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Mignotte and Pethö used the Siegel-Baker method to find all the integral solutions (𝑥, 𝑦, 𝑧) of the system of Diophantine equations
𝑥
2
− 6𝑦
2
= −5 and 𝑥 = 2𝑧

2
− 1. In this paper, we extend this result and put forward a generalized method which can completely

solve the family of systems of Diophantine equations 𝑥2 − 6𝑦2 = −5 and 𝑥 = 𝑎𝑧2 − 𝑏 for each pair of integral parameters 𝑎, 𝑏. The
proof utilizes algebraic number theory and p-adic analysis which successfully avoid discussing the class number and factoring the
ideals.

1. Introduction

Let Z, N, and Q be the sets of all integers, positive integers,
and rational numbers, and let 𝑎, 𝑏 be the integers.The system
of Diophantine equations

𝑥
2
− 6𝑦
2
= −5, 𝑥 = 𝑎𝑧

2
− 𝑏 (1)

is a quartic model of an elliptic curve that has been investi-
gated inmany papers.Mignotte and Pethő [1] used the Siegel-
Baker method to solve (1) for 𝑎 = 2 and 𝑏 = 1; however,
their method was complicated as a combination of algebraic
and transcendental number theory. In 1998, Cohn [2] gave an
elementary proof of the above system of equations for 𝑎 = 2
and 𝑏 = 1. In 2004, Le [3] used a similar elementary method
to extend the result of Cohn’s work and proposed an effective
method solving the system of equations

𝑥
2
− 𝐷𝑦
2
= 1 − 𝐷, 𝑥 = 2𝑧

2
− 1, (2)

where 𝐷 − 1 is the power of an odd prime. As an example,
solutions of the equations for 𝐷 = 6 and 𝐷 = 8 are given in
the paper so as to show the effectiveness of the method.

In this paper, we use algebraic number theory and
Skolem’s 𝑝-adic method [4] to solve (1), and the method is
relatively simple. In the proposedmethod, both the consider-
ation of the class number in the field and the factorization

of ideals of integral ring are avoided. Moreover, a faster
algorithm proposed in [5] to compute the fundamental unit
and the set of nonassociated factors is used.

In order to well interpret the main result, the symbol
notation used in this paper is defined as below.

Here, we assume that𝑚 ≥ 0 is an integer and 𝜀
0
= 5+2√6

is the fundamental unit in the field Q(√6), and let 𝐴 denote
(𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚
)/(𝛽 + 𝛽), where 𝛽2 = ±𝜂𝜀

0
or 𝛽2 = ±𝜂, with

𝜂 = 1 + √6; 𝛽
2

denotes the conjugate of 𝛽2 inQ(√6).
The main result of this paper is as follows.

Theorem 1. Let (𝑥, 𝑦, 𝑧) be an integral solution of (1). Then 𝑧
exists only when it satisfies one of the following four equations
for 𝑘 ∈ Z:

(N1) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 2𝑎(1 − √−5),

(N2) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 4𝑎(1 + √−5),

(N3) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 2𝑎(−1 − √−5),

(N4) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 4𝑎(−1 + √−5),

where 𝜀 is the fundamental unit of the totally complex quartic
field of Q(𝜃), 𝛼 is the nonassociated factor such that 𝛼𝛼

−
=

4𝑎(𝑏 − √−5), 𝛼
−
denotes the relative conjugate of 𝛼, and 𝐴 is

referred to above.
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As the application to the theorem, we give the following
corollary.

Corollary 2. The system of (1) for 𝑎 = 2 and 𝑏 = 1 has
exactly six integral solutions: (𝑥, 𝑦, 𝑧) = (16561, ±6761, ±91),
(71, ±29, ±6), (17, ±7, ±3), (7, ±3, ±2), (1, ±1, ±1), and
(−1, ±1, 0).

2. Proof of the Theorem

Before the proof of the theorem, Lemma 3 is needed.

Lemma 3. If 𝑚, 𝜀
0
, 𝛽, and 𝛽 are defined as before, then 𝐴 =

(𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚
)/(𝛽 + 𝛽) is an algebraic number in the field

Q(√−5).

