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Biogeography-based optimization (BBO) is a relatively new bioinspired heuristic for global optimization based on themathematical
models of biogeography. By investigating the applicability and performance of BBO for integer programming, we find that the
original BBO algorithm does not performwell on a set of benchmark integer programming problems.Thuswemodify themutation
operator and/or the neighborhood structure of the algorithm, resulting in three new BBO-based methods, named BlendBBO,
BBO DE, and LBBO LDE, respectively. Computational experiments show that these methods are competitive approaches to solve
integer programming problems, and the LBBO LDE shows the best performance on the benchmark problems.

1. Introduction

An integer programming problem is a discrete optimization
problem where the decision variables are restricted to inte-
ger values. In computer science and operations research, a
remarkably wide range of problems, such as project schedul-
ing, capital budgeting, goods distribution, and machine
scheduling, can be expressed as integer programming prob-
lems [1–6]. Integer programming also has applications in
bioinspired computational models such as artificial neural
networks [7, 8].

The general form of an integer programming model can
be stated as

min 𝑓 (�⃗�)

s.t. �⃗� ∈ ⃗𝑆 ⊆ Z
𝐷,

(1)

where �⃗� is a 𝐷-dimensional integer vector, Z𝐷 is a 𝐷-
dimensional discrete space of integers, and ⃗𝑆 is a feasible
region that is not necessarily bounded. Any maximization
version of integer programming problems can be easily
transformed to a minimization problem.

One of themost well-knowndeterministic approaches for
solving integer programming problems is the branch-and-
bound algorithm [9]. It uses a “divide-and-conquer” strategy
to split the feasible region into subregions, obtaining for
each subregion a lower bound by ignoring the integrality
constraints and checkingwhether the corresponding solution
is a feasible one; if so, the current solution is optimum to the
original problem; otherwise recursively split and tackle the
subregions until all the variables are fixed to integers.

However, integer programming is known to be NP-
hard [10], and thus the computational cost of deterministic
algorithms increases very rapidly with problem size. In recent
years, evolutionary algorithms (EA), which are stochastic
search methods inspired by the principles of natural biolog-
ical evolution, have attracted great attention and have been
successfully applied to a wide range of computationally diffi-
cult problems. These heuristic algorithms do not guarantee
finding the exact optimal solution in a single simulation
run, but in most cases they are capable of finding acceptable
solutions in a reasonable computational time.

Genetic algorithms (GA) are one of the most popular EA,
but the encoding of the integer search space with fixed length
binary strings as used in standard GA is not feasible for inte-
ger problems [11].Many other heuristics, such as evolutionary
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strategy (ES) [12], particle swarm optimization (PSO) [13],
and differential evolution (DE) [14], are initially proposed
for continuous optimization problems. However, they can be
adapted to integer programming by embedding the integer
space into the real space and truncating or rounding real
values to integers, and the applicability and performance of
such approach are demonstrated by experimental studies.

Kelahan and Gaddy [15] conducted an early study that
performs random search in integer spaces in the spirit
of a (1 + 1)-ES; that is, at each iteration a child solu-
tion vector is generated by adding a random vector to
the parent vector, and the better one between the parent
and the child is kept for the next generation. Rudolph
[11] developed a (𝜇 + 𝜆)-ES based algorithm, which uses
the principle of maximum entropy to guide the con-
struction of a mutation distribution for arbitrary search
spaces.

Laskari et al. [16] studied the ability of PSO for solving
integer programming problems. On their test problems, PSO
outperforms the branch-and-bound method in terms of
number of function evaluations (NFE), and PSO exhibits
high success rates even in cases where the branch-and-bound
algorithm fails. Improved versions of PSO, including the
quantum-behaved PSO which is based on the principle of
state superposition and uncertainty [17] and barebones PSO
which is based on samples from a normal distribution and
requires no parameter tuning [18], have also been applied
and shown to be efficient alternatives to integer programming
problems.

Omran and Engelbrecht [19] investigated the perfor-
mance of DE in integer programming. They tested three
versions of DE and found that the self-adaptive DE (SDE)
requiring no parameter tuning is the most efficient and
performs better than PSO.

In this paper, we propose three algorithms for integer
programming based on a relatively new bioinspired method,
namely, biogeography-based optimization (BBO).Wemodify
the mutation operator of the original BBO to enhance
its exploration or global search ability and adopt a local
neighborhood structure to avoid premature convergence.
Experimental results show that our methods are competitive
approaches to solving integer programming problems.

