-reaction flux
elasticity, 𝐻BB, and the degradation time scale, 𝑎

1
, are

correlated. To better understand the relations among the
parameters, we employ the principal component analysis
(PCA) to analyze posteriors of the parameters, as shown in
Figure 5(b). In perspective of parameter sensitivity, we can
see that𝐻CA and𝐻BC are less important.

4. Discussions

In this paper, the biological circuits qualifying for buffering
noise without a reduction in sensitivity are studied. In many
systems such as the sensing of temperature, nutrient levels,
and ligand concentration, the signal is interpreted as a long-
term change in the input, whereas noise is characterized by
rapid stochastic fluctuations. In this study, we focus on this
particular class of systems. Besides, in this work we assume
that the noise is from the input signal and did not take into
account intrinsic noise that arises from translational bursts
[32–34]. Biological circuits involving intrinsic noise will be
discussed in future work.

Paulsson’s research [27] revealed that the noise propa-
gation depends on two factors: the sensitivity to changes in
input on the one hand and the averaging time [27, 28] on
the other hand. Positive feedback is a central motif allowing
for the buffering of propagated noise while maintaining
sensitivity [3], since it can delay the kinetics and therefore
increase the averaging time, leading to attenuation of prop-
agated noise. In fact, we can view the feedback modules as
low-pass frequency filters [10, 35, 36] and define a critical
frequency above which fluctuations are eliminated and then
negative feedback increases this critical frequency, allowing
more propagated noise to pass, whereas positive feedback

decreases this frequency and, thus, reduces the amount of
noise.

Genetic circuits can implement elaborated tasks of ampli-
tude or frequency signal detection. Guantes et al. considered
signals acting on a two-component module to analyze what
type of constraints themodule could experience in the perfor-
mance of these tasks and how they were affected bymolecular
noise [11]. Their work focused on the limits imposed by
circuit structure on its characteristic stimulus response, the
functional plasticity of coherent feed-forward loops, and
the seemingly paradoxical advantage of improving signal
detectionwith noisy circuit components. In the current study,
we developed a new design framework for biological circuits
selection. Our approach allowed us to exploit methods from
Bayesian statistics, including efficient exploration of models
spaces and high-dimensional parameter spaces and the abil-
ity to rank models with respect to their ability to maintain
signaling sensitivity while minimizing noise propagation.We
ranked the 432 three-node biological circuits based on their
abilities to buffer noise while maintaining sensitivity. Our
method has advantages over traditional design approaches
in that the modeling and model evaluation/characterization
is incorporated directly into the design stage. The statistical
nature of the proposed method has many attractive features
including the handling of stochastic systems, the ability to
perform model selection, and the handling of parameter
uncertainty in a well-defined manner.

In this work, the design problem can be divided into two
steps: first selecting the network structure and then designing
the model parameters. Approximate Bayesian computation
(ABC) has become an essential tool for model design,
especially for designing the complex stochasticmodels. How-
ever, Robert et al. [37] argue the lack of confidence in ABC
model choice, since the algorithm involves an unknown loss
of information induced by the use of insufficientsummary
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Figure 5: Continued.
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Figure 5: (a) In the yeast nitrogen catabolite repression system, the transcription factor Gat1p is activated in response to Gln3p. It can then
activate its own transcription, as well as Dal80p, which binds to the same sequences as Gat1p and represses transcription. (b) Principal
component analysis of the posterior distribution for model 6. PC1 is the first principal component, while PC8 describes the direction of least
variance and therefore the most sensitive parameters. 𝑎

0
, 𝑎
1
, and 𝑎

2
are the degradation constants for components A, B, and C, respectively.

𝜆 indicates the eigenvalue of variance covariance matrix. (c) Parameter posterior distribution for Model 6. 𝑎
1
is the normalized degradation

time scale for Da.
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statistics.The approximation error of the posterior probabili-
ties of themodels under comparisonmay thus be unrelated to
the computational effort spent in running an ABC algorithm.
Nevertheless, it is not a concern in this work, since we use
the full data set with no summary and define the posterior
distributions through the desired system outputs.
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