Proof. Rewriting 𝐴, we have

𝐴 =
𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚

𝛽 + 𝛽

=

(𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚
) (𝛽 + 𝛽)

(𝛽 + 𝛽)
2

=
𝛽
2
𝜀
𝑚

0
+ 𝛽
2

𝜀
0

𝑚
+ 𝛽𝛽 (𝜀

𝑚

0
+ 𝜀
0

𝑚
)

𝛽
2
+ 𝛽
2

+ 2𝛽𝛽

.

(3)

Since 𝛽2 + 𝛽
2

, 𝛽2𝜀𝑚
0
+ 𝛽
2

𝜀
0

𝑚, and 𝜀𝑚
0
+ 𝜀
0

𝑚 are all rational
integers and𝛽𝛽 = √−5, then clearly𝐴 is an algebraic number.
Thus, the lemma is proven.

Proof of Theorem. There are four separate cases in consider-
ation during the proof. Since the process is very similar in
each case, some details will be omitted for simplicity. Now we
prove the theorem.

After rewriting the first equation of (1), factorization in
the fieldQ(√6) yields

(𝑥 + √6𝑦) (𝑥 − √6𝑦) = (1 + √6) (1 − √6) . (4)

Then we have

(𝑥 + √6𝑦) = ± 𝜂𝜀
𝑛

0
,

(𝑥 − √6𝑦) = ± 𝜂𝜀
0

𝑛
, with 𝑛 ∈ Z.

(5)

Adding (5), we get

2𝑥 = ± (𝜂𝜀
𝑛

0
+ 𝜂𝜀
0

𝑛
) . (6)

The solution of (6) is split into four cases.

Case 1. Assume that 𝑛 = 2𝑚 + 1 is odd and 2𝑥 = 𝜂𝜀𝑛
0
+ 𝜂𝜀
0

𝑛.
Then

2𝑥 = 𝜂𝜀
2𝑚+1

0
+ 𝜂𝜀
0

2𝑚+1
= (𝛽 + 𝛽)

2

(
𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚

𝛽 + 𝛽

)

2

− 2𝛽𝛽,

with 𝛽2 = 𝜂𝜀
0
.

(7)

Since

(𝛽 + 𝛽)
2

= 34 + 2√−5 = (1 − √−5) (3 + √−5)
2

,

𝛽𝛽 = √−5,

(8)

by inserting (7) and the second equation of (1) into (6), we
get

2𝑎𝑧
2
− 𝜃
2
𝐴
2
= 2 (𝑏 − √−5) , (9)

where 𝜃2 = 1−√−5 and𝐴 = (3+√−5)((𝛽𝜀
𝑚

0
+𝛽𝜀
0

𝑚
)/(𝛽+𝛽)).

We multiply both sides of the equation by 2𝑎 to obtain

(2𝑎𝑧)
2
− 𝜃
2
𝐴
2
= 4𝑎 (𝑏 − √−5) = 𝛼𝛼

−
. (10)

Without loss of generality, we also denote 𝜃2 = 2𝑎(1 − √−5)
and 𝐴 = (3 + √−5)((𝛽𝜀

𝑚

0
+ 𝛽𝜀
0

𝑚
)/(𝛽 + 𝛽)). Factoring (9) in

the fieldQ(𝜃), we have

(𝑁1) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘
, with 𝜃2 = 2𝑎 (1 − √−5) , 𝑘 ∈ Z.

(11)

Case 2. In another case, when 𝑛 = 2𝑚 is even and 2𝑥 = 𝜂𝜀𝑛
0
+

𝜂𝜀
0

𝑛, then

2𝑥 = 𝜂𝜀
2𝑚

0
+ 𝜂𝜀
0

2𝑚
= (𝛽 + 𝛽)

2

(
𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚

𝛽 + 𝛽

)

2

− 2𝛽𝛽,

with 𝛽2 = 𝜂.

(12)

Similarly, we have

(2𝑎𝑧)
2
− 𝜃
2
𝐴
2
= 4𝑎 (𝑏 − √−5) = 𝛼𝛼

−
, (13)

where 𝜃2 = 4𝑎(1 + √−5) and 𝐴 = (𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚
)/(𝛽 + 𝛽).

Furthermore, we know that 𝑧 satisfies

(𝑁2) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 4𝑎 (1 + √−5) , 𝑘 ∈ Z.

(14)

Case 3. Consider 𝑛 = 2𝑚 + 1 is odd and 2𝑥 = −(𝜂𝜀𝑛
0
+ 𝜂𝜀
0

𝑛
).

