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Causal relations are of fundamental importance for human perception and reasoning. According to the nature of causality, causality
has explicit and implicit forms. In the case of explicit form, causal-effect relations exist at either clausal or discourse levels. The
implicit causal-effect relations heavily rely on empirical analysis and evidence accumulation. This paper proposes a comprehensive
causality extraction system (CL-CIS) integrated with the means of category-learning. CL-CIS considers cause-effect relations in
both explicit and implicit forms and especially practices the relation between category and causality in computation. In elaborately
designed experiments, CL-CIS is evaluated together with general causality analysis system (GCAS) and general causality analysis
system with learning (GCAS-L), and it testified to its own capability and performance in construction of cause-effect relations. This
paper confirms the expectation that the precision and coverage of causality induction can be remarkably improved by means of

causal and category learning.

1. Introduction

A general philosophical definition of causality states that,
the philosophical concept of causality refers to the set of all
particular causal or cause-and-effect relations [1]. Causal rela-
tions are of fundamental importance for human perception
and reasoning. Since ignoring causal relationships may have
fatal consequences, their knowledge plays a crucial role in
daily life to ensure survival in an ever changing environment.

In many research works, the causality generally refers
to the existence of causality in mathematics and physics.
Causalities are often investigated in situations influenced
by uncertainty involving several variables. Thus, causalities,
which can be presented in terms of flows among processes
or events, are generally expressed in mathematical languages
and analyzed in a mathematical manner. Therefore, statistics
and probability theories seem to be the most popular math-
ematical languages for modeling causality in most scientific
disciplines. There is an extensive range of literature on
causality modeling, applying and combining mathematical
logic, graph theory, Markov models, Bayesian probability, and
so forth [2]. But, they seem not to be able to predominate all
relevant issues or questions.

In recent years, clarification and extraction of cause-
effect relationships among texts (e.g., objects or events),
causality extraction, is elevated to a prominent research
topic in text mining, knowledge engineering, and knowledge
management.

A variety of research works testify that causalities in
texts can be extracted at three technology levels. The first
is the clausal level (CL), which includes cue phrases and
lexical clues [3] and semantic similarity [4]. The second is the
discourse level (DL), which implements connective markers
[5] and constructs discourse relations [6]. The third is the
mode level (ML), which extracts causal relations from a QA
system [7, 8], applies commonsense rules [9], associative
memory [10], and Chain Event Graphs [11].

According to the nature of causality in texts, causality
has explicit and implicit forms. In the case of explicit form,
causal-effect relations exist at either clausal or discourse
levels. The implicit causal-effect relations heavily rely on
empirical analysis and evidence accumulation.

Moreover, Waldmann and Hagmayer [12], in their
research work of cognitive psychology, state that “categories
that have been acquired in previous learning contexts may
influence subsequent causal learning,” which indicate that



(1) the category information about objects or events in texts
is a necessary supplement for causality extraction, and (2)
the category information has impact on subsequent learning-
based cause-effect identification.

Based on the facts, the task of causality extraction, even
induction, in texts could not be accomplished in an arbitrary
manner. This paper proposes a comprehensive causality
extraction system (CL-CIS) integrated with the means of
category-learning. CL-CIS considers cause-effect relations in
both explicit and implicit forms and especially practices the
relation between category and causality in computation.

The rest of this paper is organized as follows. Section 2
states the causality, category information, and the relation-
ships between them in texts and constructs the theoretical
foundation of our research work. Section 3 expatiates the
methodology and the technical details of system structure
and kernel algorithms. Section 4 focuses on experiment
illustration and result analysis of the experimental results.
Section 5 concludes this paper and provides future research
works.

2. Causality and Category

Traditionally, research about the representation of causal
relations and research about the representation of categories
were separated. This research strategy rests on the assumption
that categories summarize objects or events on the basis of
their similarity structure, whereas causality refers to relations
between causal objects or events. Literature [12] proves that
the relationship between causality and categorization is more
dynamic than previously thought.

2.1. Causality. 'The standard view guiding research on causal-
ity presupposes the existence of objective networks of causes
and effects that cognitive systems try to mirror. Regardless
of whether causal learning is viewed as the attempt to induce
causality on the basis of statistical information or on the basis
of mechanism information, it is generally assumed that the
goal of causal learning is to form adequate representations of
the texture of the causal world.

