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Let 𝑇 be a singular integral operator with its kernel satisfying |𝐾(𝑥−𝑦)−∑ℓ

𝑘=1
𝐵

𝑘
(𝑥)𝜙

𝑘
(𝑦)| ≤ 𝐶|𝑦|

𝛾
/|𝑥−𝑦|

𝑛+𝛾, |𝑥| > 2|𝑦| > 0, where
𝐵

𝑘
and 𝜙

𝑘
(𝑘 = 1, . . . , ℓ) are appropriate functions and 𝛾 and 𝐶 are positive constants. For �⃗� = (𝑏

1
, . . . , 𝑏

𝑚
) with 𝑏

𝑗
∈ 𝐵𝑀𝑂(R𝑛

),
the multilinear commutator 𝑇

�⃗�
generated by 𝑇 and �⃗� is formally defined by 𝑇

�⃗�
𝑓(𝑥) = ∫

R𝑛
[∏

𝑚

𝑗=1
(𝑏

𝑗
(𝑥) − 𝑏

𝑗
(𝑦))]𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦.

In this paper, the weighted 𝐿𝑝-boundedness and the weighted weak type 𝐿 log 𝐿 estimate for the multilinear commutator 𝑇
�⃗�
are

established.

1. Introduction and Results

In the classical Calderón-Zygmund theory, the Hörmander’s
condition

∫
|𝑥|>2|𝑦|

𝐾 (𝑥 − 𝑦) − 𝐾 (𝑥)
 𝑑𝑥 ≤ 𝐶, (1)

introduced byHörmander [1], plays a fundamental role in the
theory of Calderón-Zygmund operators. On the other hand,
singular integral operators whose kernels do not satisfy the
Hörmander’s condition have been extensively studied.

In 1997, in order to study the 𝐿𝑝-boundedness of certain
singular integral operators, Grubb andMoore [2] introduced
the following variant of the classical Hörmander’s condition,

∫
|𝑥|>2|𝑦|



𝐾 (𝑥 − 𝑦) −

ℓ

∑

𝑘=1

𝐵
𝑘 (𝑥) 𝜙𝑘

(𝑦)



𝑑𝑥 ≤ 𝐶, (2)

where 𝐵
𝑘
and 𝜙

𝑘
’s are appropriate functions (see Theorem 3

below). As an example we note that the kernel𝐾(𝑥) = sin𝑥/𝑥
verifies (2), but it is not a Calderón-Zygmund kernel since its
derivative does not decay quickly enough at infinity (see [2]
or [3]).

Obviously, if we take ℓ = 1, 𝐵
1
(𝑥) = 𝐾(𝑥) and 𝜙

1
(𝑦) ≡

1, then condition (2) is exactly the classical Hörmander’s
condition (1).

Definition 1. We say that a nonnegative locally integrable
function 𝑔 defined on R𝑛 satisfies the reverse Hölder 𝑅𝐻

∞

condition, in short, 𝑔 ∈ 𝑅𝐻
∞
(R𝑛

), if there is a constant𝐶 > 0

such that for every cube𝑄 ⊂ R𝑛 centered at the originwehave

0 < sup
𝑥∈𝑄

𝑔 (𝑥) ≤ 𝐶
1

|𝑄|
∫
𝑄

𝑔 (𝑥) 𝑑𝑥. (3)

The smallest constant 𝐶 is said to be the 𝑅𝐻
∞

constant of 𝑔.

Remark 2. It is easy to see that if 𝑔(𝑥) ∈ 𝑅𝐻
∞
(R𝑛

), then also
𝑔(−𝑥) ∈ 𝑅𝐻

∞
(R𝑛

) (see [3] Remark 2.4).

In [2], Grubb andMoore established the 𝐿𝑝-boundedness
and the weak type (1, 1) estimates for the singular integral
operators with kernels satisfying (2).

It is well known that the classical Hörmander’s condition
(1) is too weak to get weighted inequalities for the classi-
cal Calderón-Zygmund operators by any known method.
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The usual hypothesis on the kernel 𝐾 to obtain them is the
Lipschitz condition

𝐾 (𝑥 − 𝑦) − 𝐾 (𝑥)
 ≤

𝐶
𝑦


𝛾

𝑥 − 𝑦


𝑛+𝛾
, |𝑥| > 𝑐

𝑦
 . (4)

Conditions, the so-called 𝐿𝑟-Hörmander’s condition, weaker
than (4), but stronger than (1), have been also considered in
[4, 5] (also see [6, 7]).

In 2003, Trujillo-González [3] establishes the weighted
norm inequalities for 𝑇 when 𝐾 satisfies a variant of the
Lipschitz condition (see (6) below).

As usual, we denote by 𝐴
𝑝
(1 ≤ 𝑝 ≤ ∞) the Mucken-

houpt weights classes (see [8], or [9] and [10]). For a weight
𝜔, 1 ≤ 𝑝 < ∞ and a measurable set 𝐸, we write

𝑓
𝐿𝑝(𝜔)

= (∫
R𝑛

𝑓 (𝑥)


𝑝
𝜔 (𝑥) 𝑑𝑥)

1/𝑝

,

𝜔 (𝐸) = ∫
𝐸

𝜔 (𝑥) 𝑑𝑥.

(5)

Theorem 3 (see [3]). Let 𝐾 ∈ 𝐿
2
(R𝑛

). Suppose that there is a
constant 𝐶

0
> 0, such that

(𝐾
1
) ‖�̂�‖

∞
≤ 𝐶

0
;

(𝐾
2
) |𝐾(𝑥)| ≤ 𝐶

0
|𝑥|

−𝑛;
(𝐾

3
) there exist functions 𝐵

1
, . . . , 𝐵

ℓ
∈ 𝐿

1

loc(R
𝑛
\ {0}) and

{𝜙
1
, . . . , 𝜙

ℓ
} ⊂ 𝐿

∞
(R𝑛

) such that | det[𝜙
𝑘
(𝑦

𝑖
)]|

2
∈

𝑅𝐻
∞
(R𝑛ℓ

), where 𝑦
𝑖
∈ R𝑛 and 𝑖, 𝑘 = 1, . . . , ℓ;

(𝐾
4
) for a fixed 𝛾 > 0 and for any |𝑥| > 2|𝑦| > 0,


𝐾 (𝑥 − 𝑦) −

ℓ

∑

𝑘=1

𝐵
𝑘 (𝑥) 𝜙𝑘

(𝑦)



≤ 𝐶
0

𝑦


𝛾

𝑥 − 𝑦


𝑛+𝛾
. (6)

For 𝑓 ∈ 𝐶
∞

0
(R𝑛

), we defined the convolution operator
associated to the kernel 𝐾 by

𝑇𝑓 (𝑥) = ∫
R𝑛
𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦. (7)

(1) Let 1 < 𝑝 < ∞ and 𝜔 ∈ 𝐴
𝑝
. Then there exists a

constant 𝐶 > 0 such that

∫
R𝑛

𝑇𝑓 (𝑥)


𝑝
𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶∫

R𝑛

𝑓 (𝑥)


𝑝
𝜔 (𝑥) 𝑑𝑥. (8)

(2) Let 𝜔 ∈ 𝐴
1
. Then there exists a constant 𝐶 > 0 such

that for all 𝜆 > 0

𝜔 ({𝑥 ∈ R
𝑛
:
𝑇𝑓 (𝑥)

 > 𝜆}) ≤
𝐶

𝜆
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦. (9)

It is easy to see that any kernel satisfies condition (6) and
also verifies (2). Obviously, if we take ℓ = 1, 𝐵

1
(𝑥) = 𝐾(𝑥),

and 𝜙
1
(𝑦) ≡ 1, then condition (6) is exactly the classical

Lipschitz condition (4). We remark that the function 𝐾(𝑥) =
sin𝑥/𝑥 satisfies conditions (𝐾

1
)–(𝐾

4
), but does not satisfy the

Hörmander’s condition (1) (see [11] page 5).