By the same consideration, we deduce that 𝑧 satisfies

(𝑁3) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 2𝑎 (−1 − √−5) , 𝑘 ∈ Z,

(15)

where 𝐴 = (3 − √−5)((𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚
)/(𝛽 + 𝛽)).

Case 4. Consider 𝑛 = 2𝑚 is even and 2𝑥 = −(𝜂𝜀
𝑛

0
+ 𝜂𝜀
0

𝑛
).

Similarly, we know that 𝑧 satisfies

(𝑁4) 2𝑎𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 4𝑎 (−1 + √−5) , 𝑘 ∈ Z,

(16)

where 𝐴 = (𝛽𝜀
𝑚

0
+ 𝛽𝜀
0

𝑚
)/(𝛽 + 𝛽).

Thus, we complete the proof of the theorem.
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3. Proof of the Corollary

Remark 4. The method of the proof of the corollary is a
special instance of general procedure for the computation of
integral points on some quartic model of elliptic curves. The
method is relatively simple, because it avoids the use of class
number and ideal factorization in imaginary quartic fields.

Before the proof, we give the following lemma.

Lemma 5. For any integer 𝑚 ̸= 0 and 𝑖 > 1, one has
𝑉
𝑝
(𝑝
𝑖
(
𝑚

𝑖 )) > 𝑉𝑝(𝑝 (
𝑚

1 )), where 𝑉𝑝(⋅) denotes the standard 𝑝-
adic valuation and 𝑝 is an odd prime.

Proof. We know

𝑉
𝑝
(𝑝
𝑖
(
𝑚

𝑖
)) − 𝑉

𝑝
(𝑝(

𝑚

1
))

= 𝑖 − 1 + 𝑉
𝑝
(
𝑚

𝑖
) − 𝑉
𝑝
(
𝑚

1
)

= 𝑖 − 1 + 𝑉
𝑝
(
(𝑚 − 1) ⋅ ⋅ ⋅ (𝑚 − 𝑖 + 1)

𝑖!
)

= 𝑖 − 1 + 𝑉
𝑝
((𝑚 − 1) ⋅ ⋅ ⋅ (𝑚 − 𝑖 + 1)) − 𝑉

𝑝
(𝑖!)

≥ 𝑖 − 1 − 𝑉
𝑝
(𝑖!)

= 𝑖 − 1 − ([
𝑖

𝑝
] + [

𝑖

𝑝
2
] + ⋅ ⋅ ⋅ )

≥ 𝑖 − 1 −
𝑖

𝑝 − 1

≥ (
𝑝 − 2

𝑝 − 1
) 𝑖 − 1 > 0, with 𝑖 > 1.

(17)

Therefore, for 𝑖 > 1, the𝑝-adic valuation of the term of 𝑝𝑖 (𝑚𝑖 )
exceeds the 𝑝-adic valuation of the term of 𝑝 (𝑚1 ). Thus, we
complete the proof of Lemma 5.

To complete the proof of the corollary, the fundamental
unit in the totally complex quartic field Q(𝜃) is computed.
Furthermore, nonassociated factor of 2 − 2√−5 in the ring of
integers of Q(𝜃) is also calculated. The idea of computation
of fundamental unit and nonassociated factorization stems
from Zhu and Chen [5, 6] and Buchmann’s work [7], which
offered a fast implementation scheme. Results are obtained
via MATHEMATICA 7.0, which are listed in Table 1.

Proof of Corollary. Case 1. Substituting 𝑎 = 2 and 𝑏 = 1 into
(9), we know that 𝑧 satisfies

4𝑧
2
− 𝜃
2
𝐴
2
= 2 − 2√−5 = 𝛼𝛼

−
. (18)

Equation (N1) is reduced to

(𝑁5) 2𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = 1 − √−5, 𝑘 ∈ Z. (19)

From Table 1, we get 𝜀 = 11 + 2𝜃 − 6𝜃
2
− 4𝜃
3 and 𝛼 =

6+4𝜃−𝜃
3. FromLemma 3,we know that𝐴 is an element in the

fieldQ(√−5). If we expand 2𝑧+𝜃𝐴 in the basis 1, 𝜃, 𝜃2, and 𝜃3
ofQ(𝜃), we obtain 2𝑧+𝜃𝐴 = 𝑎+𝑏𝜃+𝑐𝜃

2
+𝑑𝜃
3
(𝑎, 𝑏, 𝑐, 𝑑 ∈ Q);

then, from Lemma 3, we also know that 𝑐 = 0. In short, we
denote this fact by (2𝑧 + 𝜃𝐴)

2
= 0.