2.2. Causality Rests on Fixed Categories. Studies on causal
learning typically investigate trial-by-trial learning tasks
which involve learning the contingencies between causes and
effects. In a large number of studies which focus on causal
contingency learning. A characteristic feature of these tasks
is that they present categorized events representing causes
and effects which are statistically related. Cause and effect
categories are viewed as fixed entities that are already present
prior to the learning task. The goal of learning is to estimate
causal strength of individual causal links or to induce causal
models on the basis of observed covariations. The role of
cause and effect categories in the learning process is not the
focus of interest in these approaches; they are simply viewed
as given.

A similar approach underlies research on the relationship
between categories and causality. According to the view that
categorization is theory-based, traditional similarity-based
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accounts of categorization are deficient because they ignore
the fact that many categories are grounded in knowledge
about causal structures [13]. In natural concepts, features
often represent causes or effects with the category label
referring to a complex causal model. For example, disease cat-
egories frequently refer to common-cause models of diseases
with the category features representing causes (e.g., virus) and
effects (e.g., symptoms) within this causal model. A number
of studies using these and similar materials have shown that
the type of causal model connecting otherwise identical cause
and effect features influences learning, typicality judgments,
or generalization [14-17]. The main goal of these studies
was to investigate the effect of different causal relations
connecting the causal features. As in contingency learning
studies, the cause and effect features within the causal models
were treated as fixed, categorized entities, which already
existed prior to the learning context.

2.3. Categories Shape Causality. It is certainly true that many
interesting insights can be gained from investigating how
people learn about causal models on the basis of preexisting
cause and effect categories. However, there is also a link
between categories and causality in the opposite direction.
The categories that have been acquired in previous learning
contexts may have a crucial influence on subsequent causal
learning.

The basis of the potential influence of categories on causal
induction lies in the fact that the acquisition and use of causal
knowledge is based on categorized events. Causal laws, such
as the fact that smoking causes heart disease, can only be
noticed on the basis of events that are categorized (e.g., events
of smoking and cases of heart disease).

Without such categories causal laws neither could be
detected nor could causal knowledge be applied to new
cases. Thus, causal knowledge not only affects the creation of
categories, it also presupposes already existing categories for
the description of causes and effects. The potential influence
of categories is due to the fact that one of the most important
cues to causality is statistical covariation between causes and
effects.

To study the relation between categories and causal
induction, [12] have developed a new paradigm that consists
of three phases, the category learning phase, the causal
learning phase, and the third test phase. The main goal is
to answer the question that under what condition learners
will tend to activate the categorical information (Figure 1)
from the earlier category learning phase when learning about
causal contingencies in the later phase. This effect is entailed
by the fact that the alternative categories form different
reference classes.

In category learning phase, causes will be classified into
the distinct categories (upper left arrow in Figurel). In
causal learning phase, causes in collection are paired with
the presence or absence of an effect (lower arrow). In the
subsequent test phase, the test causes are rated with the
likelihood of the effect. The crucial question is when people
would go through the upper route in Figure 1 and assign the
test causes to the categories in the category learning phase or
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FIGURE 1: Possible routes of category learning between causes and
effects.
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FIGURE 2: Enhanced strategy of category learning between causes
and effects.
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whether they would stick to the lower route and induce new
categories within causal learning phase.

If the learning strategy opted for the lower route, one
possible solution may be to induce new categories that are
maximally predictive of the effects. This solution would
obviously generate maximally predictive categories. Lien and
Cheng [18] reported a research that is consistent with the
maximal-contrast hypothesis. Their experiments show that
the substances are categorized according to the feature and to
the hierarchical level that were maximally predictive for the
effect. Thus, the induced substance category was determined
by its suitability for predicting the effect. Lien and Cheng
(18] interpreted this as evidence for their maximal-contrast
hypothesis. In another word, people tend to induce categories
that maximize their causal predictability.

In sum, our research addresses the question of which
route learners will go. Will they routinely go through the
upper road and activate category knowledge when learning
about novel effects? A simple connectionist one-layer net-
work that may be used to understand the task we are going to
explore in our experiments, or will they go the lower road and
learn a new set of categories on the basis of causal information
in causal learning phase that is maximally predictive within
this learning phase? Thus, Figurel is enhanced with two
learning phases as shown in Figure 2.

