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A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to
minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve
fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases
exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside.
Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation
(DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total
query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper,
this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total
LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II.
Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that
the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover andmutation
probability.

1. Introduction

Advancement in technology has made it possible today to
gather timely and effective information from vast sources
of data (sites) distributed geographically across a network.
The users at local sites can work independently as well as
communicate with other sites to retrieve data for answering
global queries. Such a setup is referred to as a Distributed
Database System (DDS) [1, 2]. Query posed on a DDS is
generally decomposed into subqueries, which are processed
at the respective local sites where the data resides, before
being transmitted to another site for cumulative processing
of distributed data fragments. At the user end, an integrated
result is displayed. A distributed query processing strategy
aims to minimize the overall cost of query processing in
such systems [3]. The cost of query processing in a DDS
comprises of two costs: the local processing cost and the site-
to-site communication or the transmission cost of relation

fragments.The total cost incurred in processing a distributed
query can thus be taken as the sum of the local processing
cost at the individual participating sites and the cost of
data communication among these sites. Local processing cost
comprises of the cost of join operation on relations accessed
by the user query and the communication cost is proportional
to the size of relation fragments being transmitted among
sites and its cost of transmission. These costs need to be
minimized in order to minimize the total query processing
cost.

In today’s scenario, with a multifold increase in the size of
DDS, the communication cost asserts a major impact on the
overall cost of query processing. The cost incurred in com-
municating data through a congested network path or the
communication of large data units between sites with higher
communication costs can highly influence the cost of query
processing and thus the sequence of sites through which the
data fragments get processed has a significant impact on
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the overall query processing cost. It thus also plays a key role
in determining the overall performance of a DDS. There can
be a number of possible ways to process and communicate
relation fragments involved in the query. A distributed query
processing strategy evaluates all possible sequence of sites
corresponding to relations accessed in the query, referred
to as a query plan, and determines the most optimal query
plan that minimizes the total cost that is local processing
(CPU, I/O) cost and communication cost [5–11].The number
of possible query plans grows at least exponentially with
the increase in number of relations accessed by the query
[12, 13].This number increases further if relations accessed by
the query are replicated across multiple sites. Performing an
exhaustive search on all possible combinations of query plans
is not feasible due to a vast search space. Therefore, in large
DDS, devising a query processing strategy that optimizes the
total query processing cost is shown to be a combinatorial
optimization problem [10].

Over the last three decades, many algorithms and tech-
niques have been devised to solve the class of combinatorial
optimization problems. Initially, the rigorous mathemati-
cal and search based techniques like simulated annealing,
random search algorithms, dynamic programming, and so
forth were used to solve such problems, which though
worked well with moderate sized problems on cost heuristic
could not succeed with complex multiobjective problems.
These mechanisms suffered from a drawback at certain
instances, where they converged to local optima without
exploring the entire search space [8, 13, 14]. However, in
the last two decades, evolutionary techniques have gained
immense popularity due to their applicability in solving these
complex scientific and engineering optimization problems.
These algorithms are inspired by the Darwinian evolution
that accentuates the concept of “Survival of the Fittest” [15].
It is, thus, metaphorical to the natural social behavior and
biological evolution of species. The evolutionary techniques
are now proved to be themost proficientmethod of choice for
solving such problems. Genetic algorithm based techniques
which belong to the class of evolutionary algorithms have
also been widely used in solving complex real life science and
engineering problems.The strength of GA as a metaheuristic
comes from its ability to combine the good features from
several solutions to create new and better solutions [16, 17]
over generations.

Most real world scientific and engineering problems
have often conflicting and competing objectives that need
to be optimized. The evolutionary strategies are proved to
be best suited for this class of problems as they can simul-
taneously optimize the different objectives and find efficient
tradeoffs unlike the classic techniques, where the objectives
were separately optimized and weighed based on the prior
knowledge about the problem in hand. The first pioneering
study on multiobjective evolutionary optimization came out
in mideighties [18]. In subsequent years, several different
evolutionary algorithms (VEGA [19], MOGA [20], NPGA
[21], NSGA [22], NSGA-II [4], SPEA [23], SPEA-II [19], PAES
[24], PESA [25]) have successfully been implemented to solve
the classic optimization problems, for example, the single
source shortest path problem [26], the all-pairs shortest path

problem [27], the multiobjective shortest path problem [28],
the travelling salesman problem [29], the knapsack problem
[30], and so forth. Recently, new evolutionary techniques, for
example, particle swarm optimization [31], artificial immune
systems [32], frog leaping algorithm [33], ant colony opti-
mization [34], and so forth, have been successfully applied
to the multiobjective optimization paradigm.

This paper addresses the distributed query plan gen-
eration (DQPG) problem given in [3]. This problem is
based on a heuristic that favors query plans involving less
number of sites participating to retrieve the results. Further,
query plans involving smaller relations transmitted over less
costly communication channels would incur less communi-
cation costs and are thus favored over others. Query plans
generated based on this heuristic would result in efficient
query processing. This DQPG problem was formulated and
solved as a single objective optimization problem in [3].
Since this DQPG heuristic comprises minimization of both
the local processing cost and the communication cost, an
attempt has been made in this paper to minimize these costs
simultaneously.That is, theDQPGproblem is formulated as a
biobjective optimization problem comprising two objectives,
namely, minimization of the total local processing cost and
minimization of the total communication cost. In this paper,
this problem has been solved using themultiobjective genetic
algorithm NSGA-II (nondominated sorting genetic algo-
rithm) [4]. The proposed NSGA-II based DQPG algorithm
attempts to simultaneously minimize the two objectives with
the aim of achieving an acceptable tradeoff amongst them. It
is shown that the optimization of total query processing cost
using the proposed algorithm gives considerable improve-
ment with respect to the time taken to converge and the
quality of solutions, with respect to total query processing
cost, when compared to the single objective GA based DQPG
algorithm given in [3].

This paper is organized as follows. Section 2 discusses
the DQPG problem and its solution using the simple genetic
algorithm (SGA) given in [3]. Section 3 discusses DQPG
using the multiobjective genetic algorithm. An example
illustrating the use of the proposed NSGA-II based DQPG
algorithm for generating optimal query plans for a distributed
query is given in Section 4.The experimental results are given
in Section 5. Section 6 is the conclusion.

2. DQPG Using SGA

This paper addresses the DQPG problem given in [3], solved
using SGA.TheDQPGproblem is discussed next followed by
a brief example describing the underlying methodology.