Under the assumption ofTheorem 3, several authors have
studied two-weight inequalities for the convolution operator
𝑇, for example [11–13]. Recently, the authors [14] introduce
a variant of the classical 𝐿𝑟-Hörmander’s condition in the
scope of (2) and establish the weighted norm inequalities
for singular integral operator with its kernel satisfying such
a variant of the classical 𝐿𝑟-Hörmander’s condition.

On the other hand, the commutators of singular integral
operators have been widely studied by many authors; see, for
example, [15–22] and the references therein. Given a locally
integrable function 𝑏 and a linear operator 𝑇 with kernel 𝐾,
the linear commutator [𝑏, 𝑇] is formally defined by

[𝑏, 𝑇] 𝑓 = 𝑏𝑇 (𝑓) − 𝑇 (𝑏𝑓) . (10)

For �⃗� = (𝑏
1
, . . . , 𝑏

𝑚
) with 𝑏

𝑗
∈ 𝐵𝑀𝑂(R𝑛

) (𝑗 = 1, . . . , 𝑚).
The generalized commutator, the so-called the multilinear
commutator, 𝑇

�⃗�
is formally defined by

𝑇
�⃗�
𝑓 (𝑥) = ∫

R𝑛
[

𝑚

∏

𝑖=1

(𝑏
𝑗 (𝑥) − 𝑏𝑗 (𝑦))]𝐾 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦.

(11)

In 2002, Pérez and Trujillo-González [22] studied the
sharp weighted estimates for the multilinear commutators of
the classical Calderón-Zygmund operators. In 2006, Zhang
[23] studied the weighted estimates for maximal multilinear
commutators.

In 1993, Alvarez et al. [15] established a generalized
boundedness criterion for the commutators of linear oper-
ators. Now, we restate Theorem 2.13 in [15] in the following
strong form.

Theorem 4 (see [15]). LetK be a linear operator and 1 < 𝑝 <

∞. Suppose that for all 𝜔 ∈ 𝐴
𝑝
(R𝑛

), the linear operator K
satisfies the following weighted estimate

K𝑓
𝐿𝑝(𝜔)

≤ 𝐶
𝑓
𝐿𝑝(𝜔)

, (12)

where the constant𝐶 depends only on 𝑛,𝑝, and the𝐴
𝑝
constant

of 𝜔. Then for 𝑏 ∈ 𝐵𝑀𝑂(R𝑛
) and any weight function ] ∈ 𝐴

𝑝
,

the commutator [𝑏,K] is bounded from 𝐿
𝑝
(]) to 𝐿𝑝

(]) with
bound depending on 𝑛, 𝑝, and the 𝐴

𝑝
constant of 𝜔.

The goal of this paper is to study the weighted norm
inequalities for multilinear commutator of the convolution
operator𝑇 defined by (7) with its kernel satisfying (𝐾

1
)–(𝐾

4
).

By Theorem 3 and applying Theorem 4 𝑚-times, we
can easily get the following weighted 𝐿𝑝 inequalities for the
multilinear commutator 𝑇

�⃗�
.

Theorem 5. Let 𝑇 be the singular integral operator defined by
(7)with its kernel satisfying (𝐾

1
)–(𝐾

4
). If 1 < 𝑝 < ∞,𝜔 ∈ 𝐴

𝑝
,

and 𝑏
𝑗
∈ 𝐵𝑀𝑂(R𝑛

) (𝑗 = 1, . . . , 𝑚), then there exists a positive
constant 𝐶 such that

∫
R𝑛

𝑇�⃗�
𝑓 (𝑥)



𝑝
𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶∫

R𝑛

𝑓 (𝑥)


𝑝
𝜔 (𝑥) 𝑑𝑥. (13)
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It is well-known that, in general, the linear commutator
of Calderón-Zygmund operator fails to be of weak type (1, 1)
and does not map𝐻1

(R𝑛
) into 𝐿1

(R𝑛
) when 𝑏 ∈ 𝐵𝑀𝑂(R𝑛

);
see [20] for more details. Instead, an endpoint theory was
provided for this operator, such as the weak type 𝐿 log 𝐿
estimate and the weak type (𝐻1

, 𝐿
1
) estimate (see [20, 24]).

The main result of this paper is the following weak type
𝐿 log 𝐿 estimate for multilinear commutator of the singular
integral operator defined inTheorem 3.

Theorem 6. Let 𝑇 be the singular integral operator defined by
(7) with its kernel satisfying (𝐾

1
)–(𝐾

4
). If 𝜔 ∈ 𝐴

1
and 𝑏

𝑗
∈

𝐵𝑀𝑂(R𝑛
) (𝑗 = 1, . . . , 𝑚), then, for all 𝜆 > 0,

𝜔 ({𝑥 ∈ R
𝑛
:
𝑇�⃗�

𝑓 (𝑥)
 > 𝜆})

≤ 𝐶∫
R𝑛

𝑓 (𝑦)


𝜆
(1 + log+

𝑓 (𝑦)


𝜆
)

𝑚

𝜔 (𝑦) 𝑑𝑦,

(14)

where 𝐶 is a positive constant independent of 𝜆 and 𝑓.

Throughout this paper, 𝛾 denotes the positive number
appeared in (6). As usual, the letter 𝐶 stands for a positive
constant which is independent of the main parameters and
not necessary the same at each occurrence. A cube 𝑄 in R𝑛

always means a cube whose sides parallel to the coordinate
axes. For a cube 𝑄 and a number 𝑡 > 0, we denote by 𝑡𝑄 the
cube with the same center and 𝑡-times the side length as 𝑄.
The symbol 𝐴 ≈ 𝐵 means there exist positive constants 𝐶

1

and 𝐶
2
such that 𝐶

1
𝐴 ≤ 𝐵 ≤ 𝐶

2
𝐴.

This paper is arranged as follows. In Section 2, we for-
mulate some preliminaries and lemmas we need. In Section 3
we will prove Theorem 6 for the case 𝑚 = 1, and in the last
section we proveTheorem 6 for the general case𝑚 > 1.

2. Preliminaries and Lemmas

In this section, we give some notations and results needed for
the proof of the main result.

2.1. MuckenhouptWeight Classes. A nonnegative locally inte-
grable function defined on R𝑛 is called a weight. We say a
weight ∈ 𝐴

𝑝
(1 < 𝑝 < ∞), if there exists a constant 𝐶 > 0

such that for all cubes 𝑄 ⊂ R𝑛

(
1

|𝑄|
∫
𝑄

𝜔 (𝑥) 𝑑𝑥)(
1

|𝑄|
∫
𝑄

𝜔(𝑥)
−1/(𝑝−1)

𝑑𝑥)

𝑝−1

≤ 𝐶. (15)

We say a weight 𝜔 ∈ 𝐴
1
, if there exists a constant 𝐶 > 0

such that for all cubes 𝑄 ⊂ R𝑛

1

|𝑄|
∫
𝑄

𝜔 (𝑦) 𝑑𝑦 ≤ 𝐶ess inf
𝑦∈𝑄

𝜔 (𝑦) . (16)

The 𝐴
∞

weights class is defined by 𝐴
∞

= ⋃
1<𝑝<∞

𝐴
𝑝
.