3. Research Methodology and
System Structure

3.1. Research Methodology. Causality is a fundamental con-
cept in human thinking and reasoning. It is not surprising
that most, if not all, languages in the world have a range of

TABLE 1: Statistics for backward causality connectives.

For objective  For subjective  Total percentage in

Connectives reason reason all connectives
Because 83% 17% 50%
For 29% 71% 18%
As 60% 40% 13%
Since 14% 86% 6%
While 14% 86% 6%
Misc 0% 100% 7%
Total 56% 44% 100%

lexical expressions specifically designed for communicating
causal relations.

This paper focuses on explicit causality markers and
implicit causal relations in text. The explicit causality mark-
ers include two grammatically different types of causality
markers in English. We investigate the semantic contrasts
expressed by different causal auxiliary verbs, marking causal
relations expressed within one clause, and those expressed
by different causal connectives, marking causal relations
between clauses.

3.1.1. Causality in Verbs. Some instances of causality in verbs
are listed below. These verbs include, but are not limited
to: “make,” “let;” “have,” “cause,” and their synonyms from
WordNet [19] which is generally referred to as an online
lexical database.

[The extreme cold] cause made/caused even [the rivers
(to) freeze] effect.

[She] cause made/had [her son empty his plate] effect,
despite his complaints.

3.1.2. Causality in Discourse Connectives. For a complex
sentence, the predicative or relative clauses of the noun
synonyms of “cause” are labeled as “potential cause” of
antecedent sentence or main clause. Additionally, each clause
inducted with “since,” “as,” or “because” is also labeled as
“potential cause” of its main clause, which is labeled as
“potential effect”

Table 1 lists the statistics for above backward causality
collected upon Reuters-21578, currently the most widely
used test collection for text processing research, and BBC-
News2000, collected by a self-developed Web Crawler from
http://www.bbc.co.uk/. The forward causality, where in pre-
sentation order the cause precedes the effect, is the most
frequently used ones, for example, “therefore,” “because of
that,” “that is why,” and “so” As the forward causality con-
nectives are one hundred percent strong causality indicators,
the backward causality connectives in Table1 need more
specific notation. For example, in all “because” connectives
in collections, 83% of them indicate objective reasons, while
the other 17% indicate subjective reasons. Meanwhile, the
“because” connectives persist 50% of all the connectives
including “because,” “for;” “as,” “since,” “while,” and other
miscellaneous connectives. The “for,” “as,” “since,” “while,” and
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TABLE 2: Types of implicit causality sentences.
Types Subtypes Exemplar sentences
Cause-effect:
(1) This was the first time I made an international call, and my heart was beating fast.
(2) The filter is much more efficient than the primary filter and it removes all
remaining solid particles from the fuel.
Cause-effect sentences
connected with “and” Effect-cause:
(3) The crops had failed, and there had not been any rain for months.
Compound (.4) Aluminum is used as engineering material for planes and spaceships and it is
light and tough.
sentences

Effect-cause:

(5) My heart sank. Some of them did not weigh more than 135 pounds, and the
others looked too young to be in trouble.

Cause-effect sentences

without connectives

Cause-effect:

(6) .. .but the Voyager’s captain and three crewmen had stayed in board. They had
hoped the storm would die out and they could save the ship.

(7) The red distress flare shot up from the sinking ship, the Voyager. Everyman
aboard our Coast Guard cutter knew that time had run out.

(8) To make an atom we have to use uranium, in which the atoms are available for

SV, SVO, SVC, SVOC, SVOO, fission.

Relative clauses SVA. SVOA

(9) We know that a cat, whose eyes can take in more rays of light than our eyes, can

see clearly in the night.

(10) This system of subsidies must be maintained if the farmer will suffer
considerable losses if it is abolished.

If clauses

(11) If the water will rise above this level, we must warn everybody in the
neighborhood.

That clauses

(12) The act was even the bolder that he stood utterly alone.

(13) The crying was all the more racking that she was not hysterical but hopeless.

(14) Her falling ill spoiled everything.