2.1. The DQPG Problem. Query plan generation is a key
determinant for the efficient processing of a distributed query.
This necessitates devising a query plan generation strategy
that would result in efficient query processing. This strategy
would require minimizing the total cost of query processing.
The total cost incurred comprises the joint cost that is the cost
incurred in processing the query locally at the individual sites
and the cost of communicating the relation fragments among
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the sites. A distributed query processing strategy is given in
[3], which aims to minimize the total query processing cost
(TC) given below [3]:

TC =

𝑚

∑

𝑖=1

LPC
𝑖
× 𝑎
𝑖
+

𝑖=𝑚−1, 𝑗=𝑚

∑

𝑖=1, 𝑗=𝑖+1

CC
𝑖𝑗
× 𝑏
𝑖
, (1)

where LPC
𝑖
is the local processing cost per byte at site 𝑖, CC

𝑖𝑗

is the communication cost per byte between sites 𝑖 and 𝑗,
𝑎
𝑖
is the bytes to be processed at site 𝑖, 𝑏

𝑖
is the bytes to be

communicated from site 𝑖, and𝑚 is the total number of sites.
For each relation 𝑅

𝑡
, Card(𝑅

𝑡
) represents its cardinality and

Size(𝑅
𝑡
) represents the size of a single tuple in bytes. At each

site, the relations are integrated on common attributes using
the equijoin operator to arrive at a single relation [3].

For relations 𝑅
𝑡
, with cardinality Card(𝑅

𝑡
) and 𝑅

𝑠
with

cardinality Card(𝑅
𝑠
) at site 𝑖, the cardinality Card

𝑖
of the

resultant relation 𝑅
𝑖
is given as [3]

Card
𝑖
=

Card (𝑅
𝑡
) × Card (𝑅

𝑠
)

Dist
𝑡𝑠
×min (Card (𝑅

𝑡
) ,Card (𝑅

𝑠
))

, (2)

where Dist
𝑡𝑠
is the number of distinct tuples in the smaller

relation among 𝑅
𝑡
and 𝑅

𝑠
.

The size of the resultant relation𝑅
𝑖
at site 𝑖 is given as [1, 3]

Size
𝑖
= Size (𝑅

𝑡
) + Size (𝑅

𝑠
) . (3)

For a given query plan, the communication between sites
occurs in the order starting from the site having a relation
with lower cardinality to the site having a relation with
higher cardinality [3]. The communication cost CC

𝑖𝑗
and

local processing cost LPC
𝑖
are known a priori.

The number of bytes to be processed locally at site 𝑘 is
given by 𝑎

𝑘
[3]:

𝑎
𝑘
= Card

𝑖
× Size

𝑖
. (4)

The number of bytes to be communicated from site 𝑗 to
site 𝑘 is given by 𝑏

𝑗
[3]:

𝑏
𝑗
= Card

𝑗
× Size

𝑗
. (5)

Distributed query plans based on the above heuristic is
generated using simple GA (SGA) in [3]. This SGA based
DQPG, as given in [3], is discussed next.

2.2. SGA Based DQPG. As discussed above, it is a very com-
plex task to generate efficient query plans from among a large
set of possible query plans. An SGA based DQPG strategy,
based on the heuristic defined above, is given in [3], which
aims to minimize the total cost of query processing (TC)
indicating the fitness of a particular solution as compared to
others in the population. The algorithm considers relations
accessed by the query, crossover and mutation probability,
and the prespecified number of generations (𝐺), as input,
and produces the Top-𝐾 query plans as output. First, the
algorithm randomly generates an initial population of valid
query plans (chromosomes), where the size of a query plan

is equal to the number of relations accessed by the query.
Each gene in a chromosome represents a relation and the
ordering of relations in a chromosome is in increasing order
of their cardinality. The value of a gene is the site where the
corresponding relation resides. As an example, for a query
accessing four relations (𝑅1, 𝑅2, 𝑅3, and 𝑅4) arranged in the
increasing order of cardinalities, one of the encoding schemes
for the chromosome representation can be (1, 1, 4, 3) implying
that 𝑅1 and 𝑅2 are in site 1, 𝑅3 is in site 4, and 𝑅4 is in
site 3. The fitness (TC) value is computed for each of the
query plans and thereafter the query plans are selected for
crossover using the binary tournament selection technique
[35]. These selected query plans undergo random single-
point crossover [15, 36], with probability 𝑃

𝑐
, and mutation

[15, 36], with probability 𝑃
𝑚
. The resultant new population

replaces the old population and the above process is repeated
for the prespecified number of generations 𝐺. Thereafter, the
Top-𝐾 query plans are produced as output. In this paper,
the above single objective DQPG problem is formulated and
solved as amultiobjectiveDQPGproblem aswill be discussed
next.

3. DQPG Using Multiobjective
Genetic Algorithm

In this paper, the single objective DQPG problem discussed
above is formulated as a biobjective DQPG problem. This
formulation is given next.

3.1. Multiobjective DQPG Problem Formulation. In the GA
based DQPG algorithm given in [3], there is a single objec-
tive, that is, Minimize TC. It can be observed that TC com-
prises two costs, namely the local processing cost incurred
at participating sites, that is, total processing cost (TPC),
and communication cost between the participating sites, that
is, total communication cost (TCC). Since minimizing TC
would require minimizing TPC and minimizing TCC, this
single objective (Minimize TC)DQPGproblem is formulated
as a biobjective DQPG problem comprising two objectives as
Minimize TPC andMinimize TCC. Consider

TCC =

𝑖=𝑢−1, 𝑗=𝑢

∑

𝑖=1, 𝑗=𝑖+1

CC
𝑖𝑗
× 𝑏
𝑖
,

TPC =

𝑢

∑

𝑖=1

LPC
𝑖
× 𝑎
𝑖
,

(6)

where 𝑢 is the number of sites accessed by the query
plan in ascending order of cardinality per site, CC

𝑖𝑗
is the

communication cost per byte between sites 𝑖 and 𝑗, LPC
𝑖
is

the local processing cost per byte at site 𝑖, 𝑏
𝑖
is the bytes to be

communicated from site 𝑖, and 𝑎
𝑖
is the bytes to be processed

at site 𝑖. CC
𝑖𝑗
, LPC

𝑖
, 𝑏
𝑖
, and 𝑎

𝑖
are as discussed in Section 2.1.

If a site contains a single relation, its LPC is considered
zero. TCC and TPC need to be minimized simultaneously to
achieve an acceptable tradeoff.
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The abovemultiobjectiveDQPGproblemhas been solved
using the multiobjective genetic algorithm, which is dis-
cussed next.

3.2. Multiobjective Genetic Algorithms. Conceptualization of
multiobjective problems using veridical models has a great
resemblance to many real world engineering and design
problems that involve more than one coextensive and often
competing objectives, that is, maximize profit, maximize
throughput, minimize cost, minimize response time, and so
forth. In such a scenario, no single solution can be termed
as optimal, as in the case of single objective optimization
problems, but rather a set of alternative solutions can be
visualized as a tradeoff between the different objectives under
consideration. This set of solutions is regarded superior to
others in the search space, as no other recorded/available
solution can better optimize all the objectives considered
together [37–39].