To use the 𝑝-adic analysis, a suitable prime 𝑝 is needed.
Here, we take 𝑝 = 7. A straightforward computation shows
that

𝜀
8
≡ 1 (mod 7) . (20)

Since (𝛼𝜀0)
2
≡ 0(mod7), (𝛼𝜀7)

2
≡ 0(mod7), and (𝛼𝜀𝑖)

2
̸≡

0(mod 7) (𝑖 = 2, . . . , 6), we get 𝑘 ≡ 0, 7(mod 8).
(i) Let 𝑘 ≡ 0(mod8); since 𝜀8 ≡ 1(mod7), we obtain

𝜀
8
= 1 + 7𝜉; then

± (2𝑧 + 𝜃𝐴) = 𝛼(1 + 7𝜉)
𝑚
= 𝛼 + 7(

𝑚

1
) (𝛼𝜉)

+ 7
2
(
𝑚

2
) (𝛼𝜉

2
) + ⋅ ⋅ ⋅ + 7

𝑚
(
𝑚

𝑚
) (𝛼𝜉
𝑚
) ,

(21)

with 𝑘 = 8𝑚. So we have

±(2𝑧 + 𝜃𝐴)
2
= (𝛼 + 7(

𝑚

1
) (𝛼𝜉) + ⋅ ⋅ ⋅ + 7

𝑚
(
𝑚

𝑚
) (𝛼𝜉
𝑚
))

2

.

(22)

From Lemma 5 and (𝛼𝜉)
2
= (−30 + 30𝜃 + 60𝜃

2
+ 30𝜃

3
)
2

̸≡

0(mod 7), we get𝑚 = 0 and 𝑧 = ±3 by working modulo 7𝑟+2
on formula (13), where 7𝑟‖𝑚.

(ii) When 𝑘 ≡ 7(mod 8), we have

± (2𝑧 + 𝜃𝐴) = 𝛼𝜀
−1
(1 + 7𝜉)

𝑚
= 𝛼𝜀
−1
+ 7(

𝑚

1
) (𝛼𝜀
−1
𝜉)

+ ⋅ ⋅ ⋅ + 7
𝑚
(
𝑚

𝑚
)(𝛼𝜀
−1
𝜉
𝑚
) ,

(23)

with 𝑘 = −1 + 8𝑚. So we have

±(2𝑧 + 𝜃𝐴)
2
= (𝛼𝜀

−1
+ 7(

𝑚

1
) (𝛼𝜀
−1
𝜉)

+ ⋅ ⋅ ⋅ + 7
𝑚
(
𝑚

𝑚
) (𝛼𝜀
−1
𝜉
𝑚
))

2

.

(24)

Similar deduction shows that𝑚 = 0 and 𝑧 = ±68.

Case 2. Secondly, we similarly consider the following equa-
tion:

(𝑁6) 2𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘
, with 𝜃2 = 2 + 2√−5, 𝑘 ∈ Z. (25)

From Table 1, we get 𝜀 = −49 − 20𝜃 + 3𝜃2 + (7/2)𝜃3 and 𝛼 =
2 + 𝜃. By the same argument we choose 𝑝 = 23 and 𝜀11 ≡
1(mod 23). Similarly we have 𝑘 ≡ 0, 1(mod 11); then we can
deduce 𝑧 = ±1 and 𝑧 = ±91, respectively.

Case 3. Consider the following equation:

(𝑁7) 2𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = −1 − √−5, 𝑘 ∈ Z. (26)
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Table 1: Associated number field.