SVO-SVOC
away.

(15) Timidity and shamefacedness caused her to stand back and looked indifferently

other miscellaneous connectives correspondingly hold 18%,
13%, 6%, 6%, and 7% of all the connectives in collections.

3.1.3. Implicit Causality in Texts. Causal effect relations are
general connections in the objective world, and the causality
sentences exist in languages in a pervasive manner. The
explicit causality sentences are those conducted by backward
and forward causality connectives listed in Section 3.1.2,
while the implicit causality sentences are those connected
with other connectives, even without any one. Our research
works have testified that there are five types of implicit
causality sentences shown in Table 2.

In the practical English texts, there exist a few inter-
personal verbs like “praise” and “apologize,” thus supplying
information about whose behavior or state is the more likely
immediate cause of the event at hand. Because it is conveyed
implicitly as part of the meaning of the verb, this probabilistic
cue is usually referred to as implicit causality.

Such exemplar implicit causality verbs [20] adopted in
this paper are listed in Table 3 together with their bias
indicating the probabilities as causal cues; for example, 1.00
is the causal baseline; the higher the bias value is, the more
likely is the cause.

3.2. System Description. Our causality induction system with
assistance of category learning, named CL-CIS, is composed
with the following functional modules (shown in Figure 3):
category learning, classify exemplars into categories, category
and causal mapping, causal learning, building causal-effect
relations, and the final testing module. CL-CIS also includes
three reference libraries (databases): causality in verbs,
causality in discourse connectives, and implicit causality
for query and assistance. Table 4 compares the composition
difference among general causality analysis system (GCAS),
general causality analysis system with learning (GCAS-L),
and CL-CIS. As the construction of three libraries is elabo-
rated in Section 3.1 Methodology, this section concentrates
on the six functional modules.

3.2.1. Category Learning (CL). The category learning module
builds up different distinct and exhaustive categories accord-
ing to semantic contents (e.g., noun phrases, verb phrases)
of sentences in our text collections. This module is a basic
preprocessing step and the target is to construct a collection
of distinct and exhaustive categories with the text learning
methods.
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TABLE 3: Exemplar implicit causality verbs.

NP1 verbs Bias NP2 verbs Bias
Amazed 119 Admire 2.00
Annoy 119 Adore 1.86
Apologize 1.00 Appreciate 2.00
Be in the way 1.08 Comfort 191
Beg 117 Compliment on something 1.96
Bore 105 Congratulate 1.95
Call 119 Criticize 2.00
Confess 1.03 Envy 2.00
Disappoint 1.03 Fear 2.00
Disturb 114 Fire 1.96
Fascinate 1.00 Hate 1.96
Hurt 113 Hold in contempt 2.00
Inspire 1.23 Hold responsible 1.91
Intimidate 1.23 Loathe 1.86
Irritate 1.22 Love 1.86
Lie to 1.22 Praise 1.96
Mislead 1.22 Press charges against 191
Swindle 113 Punish 1.95
Win 119 Respect 1.95
Worry 119 Thank 1.82

TABLE 4: System composition comparison of GCAS, GCAS-L, and
CL-CIS.

System composition GCAS  GCAS-L  CL-CIS
Modules

Category learning

Classify exemplars into
categories

Category and causal mapping
Causal learning v

Building causal-effect
relations v v

22l 22 2 <

Testing causal-effect
relations v v

Libraries
Causality in verbs v v

Causality in discourse
connectives

Optional v

<

Implicit causality Optional /

3.2.2. Classify Exemplars into Categories (CEC). In the clas-
sify exemplars into categories module, each sentence is
treated as an individual independent event and parsed into
phrases. The classification is based on the comparison of
a sentence with features of each category, so as to set up
the category background knowledge for each sentence. For
example, the concept bank can be clarified as a finance
organization or a river body boundary with corresponding
category background knowledge of its sentence and contexts.

5
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FIGURE 3: System framework of CL-CIS.
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FIGURE 4: Architecture of SRNN.

3.2.3. Category and Causal Mapping (CCM). This module
constructs the category-causal-effect mapping relations; for
example, a virus from a predefined category causes specific
disease-related symptoms, such as a swelling of the spleen
(splenomegaly). The construction mechanism, to a great
extent, is based on collection, storage, and indexing of
massive cases.