Multiobjective optimization approaches can be broadly
classified into three categories [37]. The approaches in the
first two categories can be termed as the classical optimiza-
tion approaches, which combine all objectives into a single
composite function using some combination of arithmetic
operators ormove all but one objective into the constraint set.
The approaches in the first category have limitations in regard
to appropriate selection of weights and designing functions in
accordance to the problem. It wouldmandate the user to have
a priori knowledge of the behavior of each objective function
to some extent for providing the range of values to objectives
so that none of them dominate the others, which is not always
possible [17]. This approach is generally denominated as
aggregating functions and it has been implemented at several
occasionswith relative success in situationswhere behavior of
the objective function ismore or lesswell-known. Someof the
aggregating functions include the weighted sum approach,
goal programming, 𝜀-constraintmethod, and so forth [40]. In
the second approach, moving the objectives into a constraint
set requires that the boundary values for each of the objectives
be known a priori, which is almost impossible. In either of the
two cases, the optimization method returns a single solution
rather than a set of solutions, giving possible tradeoffs; and
therefore the quality of solution in these approaches greatly
depends upon the correct problem formulation. If feasible,
these would be the most efficient and simplest approaches,
which would give, atleast, sub optimal results in most cases.

The third approach overcomes the problems faced in
the classical optimization approaches and emphasizes the
development of alternative techniques based on exploring
the complete set of nondominated solutions and thereby
enabling the decision maker to choose among the different
alternatives. This set of solutions is referred to as the Pareto
optimal set [13]. A Pareto optimal set can be formally defined
as a set of solutions that are nondominated with respect
to each other, that is, replacing one solution with another,
within the Pareto optimal set, will invariably lead to a loss
to one objective against a gain obtained in another objective
[41]. Pareto optimal sets can have varied sizes but usually
the size increases with increase in the number of objectives

[37, 40]. They are more preferred over single solutions
as they closely resemble real world problems, where the
decision maker makes a decision based on tradeoffs between
multiple objectives. A number of techniques were formulated
to generate the Pareto optimal set, for example, simulated
annealing [14], Tabu search [42], ant colony optimization
[34], and so forth. The problem with these algorithms was
thatmost often they get struck at local optima and thus render
it infeasible to venture out for identifying new tradeoffs.
Evolutionary algorithms such as GA, on the other hand, seem
to be especially suited for this task as they enable parallel
exploration of different areas in the search space, eventually
exploiting the solutions attained using operators such as
crossover and mutation [13]. It would enable determining
more members of a Pareto optimal set in a single run instead
of a series of runs required in other blind search strategies.
Also, the evolutionary algorithms require very little a priori
knowledge of the problem at hand and therefore are less
susceptible to the typical shape and continuity of the Pareto
front.The Pareto front can be defined as the points that lie on
the boundary of the Pareto optimal region. These algorithms
thus avoid convergence to a suboptimal solution [43].

Mathematically, a multiobjective optimization problem
with 𝑚 decision variables and 𝑛 objectives can be defined
without any loss of generality as amaximization orminimiza-
tion problem given by [13, 38]

minimize = 𝑓 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝑛 (𝑥)) ,

where𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ 𝑋

𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝑌.

(7)

Here, 𝑥 is the decision vector, 𝑋 refers to the parameter
space, 𝑦 is the objective vector, and 𝑌 defines the objective
space. These objectives may be conflicting in nature, that is,
improvement in one may lead to deterioration in another.
So, it may become impossible to optimize all objectives
simultaneously in a single solution. Instead, the best tradeoff
solution would be of interest to a decision maker. These
solutions form a Pareto optimal set which was initially coined
by Edgeworth and Pareto and is formally defined as [13, 38].

“A decision vector 𝑎, is said to be Pareto optimal if and
only if 𝑎, is nondominated regarding 𝑋. A decision vector 𝑎,
is said to be nondominated regarding a set 𝑋 ⊆ 𝑋, if and
only if there is no vector in 𝑋

 which dominates 𝑎. Formally
it can be defined as��<𝑎 ∈ 𝑋



: 𝑎



≺ 𝑎”.
Also, a decision vector 𝑎 ∈ 𝑋 is said to dominate a

decision vector 𝑏 ∈ 𝑋 (also written as 𝑎 ≺ 𝑏), if and only
if

∀𝑖 ∈ {1, 2, . . . , 𝑛} : 𝑓
𝑖
(𝑎) ≤ 𝑓

𝑖
(𝑏) ,

∀𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑓
𝑗
(𝑎) ≤ 𝑓

𝑗
(𝑏) .

(8)

Several multiobjective algorithms exist in the literature
[4, 18–25, 37, 40, 41, 44, 45] of whichGA basedmultiobjective
optimization algorithms have been widely used for solving
multiobjective optimization problems. In this paper NSGA-
II has been used to solve the DQPG problem. NSGA-II will
be discussed next.
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Figure 1: Crowding distance for solution “V” [4].

3.2.1. NSGA-II. The basis of NSGA-II [4] lies in the non-
dominated sorting genetic algorithm (NSGA) introduced by
Srinivas and Deb [22]. As the name suggests, NSGA uses
nondominated ranking for each individual in the population
and assigns them accordingly into nondominated fronts.The
individuals in the first front or the nondominated individuals
are then assigned large dummy fitness values. All individuals
in the front shared this fitness value based on a sharing func-
tion. Next, the individuals in the second nondominated front
are considered and similarly assigned a dummy fitness lower
than the fitness assigned in the previous front. This process
continues till the entire population is classified into fronts.
Since the solutions in the first front have themaximumfitness
value, their chances of selection increase and eventually more
copies of such solutions get passed on to the next generation.
However, NSGA suffered from some drawbacks such as high
computational complexity𝑂(𝑚𝑁

3

), nonelitist approach, and
the requirement of specifying a shared parameter [4]. These
limitations were addressed in NSGA-II proposed by Deb et
al. [4] as an improved version of NSGA [22]. It alleviates
the drawbacks in NSGA by reducing the computational
complexity to 𝑂(𝑚𝑁

2

). Further, it uses a parameter-less
sharing approach by using a crowding distance measure
for selection. The crowding distance is an estimate of the
density of solutions surrounding a particular solution in the
objective space. In Figure 1, the crowding distance of solution
represented as point V is computed as the average distance
between the two closest solutions represented as points V − 1

and V + 1 on either side of the points V along each of the
objectives 𝑓(𝑥1) and 𝑓(𝑥2).

NSGA-II uses a crowded-comparison operator for selec-
tion, which takes into account both the nondomination rank
of a query plan in the population and its crowding distance.
The nondominated solutions are preferred over dominated
solutions and between two solutions having the same rank,
a solution that resides in the less crowded region is preferred,
that is, a solution for which the crowding distance is higher.
TheNSGA-II does not use any externalmemory but it ensures
elitism by combining the best parents with the best offspring
obtained [19]. In this paper an NSGA-II based multiobjective

DQPG algorithm is used to compute optimal query plans
for a given distributed query. This algorithm is discussed
next.