There is also another characterization of the 𝐴
∞

class, that
is, we say a weight 𝜔 ∈ 𝐴

∞
, if there exist positive constants

𝐶 and 𝛿 such that, for any cube𝑄 and anymeasurable set 𝐸 ⊂

𝑄, there exist

𝜔 (𝐸)

𝜔 (𝑄)
≤ 𝐶(

|𝐸|

|𝑄|
)

𝛿

. (17)

2.2. Projection of Function. Now, let us recall the definition of
the projection of a function (see [2] or [3]). By the projection
of an 𝐿1-function 𝑓 onto a finite-dimensional subspace 𝑌 we
refer to such an element, if it exists 𝑃(𝑓) of 𝑌 verifying

∫𝑓 (𝑥) ℎ (𝑥) 𝑑𝑥 = ∫𝑃 (𝑓) (𝑥) ℎ (𝑥) 𝑑𝑥, for every ℎ ∈ 𝑌.
(18)

Lemma 7 (see [2]). Suppose {𝜙
1
, . . . , 𝜙

ℓ
} is a finite family

of bounded functions on R𝑛 such that | det[𝜙
𝑘
(𝑦

𝑖
)]|

2
∈

𝑅𝐻
∞
(R𝑛ℓ

). Then, for any cube 𝑄 centered at the origin and
any 𝑓 ∈ 𝐿

1
(𝑄), there exists the projection 𝑃

𝑄
𝑓 of 𝑓 onto

span{𝜙
1
, . . . , 𝜙

ℓ
} ⊂ 𝐿

1
(𝑄) and satisfies

sup
𝑦∈𝑄

𝑃𝑄
𝑓 (𝑦)

 ≤ 𝐶
1

|𝑄|
∫
𝑄

𝑓 (𝑦)
 𝑑𝑦, (19)

where the constant 𝐶 depends only on 𝑛, ℓ, and the 𝑅𝐻
∞

constant of | det[𝜙
𝑘
(𝑦

𝑖
)]|

2.

2.3. Notations Related to Orlicz Spaces. A function Φ :

[0,∞) → [0,∞) is said to be a Young function, if Φ
is continuous, convex, and increasing with Φ(0) = 0 and
lim

𝑡→∞
Φ(𝑡) = ∞. We use Φ̃ to denote the complementary

Young function associated toΦ; that is,

Φ̃ (𝑠) = sup
0≤𝑡<∞

{𝑠𝑡 − Φ (𝑡)} , 0 ≤ 𝑠 < ∞. (20)

The Φ-average of a locally integrable function 𝑓 over a
cube 𝑄 ⊂ R𝑛 is defined by

𝑓
Φ,𝑄

= inf {𝜆 > 0 :
1

|𝑄|
∫
𝑄

Φ(

𝑓 (𝑦)


𝜆
) 𝑑𝑦 ≤ 1} , (21)

which satisfies the following inequalities (see [25], p. 69, or
formula (7) in [21]):

𝑓
Φ,𝑄

≤ inf
𝜂>0

{𝜂 +
𝜂

|𝑄|
∫
𝑄

Φ(

𝑓 (𝑦)


𝜂
) 𝑑𝑦} ≤ 2

𝑓
Φ,𝑄

.

(22)

The Young function that we are going to use is Φ
𝛼
(𝑡) =

𝑡(1+ log+
𝑡)

𝛼
(𝛼 > 0)with its complementary Young function

Φ̃
𝛼
(𝑡) ≈ exp(𝑡1/𝛼). Denote

𝑓
𝐿(log𝐿)

𝛼

, 𝑄
=
𝑓
Φ
𝛼
, 𝑄
,

𝑓
exp𝐿

1/𝛼
, 𝑄
=
𝑓
Φ̃
𝛼
, 𝑄
. (23)

When 𝛼 = 1, we simply write Φ(𝑡) = 𝑡(1 + log+
𝑡) and

Φ̃(𝑡) ≈ 𝑒
𝑡, and ‖𝑓‖

𝐿(log𝐿), 𝑄
= ‖𝑓‖

Φ,𝑄
and ‖𝑓‖exp𝐿,𝑄

= ‖𝑓‖
Φ̃, 𝑄

.
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The following generalized Hölder’s inequality holds (see
(2.5) in [22]):

1

|𝑄|
∫
𝑄

𝑓1
(𝑦) 𝑓

2
(𝑦) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦) 𝑔 (𝑦)

 𝑑𝑦

≤ 𝐶
𝑔
𝐿(log𝐿)

𝑚

, 𝑄

𝑚

∏

𝑗=1


𝑓
𝑗

exp𝐿,𝑄
.

(24)

We also need the following notations (see [26] pages 1712-
1713). For 𝜔 ∈ 𝐴

∞
and a cube 𝑄 ⊂ R𝑛, denote

𝑓
𝐿(log𝐿)

𝑚

, 𝑄, 𝜔

= inf {𝜆 > 0 :
1

𝜔 (𝑄)
∫
𝑄

Φ
𝑚
(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦 ≤ 1} ,

𝑓
exp𝐿

1/𝑚
, 𝑄, 𝜔

= inf {𝜆 > 0 :
1

𝜔 (𝑄)
∫
𝑄

Φ̃
𝑚
(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦 ≤ 1} .

(25)

Similarly to (22), we have
𝑓
𝐿(log𝐿)

𝑚

, 𝑄, 𝜔

≈ inf
𝜂>0

{𝜂 +
𝜂

𝜔 (𝑄)
∫
𝑄

Φ
𝑚
(

𝑓 (𝑦)


𝜂
)𝜔 (𝑦) 𝑑𝑦} .

(26)

There also holds the following generalized Hölder’s
inequality:

1

𝜔 (𝑄)
∫
𝑄

𝑓1
(𝑦) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦) 𝑔 (𝑦)

 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶
𝑔
𝐿(log𝐿)

𝑚

, 𝑄, 𝜔

𝑚

∏

𝑗=1


𝑓
𝑗

exp𝐿,𝑄, 𝜔
.

(27)

2.4. Lemmas. The following generalized Young’s inequality is
from [22] Lemma 8. We note that when 𝑘 = 2, it is proved by
O’Neil in [27].

Lemma 8 (the generalized Young’s inequality). 𝜑
0
, 𝜑

1
, . . . 𝜑

𝑘

are real-valued, nonnegative, nondecreasing, left continuous
functions defined on [0,∞). For 0 ≤ 𝑡 < ∞, define 𝜑−1

𝑗
(𝑡) =

inf{𝑠 : 𝜑
𝑗
(𝑠) > 𝑡} (𝑗 = 0, 1, . . . , 𝑘). If for all 0 ≤ 𝑡 < ∞

𝜑
−1

1
(𝑡) ⋅ ⋅ ⋅ 𝜑

−1

𝑘
(𝑡) ≤ 𝜑

−1

0
(𝑡) . (28)

Then, for all 0 ≤ 𝑡
1
, 𝑡

2
, . . . , 𝑡

𝑘
< ∞, there exist

𝜑
0
(𝑡

1
𝑡
2
⋅ ⋅ ⋅ 𝑡

𝑘
) ≤ 𝜑

1
(𝑡

1
) + 𝜑

1
(𝑡

2
) + ⋅ ⋅ ⋅ + 𝜑

𝑘
(𝑡

𝑘
) . (29)

ForΦ
𝑘
(𝑡) = 𝑡(1+ log+

𝑡)
𝑘
(𝑘 = 1, . . . , 𝑚) andΨ(𝑡) = 𝑒

𝑡
−1,

we have Φ−1

𝑘
(𝑡) ≈ 𝑡/(log 𝑡)𝑘 and Ψ−1

(𝑡) ≈ log 𝑡 (see [21] page
35). Then for any integer 𝑗 with 1 ≤ 𝑗 ≤ 𝑚 − 1, we have

Φ
−1

𝑚
(𝑡) Ψ

−1
(𝑡) ⋅ ⋅ ⋅ Ψ

−1
(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−𝑗

≤ 𝐶Φ
−1

𝑗
(𝑡) := A

−1
(𝑡) . (30)

Noting that A(𝑡) = Φ
𝑗
(𝐶

−1
𝑡) since A−1

(𝑡) = 𝐶Φ
−1

𝑗
(𝑡),

then it follows from Lemma 8 that, for all 0 ≤ 𝑠, 𝑡
1
,

𝑡
2
, . . . , 𝑡

𝑚−𝑗
< ∞, we have

Φ
𝑗
(𝐶

−1
𝑠 ⋅ 𝑡

1
⋅ ⋅ ⋅ 𝑡

𝑚−𝑗
) = A (𝑠 ⋅ 𝑡

1
⋅ ⋅ ⋅ 𝑡

𝑚−𝑗
)

≤ Φ
𝑚 (𝑠) + Ψ (𝑡

1
) + ⋅ ⋅ ⋅ + Ψ (𝑡

𝑚−𝑗
) .