3.2.4. Causal Learning (CauL). As analyzed before, a sim-
ple connectionist one-layer network that may be used to
understand the task of when to activate category knowledge
when learning about novel effects. This module adopts a
simple recurrent neural network (SRNN) to simulate the
connectionist model.

Symbols in Figure 4 are defined in Table 5: the first order
weight matrices WR' and WO® fully connect the units of
the input layer (IL), the recurrent layer (RL), and the output
layer (OL), respectively, as in the feed forward multilayer
perceptron (MLP). The current activities of recurrent units
RU® are fed back through time delay connections to the
context layer, which is presented as CUY*) = RU®,

Therefore, each unit in recurrent layer is fed by activities
of all recurrent units from previous time step through
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TABLE 5: Definition of SRNN Symbols.

Symbols Definition

IU A unit of input layer

RU A unit of recurrent layer

Cu A unit of context layer

ou A unit of output layer

| The number of units in IL

[R| The number of units in RL

|C| The number of units in CL

O] The number of units in OL

Wi The weight vector from IL to RL
wre The weight vector from CL to RL
WOR The weight vector from RL to OL

recurrent weight matrix WX, The context layer, which is
composed of activities of recurrent units from previous time
step, can be viewed as an extension of input layer to the
recurrent layer. Above working procedure represents the
memory of the network via holding contextual information
from previous time steps.

The weight matrices W', W*¢, and W® are presented
as follows:

T T
RI _ RI
W = () (ws') s (wly) ]
ri
w11 Wy Rl
1
wz1 T Wy R
= . s
wt o wh C Wt
|1| 1 |I| 2 |IL,IR|
RC _ T rC\T
w —[ wy) s (i) ]
rc Irc
wu Wiy o0 Wy g
wt w€ . W (1)
21 22 LIRI
= bl
w w .. wrc
|C| 1 |C| 2 [CLIR|
OR OR T or\T
1% =[ (W) (wl) ]
or or
wy o wp Wy o
or or or
Wy Wy -

or or or
Wir,t Wiri2 7 WiRo|
. RIzT . RI

In the above formulations, (w,") is the transpose of w;,
for the instance of WX, where w,iu is a row vector and (w,IfI)T
is the column vector of the same elements. The vector w,iu =
(u)1 o wzk, e, wlrIll,k) represents the weights from all the input
layer units to the recurrent (hidden) layer unit RU;. The same
conclusion applies with W*© and WOR,

Given an input pattern in time t, " = (IUgt), IUg), ceo

) and recurrent activities RU®Y (RUgt),RUgt),...,

III
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RUI(Iti)I) for the ith recurrent unit, the net input RUI{(t) and

output activity RU?) are calculated as follows:

RUO = 100 (wf) + RUCY . (wf€)

R
= Z W + Z RU Dy )

RUY = f(RU;Y).

For the kth output unit, its net input OUL(t) and output activity
OU,(:) are calculated as (3). Consider the following:

ou = RUY . ()" =

ou’ - 7 (0u),

Here, the activation function f applies the logistic sigmoid
function (4) in this paper. Consider the following:

ex

f(x)= = . (4)

1+e™ 1+e*

3.2.5. Building Causal-Effect Relations (BCER). This module
builds up the “cause-effect” pairs and connections with the
inputs of SRNN and corresponding outputs. The causality
detection results could include four possible types: (1) single
cause-effect pairs in which any two pairs are independent
from each other; (2) cause-effect chains, which are formed
with more than one cause-effect pairs connected together (an
effect is a cause of another effect); (3) one-cause-multiple-
effect pairs; (4) multiple-cause-one-effect pairs. All of the
causality connections are archived in a database. Both CaulL
and BCER modules exploit three libraries (databases): causal-
ity in verbs, causality in discourse connectives, and implicit
causality, for reference.

3.2.6. Testing Causal-Effect Relations (TCER). This module
tests and verifies a new processed causal-effect relation with
our existing and expanding collection of massive causal-effect
relations. The concrete technology includes comparison of
triples (Category, Cause, Effect).