3.3. NSGA-II Based DQPG Algorithm. The proposed NSGA-
II based DQPG algorithm takes the relations given in the
FROM clause of the distributed query as input. It arranges
these relations in increasing order of their cardinalities. It
then generates a fixed set of feasible query plans (chromo-
somes) based on the possible combinations of sites in which
these relations are residing. Each gene in a chromosome
represents a relation and is arranged in increasing order
of the corresponding relation’s cardinality. The value of a
gene represents the site in which the corresponding relation
resides. For example, suppose that a query posed by the user
has 4 relations (𝑅1, 𝑅2, 𝑅3, and 𝑅4) arranged in ascending
order.The relation 𝑅1 is stored in sites 𝑆1 and 𝑆3, 𝑅2 is stored
in 𝑆1,𝑅3 is stored in 𝑆1 and 𝑆2, and𝑅4 is stored in 𝑆1.Then the
initial population of feasible query plans (chromosomes) can
be (1, 1, 1, 1), (3, 1, 1, 1), (3, 1, 2, 1), and (1, 1, 2, 1). This defines
the encoding scheme for the given problem. The proposed
DQPG algorithm based on NSGA-II is given in Algorithm 1.
The steps involved in this algorithm are discussed as follows.

Step 1 (Initialize the Population [4, 46]). A random popula-
tion of query plans is generated as per the encoding scheme
discussed above.

Step 2 (EvaluateQuery Plans on theObjective Functions).
For each of the query plans in the population, the TCC and
TPC values are computed as given below:

TCC =

𝑖=𝑢−1, 𝑗=𝑢

∑

𝑖=1, 𝑗=𝑖+1

CC
𝑖𝑗
× 𝑏
𝑖
,

TPC =

𝑢

∑

𝑖=1

LPC
𝑖
× 𝑎
𝑖
,

(9)

where 𝑢 is the number of sites accessed by the query
plan in ascending order of cardinality per site, CC

𝑖𝑗
is the

communication cost per byte between sites 𝑖 and 𝑗, LPC
𝑖

is the local processing cost per byte at site 𝑖, 𝑏
𝑖
is the bytes

to be communicated from site 𝑖, and 𝑎
𝑖
is the bytes to be

processed at site 𝑖. The procedure to compute CC
𝑖𝑗
, LPC

𝑖
,

𝑏
𝑖
, and 𝑎

𝑖
is given in Section 2.1. If a site contains a single

relation, its LPC is considered zero. TCC and TPC need
to be minimized simultaneously to achieve an acceptable
tradeoff.

Step 3 (Perform Nondominated Sort [4, 46]). On the given
population, a fast nondominated sorting is performed in the
following manner.

Twoobjective functions are considered.Thefirst objective
is to minimize the total processing cost (TPC) and the
second objective is to minimize the total communication
cost (TCC). NSGA-II attempts to find a tradeoff between
these two objectives that can result in minimum total query
processing cost (TC).
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Input: 𝑅
𝑖
: Relations participating in the query, 𝑃

𝑐
: Probability of crossover,

𝑃
𝑚
: Probability of mutation, 𝐺: Pre-defined number of generations, 𝑃size: Population Size

Output: Top-n query plans.
Method:
Initialize a random parent population of query plans PP
where chromosome length “len” is the number of relations accessed in the query and the gene at the 𝑘th position in the
chromosome represents the site of the 𝑘th relation.
WHILE generation ≤ 𝐺 DO
Step 1. Evaluate each query plan in PP on the following objective functions

𝑚
1
: Minimize TCC =

𝑖=𝑢−1,𝑗=𝑢

∑

𝑖=1,𝑗=𝑖+1

CC
𝑖𝑗
× 𝑏
𝑖
,

𝑚
2
: Minimize TPC =

𝑢

∑

𝑖=1

LPC
𝑖
× 𝑎
𝑖
,

where 𝑢 is the number of sites accessed by the query plan in ascending order of cardinality per site, CC
𝑖𝑗
is the communication

cost per byte between sites 𝑖 and 𝑗, LPC
𝑖
is the local processing cost per byte at site 𝑖, 𝑏

𝑖
is the bytes to be communicated from

site 𝑖 and 𝑎
𝑖
is the bytes to be processed at site 𝑖.

Step 2. Perform Non-Dominated (ND) Sort on PP for “𝑚
1
” and “𝑚

2
” separately and place each query plan (QP)

into corresponding ND fronts “@
𝑖
” and sort the QPs within each “@

𝑖
”

Step 3. Evaluate Crowding Distance Function 𝐼(𝑑) for each objective function
Assign 𝐼(𝑑) = ∞ for smallest and highest values in each front “@

𝑖
”.

For the remaining QPs, 𝐼(𝑑) is calculated as:

𝐼 (𝑑
𝑘
) = 𝐼 (𝑑

𝑘
) +

𝐼(𝑘 + 1)
𝑚
− 𝐼(𝑘 − 1)

𝑚

𝑓

max
𝑚

− 𝑓

min
𝑚

,

where 𝐼(𝑘)
𝑚
is the value of𝑚th objective function of 𝑘th query plan in Front @

𝑖
and 𝑓

max
𝑚

and 𝑓

min
𝑚

are the
maximum and minimum values obtained for the objective function𝑚.
Step 4. Perform Selection from PP using binary tournament selection using crowded comparison operator (≺

𝑛
)

Step 5. Perform random single point crossover on selected chromosomes with crossover probability 𝑃
𝑐

Step 6. Apply mutation on resulting population with mutation probability 𝑃
𝑚

Let the resulting child population be CP
Step 7. Append CP into PP, and let the resulting intermediate population be IP
Step 8. Repeat Step 1 and Step 2 for population IP
Step 9. Form the population PP for the next generation by picking query plans Front-wise from IP till the
population size = 𝑃size.
Step 10. Increment Generation by 1
ENDDO
Return Top-𝐾 Query Plans from population PP

Algorithm 1: NSGA-II based DQPG algorithm.

In order to performanondominated sort, each query plan
is compared with every other query plan in the population to
find if it is dominated. For each query plan “𝑖”, the following
two entities are considered.

(i) 𝑛
𝑖
: The number of query plans that dominate the

query plan 𝑖.
(ii) 𝑆
𝑖
: The set of query plans that query plan 𝑖 dominates.

All query plans that have 𝑛
𝑖
= 0 are added to the set @

1
.

Set @ = @
1
where @ is called the current front. For each

element 𝑥 in the current front, visit each member 𝑗 in the set
𝑆
𝑥
and reduce the count of 𝑛

𝑗
by 1. Now if 𝑛

𝑗
gets reduced to

zero for some 𝑗, add it to the set @
2
. After evaluating all the

members of @ in a similar manner, set @ = @
2
. This process

continues till all the query plans are assigned some front.
The fast nondominated sorting procedure takes the current
population as input and produces a list of nondominated
fronts @

𝑖
as output.