𝜃
2 Integral basis Fundamental unit Nonassociated factor of

2 − 2√−5

1 − √−5 1, 𝜃, 𝜃
2
, 𝜃
3

11 + 2𝜃 − 6𝜃
2
− 4𝜃
3

6 + 4𝜃 − 𝜃
3

2 + 2√−5 1, 𝜃,
1

2
𝜃
2
,
1

4
𝜃
3

−49 − 20𝜃 + 3𝜃
2
+
7

2
𝜃
3

2 + 𝜃

−1 − √−5 1, 𝜃, 𝜃
2
, 𝜃
3

−85 + 34𝜃 + 30𝜃
2
+ 38𝜃

3
4 + 𝜃
3

−2 + 2√−5 1, 𝜃,
1

2
𝜃
2
,
1

4
𝜃
3

1 − 2𝜃 − 𝜃
2
−
1

2
𝜃
3

12 − 𝜃

Table 2: Positive 𝑧-value of the solution.

𝑎 = 1 𝑎 = 2 𝑎 = 3 𝑎 = 4 𝑎 = 5 𝑎 = 6 𝑎 = 7 𝑎 = 8 𝑎 = 9 𝑎 = 10

𝑏 = 1 𝑧 = 0 𝑧 = 0, 1, 2, 3, 6, 91 𝑧 = 0 𝑧 = 0 𝑧 = 0 𝑧 = 0 𝑧 = 0 𝑧 = 0, 1, 3 𝑧 = 0 𝑧 = 0

𝑏 = 2 𝑧 = 1, 3 NS 𝑧 = 1 NS NS NS NS NS 𝑧 = 1 NS
𝑏 = 3 𝑧 = 2 𝑧 = 1, 59 NS 𝑧 = 1 𝑧 = 2 NS NS NS NS 𝑧 = 1, 83

𝑏 = 4 NS NS 𝑧 = 1, 5 NS 𝑧 = 1 NS NS NS NS NS
𝑏 = 5 𝑧 = 2 NS 𝑧 = 2 𝑧 = 1 NS 𝑧 = 1 NS NS NS NS
𝑏 = 6 NS NS NS NS 𝑧 = 1 NS 𝑧 = 1, 5 NS NS NS
𝑏 = 7 𝑧 = 0 𝑧 = 0, 2 𝑧 = 0 𝑧 = 0 𝑧 = 0 𝑧 = 0, 1, 2 𝑧 = 0 𝑧 = 0, 1 𝑧 = 0 𝑧 = 0

𝑏 = 8 𝑧 = 1, 3, 5, 41 NS NS NS NS NS 𝑧 = 1 NS 𝑧 = 1 NS
𝑏 = 9 𝑧 = 4 𝑧 = 1, 2, 29 NS 𝑧 = 2 𝑧 = 4 NS NS 𝑧 = 1 NS 𝑧 = 1

𝑏 = 10 𝑧 = 3, 9 NS 𝑧 = 1, 3 NS NS NS NS NS 𝑧 = 1, 3 NS
“NS” refers to “no solution.”

We also have 𝜀 = −85 + 34𝜃 + 30𝜃2 + 38𝜃3, 𝛼 = 4 + 𝜃3, 𝑝 = 5,
and 𝜀4 ≡ 1(mod 5). Direct deductions show that 𝑧 = ±2 and
𝑧 = ±11798.

Case 4.The final equation is

(𝑁8) 2𝑧 + 𝜃𝐴 = ±𝛼𝜀
𝑘 with 𝜃2 = −2 + 2√−5, 𝑘 ∈ Z.

(27)

It corresponds to 𝜀 = 1−2𝜃−𝜃2 −(1/2)𝜃3, 𝛼 = 12−𝜃, 𝑝 = 13,
and 𝜀5 ≡ 1(mod 13). A similar deduction yields 𝑧 = 0 and
𝑧 = ±6.

All in all, if (𝑥, 𝑦, 𝑧) is an integral solution of (1),

±𝑧 = 3, 68, 1, 91, 2, 11798, 0, 6. (28)

Substituting (24) into the system of Diophantine equa-
tions (1), we get all integral solutions, namely, (𝑥, 𝑦, 𝑧) =

(16561, ±6761, ±91), (71, ±29, ±6), (17, ±7, ±3), (7, ±3, ±2),
(1, ±1, ±1), and (−1, ±1, 0).

This completes the proof of the corollary.

Remark 6. Like before, we can solve a family of systems of
Diophantine equations (1). As a direct application of this
theorem, systems of equations with parameters 1 ≤ 𝑎 ≤ 10

and 1 ≤ 𝑏 ≤ 10 are solved and results are listed in Table 2.
For simplicity, we only list the positive 𝑧-value of solutions
(𝑥, 𝑦, 𝑧).
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