4. Experiments and Results

Our experiments test general causality analysis system
(GCAS), general causality analysis system with learning
(GCAS-L), and CL-CIS together, in order to examine and
reveal the assertion that category information is a necessary
supplement for causality extraction and has impact on subse-
quent learning-based cause-effect identification.

In our experiments, we have used two text collections: (1)
Reuters-21578, currently the most widely used test collection
for text processing research; (2) BBC-News2000, collected by
a self-developed Web Crawler from http://www.bbc.co.uk/.
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F1GURE 5: Evaluation results of GCAS, GCAS-L, and CL-CIS.

BBC-News2000 collected 2000 news articles which have
been pruned off unnecessary Web page elements, such as
html tags, images, URLs, and so forth. BBC-News2000 is not
categorized and is treated as a whole hybrid.

30 judges are involved to manually search cause-effect
pairs and construct standard causality references (SCR), SCR-
Reuters for Reuters-21578, and SCR-BBC for BBC-News2000.
Due to limited human resources, in current stage, SCR-
Reuters only covers 2000 documents, newid ranges from 1 to
2000, contained in files “reut2-000.sgm” and “reut2-001.sgm.
The rest of the files of Reuters-21578 are still involved in the
training phase.

The performances of GCAS, GCAS-L, and CL-CIS are
evaluated with precision, recall, and F-measure [21], the
traditional measures that have been widely applied by most
information retrieval systems to analyze and evaluate their
performance. The F-measure is a harmonic combination of
the precision and recall values used in information retrieval.
As shown in Tables 6, 7, and 8, the experimental results state
that (1) GCAS scores from 0.681 to 0.732 on precision and
from 0.581 to 0.706 on recall; (2) GCAS-L scores from 0.719
to 0.793 on precision and from 0.609 to 0.734 on recall; (3)
CL-CIS scores from 0.776 to 0.897 on precision and from
0.661 to 0.805 on recall. Figure 5 explicitly states that (1)

TABLE 6: Experimental results of GCAS.

Experiment files Precision Recall F-measure
reut2-000.sgm (newid: 1-1000) 0.681 0.593 0.634
reut2-001.sgm (newid: 1001-2000)  0.706 0.581 0.637
Both (reut2) (newid: 1-2000) 0.698 0.602 0.646
BBC-News2000 0.732 0.706 0.719

TABLE 7: Experimental results of GCAS-L.

Experiment files Precision Recall F-measure
reut2-000.sgm (newid: 1-1000) 0.719 0.621 0.666
reut2-001.sgm (newid: 1001-2000)  0.755 0.609 0.674
Both (reut2) (newid: 1-2000) 0742 0.616  0.673
BBC-News2000 0.793 0.734 0.762

the general causality analysis system with learning (GCAS-
L) performances better than the general causality analysis
system (GCAS) on all evaluation measures; (2) the causality
analysis system strengthened with causal and category learn-
ing (CL-CIS) exceeds GCAS-L in the meantime.



TABLE 8: Experimental results of CL-CIS.

Experiment files Precision Recall F-measure
reut2-000.sgm (newid: 1-1000) 0.776 0.685 0.728
reut2-00L.sgm (newid: 1001-2000)  0.815 0.661 0.730
Both (reut2) (newid: 1-2000) 0809  0.683  0.741
BBC-News2000 0.897 0.805 0.849

5. Concluding Remarks

In recent years, detection and clarification of cause-effect
relationships among texts, events, or objects has been elevated
to a prominent research topic of natural and social sciences
over the human knowledge development history.

This paper demonstrates a novel comprehensive causality
extraction system (CL-CIS) integrated with the means of
category-learning. CL-CIS considers cause-effect relations in
both explicit and implicit forms and especially practices the
relation between category and causality in computation.

CL-CIS is inspired with cognitive philosophy in category
and causality. In causality extraction and induction tasks, CL-
CIS implements a simple recurrent neural network (SRNN)
to simulate human associative memory, which has the ability
to associate different types of inputs when processing infor-
mation.

In elaborately designed experimental tasks, CL-CIS has
been examined in full with two text collections, Reuters-21578
and BBC-News2000. The experimental results have testified
the capability and performance of CL-CIS in construction
of cause-effect relations and also confirmed the expectation
that the means of causal and category learning will improve
the precision and coverage of causality induction in a notable
manner.
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