Step 4 (Density Estimation Using Crowding Distance [4,
46]). After the nondominated sort, the crowding distance
is computed for each query plan in @

𝑖
. Crowding distance

[4] is an estimate of the density of solutions surrounding a
particular solution point in the population. It is defined as
the average distance of the two closest points on either sides
of the given point along each of the objectives. The crowding
distance 𝐼(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) is computed in the following manner
[4, 46].

For each front @
𝑖
, let 𝑁 be the number of query plans

in front @
𝑖
. Initially the crowding distance for each query

plan in the front @
𝑖
is zero. That is, 𝐼(𝑑

𝑗
) = 0; 𝑗 =

1, . . . , 𝑁. Next, for each objective function, the query plans
in the front @

𝑖
are sorted based on their value of TPC (i.e.,

the first objective function) and similarly also with respect
to TCC (i.e., the second objective function) and placed in
𝐼(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). The query plans having the smallest and the
highest 𝐼(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) values in both sets are assigned an infinite
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Rejected

Crowding distance sort 
PP

CP

IP

PP

Nondominated
sort

Ŧ1

Ŧ2

Ŧ3

Figure 2: NSGA-II procedure preserving elitism [4].

value for 𝐼(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒); that is, 𝐼(𝑑
1
) = ∞ and 𝐼(𝑑

𝑁
) = ∞. For

remaining query plans, that is, 𝑘 = 2, . . . , 𝑁 − 1, 𝐼(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
is computed as follows [4, 46]:

𝐼 (𝑑
𝑘
) = 𝐼 (𝑑

𝑘
) +

𝐼(𝑘 + 1)
𝑚
− 𝐼(𝑘 − 1)

𝑚

𝑓

max
𝑚

− 𝑓

min
𝑚

, (10)

where 𝐼(𝑘)
𝑚
is the value of 𝑚th objective function of 𝑘th

query plan in front @
𝑖
and 𝑓

max
𝑚

and 𝑓

min
𝑚

are the maximum
and minimum values obtained for the objective function𝑚.

Step 5 (Binary Tournament Selection). After assigning the
crowding distance to the query plans in each front, a selection
process is carried out.The selection scheme used is the binary
tournament selection and it is carried out using the crowded
comparison operator (≺

𝑛
) [4, 46]. It uses two parameters as

given below:
(i) 𝜌rank (nondomination rank).The query plans in front

@
𝑖
will have 𝜌rank = 𝑖.

(ii) 𝐼
𝑖
(𝑑
𝑗
) (crowding distance in front 𝑖) 𝑗 = 1, . . . 𝑁.

The crowded comparison is performed as described below [4,
46].

For any two query plans 𝑞𝑝
1
and 𝑞𝑝

2
, 𝑞𝑝
1
is selected if

(𝑞𝑝
1
≺
𝑛
𝑞𝑝
2
). 𝑞𝑝
1
≺
𝑛
𝑞𝑝
2
is true if either one of the following

holds:
(i) 𝜌rank(𝑞𝑝1) < 𝜌rank(𝑞𝑝2)
(ii) if 𝑞𝑝

1
and 𝑞𝑝

2
belong to the same front (i.e., if

𝜌rank(𝑞𝑝1) = 𝜌rank(𝑞𝑝2)), then 𝐼
𝑖
(𝑑
𝑞𝑝1

) > 𝐼
𝑖
(𝑑
𝑞𝑝2

).

Step 6 (Crossover andMutation). Crossover is performed on
the selected query plans with a given crossover probability
𝑃
𝑐
. It ensures proper exploration of the search space by

combining the best features of the parent query plans (chro-
mosomes). Mutation is performed on the given population
with a given probability 𝑃

𝑚
. It randomly changes the site

(gene) in which the corresponding relation resides within a
query plan (chromosome). The mutated gene always takes a
random value from a set of valid sites for a particular relation.
After going through the above steps, the first generation
population is formed. NSGA-II follows a different method
to produce subsequent generations in order to incorporate
elitism as described next.

Table 1: Initial parent population PP.

[2, 1, 5, 1] [3, 5, 4, 5]

[3, 3, 1, 1] [3, 1, 1, 1]

[3, 3, 3, 3] [3, 4, 4, 4]

[2, 4, 1, 5] [2, 3, 3, 3]

[3, 1, 1, 3] [2, 1, 3, 4]

Step 7 (Preserving Good Solutions (Elitism) [4]). In subse-
quent generations, the new population after each generation
is combined with the parent population and a new interme-
diate population IP is created of size PP + CP, where PP is the
parent population and CP is the child population as shown in
Figure 2.

The non-dominated sort is applied to this intermediate
population and fronts are formed as described in Step 3.
Finally, the population for the next generation is formed
by adding solutions from each front till the population size
exceeds 𝑃. If the last front to be included was @

𝑐
, which led

to the population overflow, then query plans in Front @
𝑐
are

selected based on their crowding distance measure (Step 4)
in descending order until the population size exceeds 𝑃.

The above steps are repeated for “𝐺” generations and the
Top-𝐾 query plans are produced as output.

An example illustrating the use of the above NSGA-II
based DQPG algorithm to generate query plans for a given
distributed query is given next.

4. An Example

Consider the site relation matrix, the communication-
cost matrix, the local processing cost matrix, the distinct-
tuple matrix, and the size matrix used to compute the
fitness of query plans given in [3] and shown below in
Figure 3. Suppose the initial parent population PP com-
prises of 10 query plans given in Table 1. Consider a
query that accesses four relations (𝑅1, 𝑅2, 𝑅3, and 𝑅4)
which are distributed among five sites (𝑆1, 𝑆2, 𝑆3, 𝑆4, and
𝑆5).
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R1 R2 R3 R4
300200 500 700

Cardinality

R1 R2 R3 R4
30 40 50 20

Size

S1 S2 S3 S4 S5
2 2 3 3 2

S1 S2 S3 S4 S5

S1 150 180 150 160

S2 165 185 170 170

S3 160 160 170 150

S4 150 150 180 160

S5 170 160 190 150

Communication cost
matrix

R1 R2 R3 R4

R1 0.4 0.5 0.4 0.4

R2 0.5 0.2 0.2 0.3

R3 0.4 0.2 0.2 0.1

R4 0.4 0.3 0.1 0.3

matrix for join

R1 R2 R3 R4
S1 0 1 1 1
S2 1 0 0 0
S3 1 1 1 1
S4 0 1 1 1
S5 0 0 1 1

matrixLPCi

Distinct-tuple- Relation-site

—

—
—

—

—

Figure 3: Matrices used for computing fitness [3].

Table 2: Nondominated sort on PP.