(31)

For a locally integrable function 𝑓 and a cube 𝑄, denote

𝑓
𝑄
= (𝑓)

𝑄
=

1

|𝑄|
∫
𝑄

𝑓 (𝑦) 𝑑𝑦. (32)

Lemma 9 (see [26]). Let 𝜔 ∈ 𝐴
∞

and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛
). Then,

for any cube 𝑄 ⊂ R𝑛,

1

𝜔 (𝑄)
∫
𝑄

exp(
𝑏 (𝑥) − 𝑏𝑄



𝐶
0‖𝑏‖∗

)𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶,

𝑏 − 𝑏𝑄
exp𝐿,𝑄, 𝜔

≤ 𝐶‖𝑏‖∗,

(33)

where 𝐶
0
and 𝐶 are positive constants independent of 𝑏 and𝑄,

and ‖𝑏‖
∗
is the 𝐵𝑀𝑂-norm of 𝑏.

Lemma 10 (see [28]). Let 1 ≤ 𝑝 < ∞, 𝜔𝑝
∈ 𝐴

1
, 𝑏

𝑗
∈

𝐵𝑀𝑂(R𝑛
) (𝑗 = 1, . . . , 𝑚), and 𝑄 be a cube. Then for any

positive integer𝑚 and 𝑘 = 0, 1, . . .,

(
1

2
𝑘𝑄


∫
2
𝑘
𝑄

𝜔
𝑝
(𝑥)

𝑚

∏

𝑗=1


𝑏
𝑗
(𝑥) − (𝑏

𝑗
)
𝑄



𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶

�⃗�
∗
(𝑘 + 1)

𝑚 ess inf
𝑦∈𝑄

𝜔 (𝑦) .

(34)

3. Proof of Theorem 6: The Case 𝑚 = 1

When 𝑚 = 1, we write 𝑏 = 𝑏
1
and 𝑇

𝑏
= 𝑇

�⃗�
for simplicity. We

need to prove that, for𝜔 ∈ 𝐴
1
and 𝑏 ∈ 𝐵𝑀𝑂(R𝑛

), there exists
constant 𝐶 > 0 such that, for all 𝜆 > 0,

𝜔 ({𝑥 ∈ R
𝑛
:
𝑇𝑏

𝑓 (𝑥)
 > 𝜆})

≤ 𝐶∫
R𝑛

𝑓 (𝑦)


𝜆
(1 + log+

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦.

(35)

For any fixed 𝜆 > 0, we consider the Calderón-Zygmund
decomposition of 𝑓 at height 𝜆 and get a sequence of
nonoverlapping cubes {𝑄

𝑖
}, where 𝑄

𝑖
= 𝑄(𝑦

𝑖
, 𝑟

𝑖
) is a cube

centered at 𝑦
𝑖
with radius 𝑟

𝑖
, such that

𝑓 (𝑥)
 ≤ 𝜆, for a.e. 𝑥 ∈ R

𝑛
\ ∪

𝑖
𝑄

𝑖
, (36)

𝜆 <
1

𝑄𝑖



∫
𝑄
𝑖

𝑓 (𝑥)
 𝑑𝑥 ≤ 2

𝑛
𝜆, 𝑖 = 1, 2, . . . . (37)
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Denote by 𝑓|
𝑄
𝑖

the restriction of 𝑓 to 𝑄
𝑖
. Let 𝑔

𝑖
(𝑥) be the

projection of 𝑓|
𝑄
𝑖

onto 𝑌
𝑖
= span{𝜙

1
(⋅ − 𝑦

𝑖
), 𝜙

2
(⋅ − 𝑦

𝑖
), . . . ,

𝜙
ℓ
(⋅ − 𝑦

𝑖
)}. We decompose 𝑓 into two parts, 𝑓 = 𝑔 + ℎ, where

𝑔 (𝑥) = {
𝑓 (𝑥) , 𝑥 ∈ R𝑛

\ ∪
𝑖
𝑄

𝑖
,

𝑔
𝑖 (𝑥) , 𝑥 ∈ 𝑄

𝑖
, 𝑖 = 1, 2, . . . ,

(38)

and ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) = ∑
𝑖
ℎ
𝑖
(𝑥) with ℎ

𝑖
(𝑥) = 𝑓(𝑥) − 𝑔

𝑖
(𝑥)

for 𝑥 ∈ 𝑄
𝑖
.

Obviously, ℎ
𝑖
is supported on 𝑄

𝑖
and it follows from (18)

that, for any 1 ≤ 𝑘 ≤ ℓ and any 𝑖 (also see [2] p.170 or [3]
(3.13)),

∫
𝑄
𝑖

𝜙
𝑘
(𝑥 − 𝑦

𝑖
) ℎ

𝑖 (𝑥) 𝑑𝑥 = 0. (39)

Furthermore, we have

𝑔 (𝑥)
 ≤ 𝐶𝜆, a.e. 𝑥 ∈ R

𝑛
. (40)

Indeed, by (36) and (38) we have |𝑔(𝑥)| ≤ 𝜆, for a.e. 𝑥 ∈ R𝑛
\

∪
𝑖
𝑄

𝑖
. On the other hand, for any 𝑥 ∈ ∪

𝑖
𝑄

𝑖
there exists an 𝑖

so that 𝑥 ∈ 𝑄
𝑖
, and noting that 𝑔

𝑖
(𝑥) is the projection of 𝑓|

𝑄
𝑖

onto 𝑌
𝑖
, then it follows from Lemma 7 and (37) that

𝑔 (𝑥)
 =

𝑔𝑖 (𝑥)


≤ sup
𝑦∈𝑄
𝑖

𝑔𝑖
(𝑦)

 ≤
𝐶

𝑄𝑖



∫
𝑄
𝑖

𝑓 (𝑦)
 𝑑𝑦 ≤ 𝐶𝜆.

(41)

So, (40) is verified.
Since 𝜔 ∈ 𝐴

1
, then by (38), (41), and (16), we have

∫
R𝑛

𝑔 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

≤ ∫
R𝑛\∪
𝑖
𝑄
𝑖

𝑓 (𝑥)
 𝜔 (𝑥) 𝑑𝑥 + ∫

∪
𝑖
𝑄
𝑖

𝑔𝑖 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

≤ ∫
R𝑛

𝑓 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

+∑

𝑖

∫
𝑄
𝑖

(
𝐶

𝑄𝑖



∫
𝑄
𝑖

𝑓 (𝑦)
 𝑑𝑦)𝜔 (𝑥) 𝑑𝑥

≤ ∫
R𝑛

𝑓 (𝑥)
 𝜔 (𝑥) 𝑑𝑥 + 𝐶∑

𝑖

𝜔 (𝑄
𝑖
)

𝑄𝑖



∫
𝑄
𝑖

𝑓 (𝑦)
 𝑑𝑦

≤ 𝐶∫
R𝑛

𝑓 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

+ 𝐶∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑦)
 (ess inf

𝑥∈𝑄
𝑖

𝜔 (𝑥)) 𝑑𝑦

≤ 𝐶∫
R𝑛

𝑓 (𝑥)
 𝜔 (𝑥) 𝑑𝑥.

(42)

For any cube 𝑄
𝑖
, by (16) and (37) we have

𝜔 (𝑄
𝑖
) ≤ 𝐶

𝑄𝑖

 ess inf
𝑦∈𝑄
𝑖

𝜔 (𝑦)

≤ 𝐶𝜆
−1
∫
𝑄
𝑖

𝑓 (𝑥)
 (ess inf

𝑦∈𝑄
𝑖

𝜔 (𝑦)) 𝑑𝑥

≤ 𝐶𝜆
−1
∫
𝑄
𝑖

𝑓 (𝑥)
 𝜔 (𝑥) 𝑑𝑥.