Index [𝑖] Population PP 𝑚
1
= TCC 𝑚

2
= TPC 𝑆

𝑖
𝑛
𝑖

Front
[1] [2, 1, 5, 1] 18020000 3746700 [4, 10] 1 @

2

[2] [3, 3, 1, 1] 6720000 6006000 [4, 10] 1 @
2

[3] [3, 3, 3, 3] 0 4200000 [2, 4, 7, 8, 9, 10] — @
1

[4] [2, 4, 1, 5] 43440000 7079333.3 [10] 6 @
3

[5] [3, 1, 1, 3] 14000000 2112000 [1, 4, 6, 10] — @
1

[6] [3, 5, 4, 5] 17020000 3847000 [4, 10] 1 @
2

[7] [3, 1, 1, 1] 960000 6500000 [4, 8, 9, 10] 1 @
2

[8] [3, 4, 4, 4] 1020000 9750000 [10] 2 @
3

[9] [2, 3, 3, 3] 1110000 9750000 [10] 2 @
3

[10] [2, 1, 3, 4] 45090000 10514000 — 9 @
4

Table 3: Sorted fronts based on TCC and TPC.

Query plans sorted on
𝑚
1
= TCC

Query plans sorted on
𝑚
2
= TPC

@
1

3 5 @
1

5 3
@
2

7 2 6 1 @
2

1 6 2 7
@
3

8 9 4 @
3

4 8 9
@
4

10 @
4

10

The computations of TPC and TCC for the query plan
[2, 4, 1, 5] are given as follows.

TPC
4
= (LPC

2
× 𝑎
2
) + (LPC

4
× 𝑎
4
)

+ (LPC
5
× 𝑎
5
) + (LPC

1
× 𝑎
1
) ,

TCC
4
= (CC

2,4
× 𝑏
2,4

) + (CC
4,5

× 𝑏
4,5

) + (CC
5,1

× 𝑏
5,1

) ,

(11)

where
LPC
2
× 𝑎
2
= 0,

CC
2,4

× 𝑏
2,4

= CC
2,4

× (Card (𝑅1) × Size (𝑅1))

= 170 × (200 × 30) = 1020000,

LPC
4
× 𝑎
4
= LPC

4
× (

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

× (Size (𝑅1) + Size (𝑅2)) )

= 2 × (

200 × 300

0.5 × 200

× (70)) = 126000

CC
4,5

× 𝑏
4,5

= CC
4,5

× (

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

× (Size (𝑅1) + Size (𝑅2)))

= 170 × (

200 × 300

0.5 × 200

× (70)) = 6720000

LPC
5
× 𝑎
5

= LPC
5

× (

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

× Card (𝑅4)

× (Dist
2,4

×

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

)

−1

× (Size (𝑅1) + Size (𝑅2) + Size (𝑅4)) )

= 2 × (

200 × 300

0.5 × 200

×

700

0.3 × (200 × 300) / (0.5 × 200)

)

× 90 = 420000
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Table 4: Results for the objective functions on PP.

Index [𝑖] Population PP 𝑚
1
= TCC 𝑚

2
= TPC Front Crowding distance (CD) = 𝐼[𝑖]

[1] [2, 1, 5, 1] 18020000 3746700 @
2

∞

[2] [3, 3, 1, 1] 6720000 6006000 @
2

0.672
[3] [3, 3, 3, 3] 0 4200000 @

1
∞

[4] [2, 4, 1, 5] 43440000 7079333.3 @
3

∞

[5] [3, 1, 1, 3] 14000000 2112000 @
1

∞

[6] [3, 5, 4, 5] 17020000 3847000 @
2

0.5195
[7] [3, 1, 1, 1] 960000 6500000 @

2
∞

[8] [3, 4, 4, 4] 1020000 9750000 @
3

∞

[9] [2, 3, 3, 3] 1110000 9750000 @
3

∞

[10] [2, 1, 3, 4] 45090000 10514000 @
4

∞

Table 5: Selection of query plans using binary tournament selection technique.

Index
Randomly generated

indexes
[𝑖] and [𝑗]

Tournament between
query plans

[𝑃(𝑖)] and [𝑃(𝑗)]

Front comparison Query plan selected (lower
front or higher CD)

[1] [1] and [4] [2, 1, 5, 1] and [2, 4, 1, 5] [@
2
] and [@

3
] [2, 1, 5, 1]

[2] [2] and [3] [3, 3, 1, 1] and [3, 3, 3, 3] [@
2
] and [@

1
] [3, 3, 3, 3]

[3] [3] and [4] [3, 3, 3, 3] and [2, 4, 1, 5] [@
1
] and [@

3
] [3, 3, 3, 3]

[4] [2] and [6] [3, 3, 1, 1] and [3, 5, 4, 5] [@
2
] and [@

2
] [3, 3, 1, 1]

[5] [2] and [4] [3, 3, 1, 1] and [2, 4, 1, 5] [@
2
] and [@

3
] [3, 3, 1, 1]

[6] [1] and [3] [2, 1, 5, 1] and [3, 3, 3, 3] [@
2
] and [@

1
] [3, 3, 3, 3]

[7] [2] and [5] [3, 3, 1, 1] and [3, 1, 1, 3] [@
2
] and [@

1
] [3, 1, 1, 3]

[8] [2] and [8] [3, 3, 1, 1] and [3, 1, 1, 3] [@
2
] and [@

3
] [3, 3, 1, 1]

[9] [7] and [8] [3, 1, 1, 1] and [3, 1, 1, 3] [@
2
] and [@

3
] [3, 1, 1, 1]

[10] [2] and [9] [3, 3, 1, 1] and [2, 4, 1, 5] [@
2
] and [@

3
] [3, 3, 1, 1]

Table 6: Population CP after crossover and mutation.

Index Population after crossover Population after
mutation (CP)

[1] [2, 1, 1, 1] [2, 1, 1, 1]

[2] [3, 3, 1, 1] [3, 3, 1, 1]

[3] [3, 3, 5, 1] [3, 3, 4, 1]
[4] [3, 3, 1, 1] [3, 3, 1, 1]

[5] [3, 3, 3, 1] [3, 3, 3, 1]

[6] [3, 3, 3, 3] [3, 3, 3, 3]

[7] [3, 1, 1, 3] [3, 1, 1, 3]

[8] [3, 3, 1, 3] [3, 3, 1, 3]

[9] [3, 1, 3, 3] [3, 3, 3, 3]

[10] [3, 3, 1, 1] [3, 3, 1, 1]

CC
5,1

× 𝑏
5,1

= CC
5,1

× (

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

× Card (𝑅4)

× (Dist
2,4

×

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

)

−1

× (Size (𝑅1) + Size (𝑅2) + Size (𝑅4)) )

170 × (

200 × 300

0.5 × 200

×

700

0.3 × (200 × 300) / (0.5 × 200)

)

× 90 = 35700000

LPC
1
× 𝑎
1

= LPC
1
× (

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

× Card (𝑅4)

× (Dist
2,4

×

Card (𝑅1) × Card (𝑅2)

Dist
1,2

× Card (𝑅1)

)

−1

×

Card (𝑅3)

Dist
4,3

× Card (𝑅3)

× (

4

∑

𝑖=1

Size (𝑅
𝑖
)))
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Table 7: Front assignment for query plans in IP.

Index Intermediate population IP TCC TPC Front
[1] [2, 1, 5, 1] 18020000 3747000 @

2

[2] [3, 3, 1, 1] 6720000 6006000 @
3

[3] [3, 3, 3, 3] 0 4200000 @
1

[4] [2, 4, 1, 5] 43440000 7079000 @
4

[5] [3, 1, 1, 3] 14000000 2112000 @
1

[6] [3, 5, 4, 5] 17020000 3847000 @
2

[7] [3, 1, 1, 1] 960000 6500000 @
2

[8] [3, 1, 1, 3] 1020000 9750000 @
3

[9] [2, 3, 3, 3] 1110000 9750000 @
3

[10] [2, 1, 3, 4] 45090000 10514000 @
5

[11] [2, 1, 1, 1] 990000 6500000 @
2

[12] [3, 3, 1, 1] 6720000 6006000 @
3

[13] [3, 3, 4, 1] 90300000 8946000 @
5

[14] [3, 3, 1, 1] 6720000 6006000 @
3

[15] [3, 3, 3, 1] 2520000 4230000 @
2

[16] [3, 3, 3, 3] 0 4200000 @
1

[17] [3, 1, 1, 3] 14000000 2112000 @
1

[18] [3, 3, 1, 3] 4500000 2640000 @
1

[19] [3, 3, 3, 3] 0 4200000 @
1

[20] [3, 3, 1, 1] 6720000 6006000 @
3

Table 8: Nondominated sorting for query plans in IP.

Index Intermediate
population IP Front Crowding

distance
[3] [3, 3, 3, 3] @

1

[5] [3, 1, 1, 3] @
1

[16] [3, 3, 3, 3] @
1

[17] [3, 1, 1, 3] @
1

[18] [3, 3, 1, 3] @
1

[19] [3, 3, 3, 3] @
1

[1] [2, 1, 5, 1] @
2 ∞

[7] [3, 1, 1, 1] @
2 ∞

[11] [2, 1, 1, 1] @
2 ∞

[15] [3, 3, 3, 1] @
2 0.4933

[6] [3, 5, 4, 5] @
2 0.2292

[2] [3, 3, 1, 1] @
3

[9] [2, 3, 3, 3] @
3

[8] [3, 1, 1, 3] @
3

[12] [3, 3, 1, 1] @
3

[14] [3, 3, 1, 1] @
3

[20] [3, 3, 1, 1] @
3

[4] [2, 4, 1, 5] @
4

[10] [2, 1, 3, 4] @
5

[13] [3, 3, 4, 1] @
4

= 2 × (

200 × 300

0.5 × 200

×

700

0.3 × (200 × 300) / (0.5 × 200)

×

500

0.1 × 500

) × 140 = 6533333.3.

(12)

Table 9: Population PP in the 2nd generation.

Index Population PP
[1] [3, 3, 3, 3]

[2] [3, 1, 1, 3]

[3] [3, 3, 3, 3]

[4] [3, 1, 1, 3]

[5] [3, 3, 1, 3]

[6] [3, 3, 3, 3]

[7] [2, 1, 5, 1]

[8] [3, 1, 1, 1]

[9] [2, 1, 1, 1]

[10] [3, 3, 3, 1]

So,

TPC
4
= 126000 + 420000 + 6533333.3 = 7079333.3

TCC
4
= 1020000 + 6720000 + 35700000 = 43440000.

(13)

Similarly, TCC and TPC values of the other nine query
plans are computed. Consider TCC and TPC of the 10 query
plans are given in Table 2. The population is then sorted into
different nondominated fronts as described in Step 3 of the
proposed algorithm. For example, for query plan 1, that is,
[2, 1, 5, 1], the set 𝑆

1
= number of query plans that dominate

query plan 1. Since TCC [1] < TCC [4], TPC [1] < TPC [4],
TCC [1] < TCC [10], and TPC [1] < TPC [10], the elements
of 𝑆
1

= {4, 10}. Similarly the sets 𝑆
2
, . . . , 𝑆

10
are computed

and are given in Table 2. 𝑛
𝑖
stores the count of query plans

that dominate 𝑖. So using the values in 𝑆
𝑖
, 𝑛
1

= 1, as only
query plan 5 is dominating 1 and 𝑛

2
= 1, as only query plan 3

is dominating 2. Similarly 𝑛
2
, . . . , 𝑛

10
are computed and are
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given in Table 2. From Table 2, it can be noted that query
plans 3 and 5 are not dominated as 𝑛

3
= 0, 𝑛

5
= 0. So, they

are assigned to the first nondominated front@1.The elements
in the next front are computed by reducing the count in 𝑛

𝑖

for each 𝑖 ∈ 𝑆
3
and 𝑖 ∈ 𝑆

5
. So, 𝑛

𝑖
= {0, 0, −, 4, −, 0, 0, 1, 1, 7}.

So the second front has query plans 1, 2, 6, and 7. This
process continues till all the query plans in the population are
assigned to their respective nondominated fronts. The fronts
@
1
, @
2
, @
3
, and @

4
are formed and are given in Table 2.

Finally the query plans are sorted separately on the values
of TCC and TPC within each front as shown in Table 3.

After the population is sorted into different fronts, the
crowding distance (𝐼[𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒]) computation is performed
for each query plan using the formula given in Step 4 of
the proposed algorithm. Query plans having the maximum
and minimum values in each front are assigned ∞ distance
values, that is, 𝐼[3], 𝐼[5], 𝐼[7], 𝐼[1], 𝐼[8], 𝐼[4], 𝐼[9], and
𝐼[10] are assigned ∞. For the rest of the query plans, their
crowding distance (CD) values are computed based on the
sorted order of query plans in each front. Initially, they are
assigned 𝐼[𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒] = 0. For query plan 2 in front @

2
, the

CD computation is performed as follows:

𝐼
𝑚
1
[2] = 𝐼 [2] +

TCC [6] − TCC [7]

max (TCC) −min (TCC)

= 0 +

17020000 − 960000

45090000 − 0

= 0.3562,

𝐼 [2] = 𝐼
𝑚
1
[2] +

TPC [7] − TPC [6]

max (TPC) −min (TPC)

= 0.3562 +

6500000 − 3847000

10514000 − 2112000

= 0.6720.

(14)

CD of the query plans in the given population is given in
Table 4.