(43)

Set 𝑄∗

𝑖
= 2√𝑛𝑄

𝑖
andΩ = ∪

𝑖
𝑄

∗

𝑖
; then

𝜔 (Ω) ≤ ∑

𝑖

𝜔 (𝑄
∗

𝑖
) ≤ 𝐶∑

𝑖

𝜔 (𝑄
𝑖
) ≤ 𝐶𝜆

−1𝑓
𝐿1(𝜔)

. (44)

Thus
𝜔 ({𝑥 ∈ R

𝑛
:
𝑇𝑏

𝑓 (𝑥)
 > 𝜆})

≤ 𝜔({𝑥 ∈ R
𝑛
\ Ω :

𝑇𝑏
𝑓 (𝑥)

 >
𝜆

2
}) + 𝜔 (Ω)

≤ 𝜔({𝑥 ∈ R
𝑛
\ Ω :

𝑇𝑏
𝑔 (𝑥)

 >
𝜆

2
})

+ 𝜔({𝑥 ∈ R
𝑛
\ Ω :

𝑇𝑏
ℎ (𝑥)

 >
𝜆

2
})

+ 𝐶𝜆
−1𝑓

𝐿1(𝜔)

= 𝐼 + 𝐽 + 𝐶𝜆
−1𝑓

𝐿1(𝜔)
.

(45)

For any 𝑝 > 1, since 𝜔 ∈ 𝐴
1
⊂ 𝐴

𝑝
, then by Theorem 5,

(40), and (42), we have

𝐼 ≤ 𝐶𝜆
−𝑝
∫
R𝑛

𝑇𝑏
𝑔 (𝑥)



𝑝
𝜔 (𝑥) 𝑑𝑥

≤ 𝐶𝜆
−𝑝
∫
R𝑛

𝑔 (𝑥)


𝑝
𝜔 (𝑥) 𝑑𝑥

≤ 𝐶𝜆
−1
∫
R𝑛

𝑔 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

≤ 𝐶𝜆
−1
∫
R𝑛

𝑓 (𝑥)
 𝜔 (𝑥) 𝑑𝑥.

(46)

For the second term 𝐽, since

𝑇
𝑏
ℎ (𝑥) = ∑

𝑖

𝑇
𝑏
ℎ
𝑖 (𝑥)

= ∑

𝑖

(𝑏 (𝑥) − 𝑏𝑄
𝑖

) 𝑇ℎ
𝑖 (𝑥)−∑

𝑖

𝑇 ((𝑏 (𝑥)−𝑏𝑄
𝑖

) ℎ
𝑖
) (𝑥) ,

(47)

then

𝐽 ≤ 𝜔({𝑥 ∈ R
𝑛
\ Ω :



∑

𝑖

(𝑏 (𝑥) − 𝑏𝑄
𝑖

) 𝑇ℎ
𝑖 (𝑥)



>
𝜆

4
})

+ 𝜔({𝑥 ∈ R
𝑛
\ Ω :



∑

𝑖

𝑇 ((𝑏 (𝑥) − 𝑏𝑄
𝑖

) ℎ
𝑖
) (𝑥)



>
𝜆

4
})

= 𝐽
(1)
+ 𝐽

(2)
.

(48)
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Let us consider 𝐽(1) first. Applying (39), condition (𝐾
4
),

and Lemma 10, we have

𝐽
(1)

≤
𝐶

𝜆
∫
R𝑛\Ω



∑

𝑖

(𝑏 (𝑥) − 𝑏𝑄
𝑖

) 𝑇ℎ
𝑖 (𝑥)



𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
R𝑛\𝑄∗

𝑖


𝑏 (𝑥) − 𝑏𝑄

𝑖



×



∫
𝑄
𝑖

𝐾(𝑥 − 𝑦) ℎ
𝑖
(𝑦) 𝑑𝑦



𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
R𝑛\𝑄∗

𝑖


𝑏 (𝑥) − 𝑏𝑄

𝑖



× (∫
𝑄
𝑖



𝐾 (𝑥 − 𝑦) −

ℓ

∑

𝑘=1

𝐵
𝑘
(𝑥 − 𝑦

𝑖
) 𝜙

𝑘
(𝑦 − 𝑦

𝑖
)



×
ℎ𝑖

(𝑦)
 𝑑𝑦)𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)



× (∫
R𝑛\𝑄∗

𝑖



𝐾 (𝑥 − 𝑦)

−

ℓ

∑

𝑘=1

𝐵
𝑘
(𝑥 − 𝑦

𝑖
) 𝜙

𝑘
(𝑦 − 𝑦

𝑖
)



×

𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥)𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)

 (∫
|𝑥−𝑦
𝑖
|>2|𝑦−𝑦

𝑖
|

𝑦 − 𝑦𝑖



𝛾

𝑥 − 𝑦


𝑛+𝛾

×

𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥)𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)



× (

∞

∑

𝑠=1

∫
2
𝑠
|𝑦−𝑦
𝑖
|<|𝑥−𝑦

𝑖
|≤2
𝑠+1

|𝑦−𝑦
𝑖
|

𝑦 − 𝑦𝑖



𝛾

𝑥 − 𝑦𝑖



𝑛+𝛾

×

𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥)𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)

 (

∞

∑

𝑠=1

1

2𝑠𝛾(2𝑠+1 𝑦 − 𝑦𝑖

)
𝑛

× ∫
2
𝑠+2

𝑄
𝑖


𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥)𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)

 (

∞

∑

𝑠=1

1

2𝑠𝛾
‖𝑏‖∗ (𝑠 + 3) ess inf

𝑥∈𝑄
𝑖

𝜔 (𝑥)) 𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)

 𝜔 (𝑦) 𝑑𝑦.

(49)

It follows from (42) that

𝐽
(1)

≤
𝐶

𝜆
∫
R𝑛
(
𝑓 (𝑦)

 +
𝑔 (𝑦)

) 𝜔 (𝑦) 𝑑𝑦

≤
𝐶

𝜆
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦.

(50)

Now, let us consider 𝐽(2). By the weak type (1, 1) estimate
of 𝑇 (see Theorem 3), (27), (41), and Lemmas 9 and 10, we
have

𝐽
(2)

≤ 𝜔({𝑥 ∈ R
𝑛
:



𝑇(∑

𝑖

(𝑏 − 𝑏
𝑄
𝑖

) ℎ
𝑖
) (𝑥)



>
𝜆

4
})

≤
𝐶

𝜆
∫
R𝑛



∑

𝑖

(𝑏 (𝑥) − 𝑏𝑄
𝑖

) ℎ
𝑖 (𝑥)



𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖


𝑏 (𝑥) − 𝑏𝑄

𝑖



ℎ𝑖 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖


𝑏 (𝑥) − 𝑏𝑄

𝑖



𝑓 (𝑥) − 𝑔𝑖 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑥)



𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑔𝑖 (𝑥)



𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿 log𝐿,𝑄

𝑖
, 𝜔


𝑏 − 𝑏

𝑄
𝑖

exp𝐿,𝑄
𝑖
, 𝜔

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

(
1

𝑄𝑖



∫
𝑄
𝑖

𝑓 (𝑦)
 𝑑𝑦)


𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿 log𝐿,𝑄

𝑖
, 𝜔

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑦)
 (

1

𝑄𝑖



∫
𝑄
𝑖


𝑏 (𝑥) − 𝑏𝑄

𝑖


𝜔 (𝑥) 𝑑𝑥)𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿 log𝐿,𝑄

𝑖
, 𝜔

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑦)
 (ess inf

𝑥∈𝑄
𝑖

𝜔 (𝑥)) 𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿 log𝐿,𝑄

𝑖
, 𝜔
+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦.

(51)

Note that (26) implies

𝑓
𝐿 log𝐿,𝑄

𝑖
, 𝜔
≤ 𝐶{𝜆 +

𝜆

𝜔 (𝑄
𝑖
)
∫
𝑄
𝑖

Φ(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦} .

(52)
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Then by (43) we have

𝐽
(2)

≤ 𝐶∑

𝑖

{𝜔 (𝑄
𝑖
) + ∫

𝑄
𝑖

Φ(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦}

+
𝐶

𝜆
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶∫
R𝑛
Φ(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦 +

𝐶

𝜆
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶∫
R𝑛

𝑓 (𝑥)


𝜆
(1 + log+

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦.

(53)

Combining the estimates for 𝐽(1) and 𝐽(2), we have

𝐽 ≤ 𝐶∫
R𝑛

𝑓 (𝑥)


𝜆
(1 + log+

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦. (54)

This along with (45) and (46) gives (35), which is the desired
result.

4. Proof of Theorem 6: The General Case 𝑚 > 1

In this section, we will use an induction argument to prove
Theorem 6 for the general case. To this end, we first introduce
some notation.

As in [22], given positive integers 𝑚 and 𝑗 (1 ≤ 𝑗 ≤

𝑚), we denote by C𝑚

𝑗
the family of all finite subsets 𝜎 =

{𝜎(1), 𝜎(2), . . . , 𝜎(𝑗)} of {1, 2, . . . , 𝑚} of 𝑗 different elements.
For any 𝜎 ∈ C𝑚

𝑗
, we write 𝜎

= {1, 2, . . . , 𝑚} \ 𝜎.
For �⃗� = (𝑏

1
, . . . , 𝑏

𝑚
) with 𝑏

𝑗
∈ 𝐵𝑀𝑂(R𝑛

) and 𝜎 = {𝜎(1),

𝜎(2), . . . , 𝜎(𝑗)} ∈ C𝑚

𝑗
(1 ≤ 𝑗 ≤ 𝑚), we denote by �⃗�

𝜎
=

(𝑏
𝜎(1)

, 𝑏
𝜎(2)

, . . . , 𝑏
𝜎(𝑗)

), �⃗�
𝜎
 = (𝑏

𝜎

(1)
, . . . , 𝑏

𝜎

(𝑚−𝑗)

), and ‖�⃗�‖
∗
=

‖𝑏
1
‖
∗
⋅ ⋅ ⋅ ‖𝑏

𝑚
‖
∗
, ‖�⃗�

𝜎
‖
∗
= ‖𝑏

𝜎(1)
‖
∗
⋅ ⋅ ⋅ ‖𝑏

𝜎(𝑗)
‖
∗
. Write

(�⃗� (𝑥) − �⃗� (𝑦))
𝜎
=

𝑗

∏

𝑖=1

(𝑏
𝜎(𝑖) (𝑥) − 𝑏𝜎(𝑖)

(𝑦)) ,

(�⃗� (𝑦) − �⃗�
𝑄
)
𝜎
=

𝑗

∏

𝑖=1

(𝑏
𝜎(𝑖)

(𝑦) − (𝑏
𝜎(𝑖)

)
𝑄
) ,

(55)

where 𝑄 is a cube in R𝑛 and �⃗�
𝑄
= ((𝑏

1
)
𝑄
, . . . , (𝑏

𝑚
)
𝑄
). We also

need the following notation:

𝑇
�⃗�
𝜎

𝑓 (𝑥) = ∫
R𝑛
(�⃗� (𝑥) − �⃗� (𝑦))

𝜎
𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦. (56)

Proof of Theorem 6 (the general case𝑚 > 1). We have proved
thatTheorem6 is true for𝑚 = 1 in Section 3. Now, we assume
that Theorem 6 holds for all positive integer 𝑗 < 𝑚; namely,
for all 1 ≤ 𝑗 < 𝑚 and any 𝜎 ∈ C𝑚

𝑗
, we have

𝜔 ({𝑥∈R
𝑛
:

𝑇

�⃗�
𝜎

𝑓 (𝑥)

>𝜆})≤𝐶∫

R𝑛
Φ

𝑗
(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦.

(57)

For any fixed 𝜆 > 0, we consider the Calderón-Zygmund
decomposition of 𝑓 at height 𝜆 as in Section 3 and use the
notations {𝑄

𝑖
}, 𝑄∗

𝑖
, 𝑔, ℎ, ℎ

𝑖
, andΩ as there.

For the same reason as in (45), we have

𝜔 ({𝑥 ∈ R
𝑛
:
𝑇�⃗�

𝑓 (𝑥)
 > 𝜆})

≤ 𝜔 ({𝑥 ∈ R
𝑛
\ Ω :

𝑇�⃗�
𝑓 (𝑥)

 > 𝜆}) + 𝜔 (Ω)

≤ 𝜔({𝑥 ∈ R
𝑛
\ Ω :

𝑇�⃗�
𝑔 (𝑥)

 >
𝜆

2
})

+ 𝜔({𝑥 ∈ R
𝑛
\ Ω :

𝑇�⃗�
ℎ (𝑥)

 >
𝜆

2
})

+ 𝐶𝜆
−1𝑓

𝐿1(𝜔)

:= 𝐼 + 𝐽 + 𝐶𝜆
−1𝑓

𝐿1(𝜔)
.

(58)

Similar to (46), we have

𝐼 ≤ 𝐶𝜆
−𝑝
∫
R𝑛

𝑇�⃗�
𝑔 (𝑥)



𝑝
𝜔 (𝑥) 𝑑𝑥

≤ 𝐶𝜆
−𝑝
∫
R𝑛

𝑔 (𝑥)


𝑝
𝜔 (𝑥) 𝑑𝑥

≤ 𝐶𝜆
−1𝑓

𝐿1(𝜔)
.

(59)

Then

𝜔 ({𝑥 ∈ R
𝑛
:
𝑇�⃗�

𝑓 (𝑥)
 > 𝜆}) ≤ 𝐽 + 𝐶𝜆

−1𝑓
𝐿1(𝜔)

. (60)

Reasoning as the proof of Lemma 3.1 in [22] (pp. 683-
684), we have

𝑇
�⃗�
ℎ
𝑖 (𝑥) = (𝑏

1 (𝑥) − (𝑏1)𝑄
𝑖

) ⋅ ⋅ ⋅ (𝑏
𝑚 (𝑥) − (𝑏𝑚)𝑄

𝑖

) 𝑇ℎ
𝑖 (𝑥)

+ (−1)
𝑚
𝑇 ((𝑏

1
− (𝑏

1
)
𝑄
𝑖

) ⋅ ⋅ ⋅ (𝑏
𝑚
− (𝑏

𝑚
)
𝑄
𝑖

) ℎ
𝑖
) (𝑥)

+

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

(−1)
𝑚−𝑗

∫
R𝑛
(�⃗� (𝑥)−�⃗�𝑄

𝑖

)
𝜎
(�⃗� (𝑦)−�⃗�

𝑄
𝑖

)
𝜎


× 𝐾 (𝑥, 𝑦) ℎ
𝑖
(𝑦) 𝑑𝑦.

(61)

Note that

(�⃗� (𝑥) − �⃗�𝑄
𝑖

)
𝜎

=

𝑗

∏

𝑠=1

[(𝑏
𝜎(𝑠) (𝑥) − 𝑏𝜎(𝑠)

(𝑦)) + (𝑏
𝜎(𝑠)

(𝑦) − (𝑏
𝜎(𝑠)

)
𝑄
𝑖

)] ,

(�⃗� (𝑦) − �⃗�
𝑄
𝑖

)
𝜎

=

𝑚−𝑗

∏

𝑠=1

[𝑏
𝜎

(𝑠)
(𝑦) − (𝑏

𝜎

(𝑠)
)
𝑄
𝑖

] ,

(62)
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and expanding (�⃗�(𝑥) − �⃗�
𝑄
𝑖

)
𝜎
(�⃗�(𝑦) − �⃗�

𝑄
𝑖

)
𝜎
 , it is not difficult to

check that
𝑇

�⃗�
ℎ
𝑖 (𝑥) = (𝑏

1 (𝑥) − (𝑏1)𝑄
𝑖

) ⋅ ⋅ ⋅ (𝑏
𝑚 (𝑥) − (𝑏𝑚)𝑄

𝑖

) 𝑇ℎ
𝑖 (𝑥)

+ 𝐶
𝑚
𝑇 ((𝑏

1
− (𝑏

1
)
𝑄
𝑖

) ⋅ ⋅ ⋅ (𝑏
𝑚
− (𝑏

𝑚
)
𝑄
𝑖

) ℎ
𝑖
) (𝑥)

+

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

𝐶
𝑚,𝑗
𝑇

�⃗�
𝜎

((�⃗� − �⃗�
𝑄
𝑖

)
𝜎

ℎ
𝑖
) (𝑥) .