Next, binary tournament selection is performed on the
population on the basis of crowded comparison operator ≺

𝑛
.

This selection process is shown in Table 5.
The selected query plans undergo random single point

crossover, with crossover probability 𝑃
𝑐

= 0.5. Mutation is
performed on the selected population with mutation proba-
bility 𝑃

𝑚
= 0.02. The child population CP after crossover and

mutation is shown in Table 6.
Now in accordance with NSGA-II algorithm, the popu-

lations from the second generation onward have to ensure
elitism. For this purpose, the child population CP is com-
bined with the parent population PP to generate intermediate
population IP. This population is subjected to nondominated
sort and fronts are formed as given in Table 7.

The population for the second generation is arrived at
by selecting query plans based on front and within it based
on crowding distance-wise, as described in Step 7, from the
intermediate population IP till the actual population size 10
is exceeded. This selection is shown in Table 8.

The population PP for the second generation is given in
Table 9.

The above process is repeated till a predefined number of
generations𝐺have elapsed.Thereafter, Top-𝐾 query plans are
produced as output.
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5. Experimental Results

The proposed NSGA-II based algorithm is implemented in
MATLAB 7.7 in Windows 7 professional 64 bit OS, with Intel
core i3CPUat 2.13GHzhaving 4GBRAM.Experimentswere
carried out for a population of 100 query plans with each
query plan involving 10 relations distributed over 50 sites.
These were performed on four datasets, each comprising a
different relation-site matrix. Graphs were plotted to observe
change in average TC (ATC) with respect to generations
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and Top-𝐾 query plans for different pairs of crossover and
mutation rates.

First, graphs showing the ATC values Top-5, Top-10,
Top-15, and Top-20 query plans, averaged over four datasets,
over 1000 generations for distinct pairs of crossover and
mutation probability {𝑃

𝑐
, 𝑃
𝑚
} = {0.7, 0.01}, {0.7, 0.005},

{0.75, 0.01}, {0.75, 0.005}, {0.8, 0.01}, {0.8, 0.005}, {0.85, 0.01},
{0.85, 0.005} using NSGA-II based DQPG algorithm
(DQPGNSGA) were plotted. These are shown in Figures 4,
5, 6, and 7. It can be observed from these graphs that the
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convergence to ATC is lowest in the case of {𝑃
𝑐
, 𝑃
𝑚
} =

{0.85, 0.01}. Furthermore, the graph showing ATC values
averaged over four datasets versus Top-𝐾 query plans after
1000 generations (Figure 8) also shows that the lowest ATC
values achieved are for {𝑃

𝑐
, 𝑃
𝑚
} = {0.85, 0.01}. Thus, it

can be said that DQPGNSGA performs reasonably well for
{𝑃
𝑐
, 𝑃
𝑚
} = {0.85, 0.01}. In order to compare DQPGNSGA with

SGA based DQPG algorithm (DQPGSGA), similar graphs
were plotted for DQPGSGA. These are shown in Figures 9, 10,
11, 12, and 13. It is noted from these graphs that DQPGSGA
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also achieves convergence to the lowest ATC values for
{𝑃
𝑐
, 𝑃
𝑚
} = {0.85, 0.01}.

Since the two algorithms DQPGNSGA and DQPGSGA
converge to a lower ATC value for the same crossover and
mutation probabilities, that is, {𝑃

𝑐
, 𝑃
𝑚
} = {0.85, 0.01}, the

comparisons of the two algorithms can be carried out for
these observed probabilities.

First, the two algorithmsDQPGNSGA andDQPGSGA were
compared for each of the four datasets (Dataset-1, Dataset-
2, Dataset-3, and Dataset-4) on the ATC values of Top-5,
Top-10, Top-15, and Top-20 query plans generated over 1000
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generations for {𝑃
𝑐
, 𝑃
𝑚
} = {0.85, 0.01}. The corresponding

graphs for each dataset are shown in Figures 14, 15, 16, and 17.
It can be observed from the graphs thatDQPGNSGA converges
to lower ATC values for Top-5, Top-10, Top-15, and Top-20
query plans generated for all datasets.

Furthermore, graphs comparing the ATC values of Top-
𝐾 query plans produced by DQPGNSGA and DQPGSGA after
1000 generations for the four datasets were plotted and
are shown in Figures 18, 19, 20, and 21. These graphs also
show average TCC (ATCC) and average TPC (ATPC) values
of Top-𝐾 query plans generated by DQPGNSGA. It can be
observed from these graphs thatDQPGNSGA is able to achieve
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an acceptable tradeoff between ATPC and ATCC, which in
turn leads to a comparatively lower ATC for the Top-𝐾 query
plans generated by it.

Next, a graph comparing the ATC values of Top-𝐾 query
plans generated by DQPGNSGA and DQPGSGA on all four
datasets (DS-1, DS-2, DS-3, and DS-4) after 1000 generations
for observed probabilities {𝑃

𝑐
, 𝑃
𝑚
} = {0.85, 0.01}were plotted

and is shown in Figure 22. It is noted from the graph that
DQPGNSGA performs better than DQPGSGA on the ATC
values of Top-𝐾 query plans generated by the two algorithms
for each of the four data sets.
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It can be reasonably inferred from all the above graphs
that DQPGNSGA is able to generate Top-𝐾 query plans with
lower ATC, when compared to those generated byDQPGSGA.
This may be attributed to acceptable tradeoffs achieved while
simultaneously optimizing TPC and TCC, which results in
lower TC in case of DQPGNSGA.

6. Conclusion

In this paper, DQPGproblemgiven in [3] has been addressed,
where query plans are generated for a distributed relational
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query that incurs minimum total query processing cost.
Genetic algorithms have been used to generate these query
plans.The total query processing cost TC in [3] can be viewed
as comprising broadly of TPC and TCC, and therefore,
minimizing TPC and TCC would result in minimizing TC.
Thus, in this paper, the single-objective DQPG problem
in [3] has been formulated and solved as a biobjective
DQPG problem with the two objectives being minimizing
TPC and minimizing TCC. These objectives are minimized
simultaneously using the multiobjective genetic algorithm
NSGA-II.

Experiments were performed and DQPGNSGA is com-
pared with DQPGSGA given in [3]. It was observed that
both the algorithms individually gave good results for the
crossover and mutation probabilities 0.85 and 0.01, respec-
tively. The two algorithms were then compared on the ATC
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values of the Top-𝐾 query plans generated by them for the
observed crossover and mutation probabilities. The results
showed that DQPGNSGA performed better than DQPGSGA.
Also the performance of the former was better when the two
algorithmswere compared on theATCvalues of Top-𝐾 query
plans.The better performance of DQPGNSGA over DQPGSGA
may be attributed to DQPGNSGA achieving acceptable trade-
offs between TPC and TCC while minimizing TPC and TCC
of Top-𝐾 query plans simultaneously.
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