(63)
This gives

𝑇�⃗�
ℎ (𝑥)

 =



∑

𝑖

𝑇
�⃗�
ℎ
𝑖 (𝑥)



≤ ∑

𝑖

[

[

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


]

]

𝑇ℎ𝑖 (𝑥)


+ 𝐶



𝑇(∑

𝑖

[

[

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝑄
𝑖

)]

]

ℎ
𝑖
)(𝑥)



+ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗



𝑇
�⃗�
𝜎

(∑

𝑖

(�⃗� − �⃗�
𝑄
𝑖

)
𝜎

ℎ
𝑖
) (𝑥)



.

(64)
Thus,

𝐽 = 𝜔({𝑥 ∈ R
𝑛
\ Ω :

𝑇�⃗�
ℎ (𝑥)

 >
𝜆

2
})

≤ 𝜔(
{

{

{

𝑥 ∈ R
𝑛
\ Ω : ∑

𝑖

[

[

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


]

]

×
𝑇ℎ𝑖 (𝑥)

 >
𝜆

6

}

}

}

)

+ 𝜔(
{

{

{

𝑥 ∈ R
𝑛
\ Ω : 𝐶

×



𝑇(∑

𝑖

[

[

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝑄
𝑖

)]

]

ℎ
𝑖
)(𝑥)



>
𝜆

6

}

}

}

)

+ 𝜔(
{

{

{

𝑥 ∈ R
𝑛
\ Ω : 𝐶

×

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗



𝑇
�⃗�
𝜎

(∑

𝑖

(�⃗� − �⃗�
𝑄
𝑖

)
𝜎

ℎ
𝑖
) (𝑥)



>
𝜆

6

}

}

}

)

:= 𝐽
1
+ 𝐽

2
+ 𝐽

3
.

(65)
Applying (39), condition (𝐾

4
), and Lemma 10, similar to

the estimate of 𝐽(1) in Section 3, we have

𝐽
1
≤
𝐶

𝜆
∑

𝑖

∫
R𝑛\Ω

[

[

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


]

]

𝑇ℎ𝑖 (𝑥)
 𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
R𝑛\𝑄∗

𝑖

[

[

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


]

]

× {∫
𝑄
𝑖



𝐾 (𝑥 − 𝑦) −

ℓ

∑

𝑘=1

𝐵
𝑘
(𝑥 − 𝑦

𝑖
) 𝜙

𝑘
(𝑦 − 𝑦

𝑖
)



×
ℎ𝑖

(𝑦)
 𝑑𝑦}𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)



{

{

{

∫
|𝑥−𝑦
𝑖
|>2|𝑦−𝑦

𝑖
|

𝑦 − 𝑦𝑖



𝛾

𝑥 − 𝑦


𝑛+𝛾

×

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


𝜔 (𝑥) 𝑑𝑥

}

}

}

𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)



∞

∑

𝑠=1

{

{

{

∫
2
𝑠
|𝑦−𝑦
𝑖
|<|𝑥−𝑦

𝑖
|≤2
𝑠+1

|𝑦−𝑦
𝑖
|

𝑦 − 𝑦𝑖



𝛾

𝑥 − 𝑦𝑖



𝑛+𝛾

×

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥)−(𝑏𝑗)

𝑄
𝑖


𝜔 (𝑥) 𝑑𝑥

}

}

}

𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)



∞

∑

𝑠=1

1

2𝑠𝛾

1

(2𝑠+1 𝑦 − 𝑦𝑖

)
𝑛

× ∫
2
𝑠+2

𝑄
𝑖

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖



× 𝜔 (𝑥) 𝑑𝑥 𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

ℎ𝑖
(𝑦)



∞

∑

𝑠=1

(𝑠 + 3)
𝑚

2𝑠𝛾


�⃗�
∗
ess inf

𝑦∈𝑄
𝑖

𝜔 (𝑦) 𝑑𝑦

≤
𝐶

𝜆

𝑓
𝐿1(𝜔)

.

(66)

For 𝐽
2
, by the weak type (1, 1) estimate for 𝑇 (see

Theorem 3), (27), (41), and Lemmas 9 and 10, similar to the
estimate of 𝐽(2) in Section 3, we have

𝐽
2
≤
𝐶

𝜆
∫
R𝑛
∑

𝑖

ℎ𝑖 (𝑥)


𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑥)


𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


𝜔 (𝑥) 𝑑𝑥

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑔𝑖 (𝑥)


𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


𝜔 (𝑥) 𝑑𝑥

≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿(log𝐿)

𝑚

, 𝑄
𝑖
, 𝜔

𝑚

∏

𝑗=1


𝑏
𝑗
− (𝑏

𝑗
)
𝑄
𝑖

exp𝐿,𝑄
𝑖
, 𝜔

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

(
1

𝑄𝑖



∫
𝑄
𝑖

𝑓 (𝑦)
 𝑑𝑦)

×

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


𝜔 (𝑥) 𝑑𝑥
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≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿(log𝐿)

𝑚

, 𝑄
𝑖
, 𝜔

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑦)


× (
1

𝑄𝑖



∫
𝑄
𝑖

𝑚

∏

𝑗=1


𝑏
𝑗 (𝑥) − (𝑏𝑗)

𝑄
𝑖


𝜔 (𝑥) 𝑑𝑥)𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿(log𝐿)

𝑚

, 𝑄
𝑖
, 𝜔

+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑦)
 (ess inf

𝑦∈𝑄
𝑖

𝜔 (𝑦)) 𝑑𝑦

≤
𝐶

𝜆
∑

𝑖

𝜔 (𝑄
𝑖
)
𝑓
𝐿(log𝐿)

𝑚

, 𝑄
𝑖
, 𝜔
+
𝐶

𝜆
∑

𝑖

∫
𝑄
𝑖

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦.

(67)

Then by (26) and (43) we have

𝐽
2
≤ 𝐶∑

𝑖

{𝜔 (𝑄
𝑖
) + ∫

𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦}

+
𝐶

𝜆
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶∫
R𝑛
Φ

𝑚
(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦 +

𝐶

𝜆
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶∫
R𝑛

𝑓 (𝑥)


𝜆
(1 + log+

𝑓 (𝑦)


𝜆
)

𝑚

𝜔 (𝑦) 𝑑𝑦.

(68)

Now, let us consider 𝐽
3
by applying the induction hypoth-

esis.
Noting that ℎ

𝑖
(𝑥) = (𝑓(𝑥)−𝑔

𝑖
(𝑥))𝜒

𝑄
𝑖

(𝑥) (𝑖 = 1, 2, . . .), we
can split 𝐽

3
into two parts

𝐽
3
≤ 𝜔({𝑥 ∈ R

𝑛
\ 𝐸 : 𝐶

×

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗



𝑇
�⃗�
𝜎

(∑

𝑖

(�⃗� − �⃗�
𝑄
𝑖

)
𝜎

𝑓𝜒

𝑄
𝑖

) (𝑥)



>
𝜆

12
})

+ 𝜔({𝑥 ∈ R
𝑛
\ 𝐸 : 𝐶

×

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗



𝑇
�⃗�
𝜎

(∑

𝑖

(�⃗� − �⃗�
𝑄
𝑖

)
𝜎

𝑔

𝑖
𝜒

𝑄
𝑖

) (𝑥)



>
𝜆

12
})

:= 𝐽
(1)

3
+ 𝐽

(2)

3
.

(69)

For𝜎 ∈ C𝑚

𝑗
, we denote by𝜎

= {𝜎

(1), 𝜎


(2), . . . 𝜎


(𝑚−𝑗)},

so that

(�⃗� − �⃗�

𝑄
𝑖

)
𝜎



=

𝑏
𝜎

(1)
− (𝑏

𝜎

(1)
)
𝑄
𝑖


⋅ ⋅ ⋅


𝑏
𝜎

(𝑚−𝑗)

− (𝑏
𝜎

(𝑚−𝑗)

)
𝑄
𝑖


.

(70)

FromLemma 9, there exist constants𝐶
𝑠,0
and𝐶

𝑠
such that

for 𝑠 = 1 ⋅ ⋅ ⋅ 𝑚 − 𝑗

1

𝜔 (𝑄
𝑖
)
∫
𝑄
𝑖

exp(


𝑏
𝜎

(𝑠) (𝑥) − (𝑏𝜎(𝑠))𝑄

𝑖



𝐶
𝑠,0

𝑏𝜎(𝑠)
∗

)𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶
𝑠
.

(71)

Set 𝛾
𝑠
= (𝐶

𝑠,0
‖ 𝑏

𝜎

(𝑠)
‖
∗
)
−1

(𝑠 = 1, . . . 𝑚−𝑗); then it follows
from the induction hypothesis and (31) that

𝐽
(1)

3
≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∫
R𝑛
Φ

𝑗
(

𝑓 (𝑦)


𝜆

× ∑

𝑖


(�⃗�−�⃗�

𝑄
𝑖

)
𝜎



𝜒

𝑄
𝑖

(𝑦))𝜔 (𝑦) 𝑑𝑦

≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

∫
𝑄
𝑖

Φ
𝑗
(

𝑓 (𝑦)


𝜆


(�⃗� − �⃗�

𝑄
𝑖

)
𝜎



) 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑦)


𝛾
1
⋅ ⋅ ⋅ 𝛾

𝑚−𝑗
⋅ 𝜆
)𝜔 (𝑦) 𝑑𝑦

+ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

{

𝑚−𝑗

∑

𝑠=1

∫
𝑄
𝑖

Ψ(𝛾
𝑠


𝑏
𝜎

(𝑠)
− (𝑏

𝜎

(𝑠)
)
𝑄
𝑖


)

×𝜔 (𝑦) 𝑑𝑦} .

(72)

By (71) and (43), we have

∑

𝑖

{

𝑚−𝑗

∑

𝑠=1

∫
𝑄
𝑖

Ψ(𝛾
𝑠


𝑏
𝜎

(𝑠)
− (𝑏

𝜎

(𝑠)
)
𝑄
𝑖


) 𝜔 (𝑦) 𝑑𝑦}

= ∑

𝑖

{

{

{

𝑚−𝑗

∑

𝑠=1

∫
𝑄
𝑖

[

[

exp(


𝑏
𝜎

(𝑠) (𝑥) − (𝑏𝜎(𝑠))𝑄

𝑖



𝐶
ℓ,0‖𝑏‖∗

) − 1]

]

× 𝜔 (𝑦) 𝑑𝑦
}

}

}

≤ ∑

𝑖

𝑚−𝑗

∑

𝑠=1

𝐶
𝑠
𝜔 (𝑄

𝑖
)

≤ 𝐶𝜆
−1
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦.

(73)
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Noting thatΦ
𝑚
(𝑎𝑏) ≤ 𝐶Φ

𝑚
(𝑎)Φ

𝑚
(𝑏) for 𝑎, 𝑏 > 0, we have

𝐽
(1)

3
≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∫
R𝑛
Φ

𝑚
(

𝑓 (𝑦)


𝜆
)

× Φ
𝑚
(

1

𝛾
1
⋅ ⋅ ⋅ 𝛾

𝑚−𝑗

)𝜔 (𝑦) 𝑑𝑦

+ 𝐶𝜆
−1
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶∫
R𝑛
Φ

𝑚
(

𝑓 (𝑦)


𝜆
)𝜔 (𝑦) 𝑑𝑦.

(74)

Finally, we consider 𝐽(2)
3
. By Jensen’s inequality,

Φ
𝑚
(


𝑓
𝑄
𝑖



𝜆
) ≤ Φ

𝑚
(

1

𝑄𝑖



∫
𝑄
𝑖

𝑓 (𝑥)


𝜆
𝑑𝑥)

≤
1

𝑄𝑖



∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑥)


𝜆
) 𝑑𝑥.

(75)

By the induction hypothesis, (31), and (75), similar to the
estimate of 𝐽(1)

3
, we have

𝐽
(2)

3
≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∫
R𝑛
Φ

𝑗
(


𝑓
𝑄
𝑖



𝜆
∑

𝑖


(�⃗� − �⃗�

𝑄
𝑖

)
𝜎



𝜒

𝑄
𝑖

(𝑦))

× 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

∫
𝑄
𝑖

Φ
𝑗
(


𝑓
𝑄
𝑖



𝜆


(�⃗� − �⃗�

𝑄
𝑖

)
𝜎



)𝜔 (𝑦) 𝑑𝑦

≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

∫
𝑄
𝑖

Φ
𝑚
(


𝑓
𝑄
𝑖



𝛾
1
⋅ ⋅ ⋅ 𝛾

𝑚−𝑗
⋅ 𝜆
)𝜔 (𝑦) 𝑑𝑦

+ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

{

𝑚−𝑗

∑

𝑠=1

∫
𝑄
𝑖

Ψ(𝛾
𝑠


𝑏
𝜎

(𝑠)
− (𝑏

𝜎

(𝑠)
)
𝑄
𝑖


)

×𝜔 (𝑦) 𝑑𝑦}

≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

∫
𝑄
𝑖

{
1

𝑄𝑖



∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑥)


𝜆
) 𝑑𝑥}𝜔 (𝑦) 𝑑𝑦

+ 𝐶𝜆
−1
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦.

(76)

Applying (16), we have

∫
𝑄
𝑖

{
1

𝑄𝑖



∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑥)


𝜆
) 𝑑𝑥}𝜔 (𝑦) 𝑑𝑦

= ∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑥)


𝜆
){

1

𝑄𝑖



∫
𝑄
𝑖

𝜔 (𝑦) 𝑑𝑦}𝑑𝑥

≤ ∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑥)


𝜆
) ess inf

𝑦∈𝑄
𝑖

𝜔 (𝑦) 𝑑𝑥

≤ ∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑥)


𝜆
)𝜔 (𝑥) 𝑑𝑥.

(77)

Then,

𝐽
(2)

3
≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈C𝑚
𝑗

∑

𝑖

∫
𝑄
𝑖

Φ
𝑚
(

𝑓 (𝑥)


𝜆
)𝜔 (𝑥) 𝑑𝑥

+ 𝐶𝜆
−1
∫
R𝑛

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦

≤ 𝐶∫
R𝑛
Φ

𝑚
(

𝑓 (𝑦)


𝜆
) 𝑑𝑦.

(78)

This along with (69) and (74) gives

𝐽
3
≤ 𝐶∫

R𝑛
Φ

𝑚
(

𝑓 (𝑥)


𝜆
) 𝑑𝑥. (79)

By (60), (65), and the above estimates for 𝐽
1
, 𝐽

2
, and 𝐽

3
, we

obtain

𝜔 ({𝑥 ∈ R
𝑛
:
𝑇�⃗�

𝑓 (𝑥)
 > 𝜆})

≤ 𝐶∫
R𝑛
Φ

𝑚
(

𝑓 (𝑥)


𝜆
) 𝑑𝑥 + 𝐶𝜆

−1𝑓
𝐿1(𝜔)

≤ 𝐶∫
R𝑛

𝑓 (𝑦)


𝜆
(1 + log+

𝑓 (𝑦)


𝜆
)

𝑚

𝜔 (𝑦) 𝑑𝑦.

(80)

The proof of the general case of Theorem 6 is therefore
completed.
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