2. Biogeography-Based Optimization

Biogeography is the science of the geographical distribution
of biological organisms over space and time. MacArthur and
Wilson [20] established the mathematical models of island
biogeography, which show that the species richness of an
island can be predicted in terms of such factors as habitat
area, immigration rate, and extinction rate. Inspired by this,
Simon [21] developed the BBO algorithm, where a solution
vector is analogous to a habitat, the solution components are
analogous to a set of suitability index variables (SIVs), and
the solution fitness is analogous to the species richness or
habitat suitability index (HSI) of the habitat. Central to the
algorithm is the equilibrium theory of island biogeography,
which indicates that high HSI habitats have a high species
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Figure 1: A linear model of emigration and immigration rates of a
habitat.

emigration rate and low HSI habitats have a high species
immigration rate. For example, in a linear model of species
richness (as illustrated in Figure 1), a habitat𝐻

𝑖
’s immigration

rate 𝜆
𝑖
and emigration rate 𝜇

𝑖
are calculated based on its

fitness 𝑓
𝑖
as follows:

𝜆
𝑖
= 𝐼(

𝑓max − 𝑓𝑖
𝑓max − 𝑓min

)

𝜇
𝑖
= 𝐸(

𝑓
𝑖
− 𝑓min

𝑓max − 𝑓min
) ,

(2)

where 𝑓max and 𝑓min are, respectively, the maximum and
minimum fitness values among the population and 𝐼 and
𝐸 are, respectively, the maximum possible immigration rate
and emigration rate. However, there are other nonlinear
mathematical models of biogeography that can be used for
calculating the migration rates [22, 23].

Migration is used to modify habitats by mixing features
within the population. BBO also has a mutation operator
for changing SIV within a habitat itself and thus probably
increasing diversity of the population. For each habitat 𝐻

𝑖
,

a species count probability 𝑃
𝑖
computed from 𝜆

𝑖
and 𝜇

𝑖

indicates the likelihood that the habitat was expected a priori
to exist as a solution for the problem. In this context, very
high HSI habitats and very low HSI habitats are both equally
improbable, andmediumHSI habitats are relatively probable.
Themutation rate of habitat𝐻

𝑖
is inversely proportional to its

probability:

𝜋
𝑖
= 𝜋max (1 −

𝑃
𝑖

𝑃max
) , (3)

where 𝜋max is a control parameter and 𝑃max is the maximum
habitat probability in the population.

Algorithm 1 describes the general framework of BBO
for a 𝐷-dimensional global numerical optimization problem
(where 𝑙

𝑑
and 𝑢

𝑑
are the lower and upper bounds of the 𝑑th

dimension, respectively, and rand is a function that generates
a random value uniformly distributed in [0, 1]).
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(1) Randomly initialize a population of 𝑛 solutions (habitats);
(2) while stop criterion is not satisfied do
(3) for 𝑖 = 1 to 𝑛 do
(4) Calculate 𝜆

𝑖
, 𝜇
𝑖
, and 𝜋

𝑖
according to 𝑓

𝑖
;

(5) for 𝑖 = 1 to 𝑛 do
(6) for 𝑑 = 1 to 𝐷 do
(7) if rand() < 𝜆

𝑖
then //migration

(8) Select a habitat𝐻
𝑗
with probability∝ 𝜇

𝑗
;

(9) 𝐻
𝑖,𝑑
← 𝐻
𝑗,𝑑
;

(10) for 𝑖 = 1 to 𝑛 do
(11) for 𝑑 = 1 to 𝐷 do
(12) if rand() < 𝜋

𝑖
then //mutation

(13) 𝐻
𝑖,𝑑
← 𝑙
𝑑
+ rand() × (𝑢

𝑑
− 𝑙
𝑑
);

(14) Evaluate the fitness values of the habitats;
(15) Update 𝑓max, 𝑃max, and the best known solution;
(16) return the best known solution.

Algorithm 1: The original BBO algorithm.

Typically, in Line 8 we can use a roulette wheel method
for selection, the time complexity of which is 𝑂(𝑛). It is
not difficult to see that the complexity of each iteration of
the algorithm is 𝑂(𝑛2𝐷 + 𝑛𝑂(𝑓)), where 𝑂(𝑓) is the time
complexity for computing the fitness function 𝑓.

3. Biogeography-Based Heuristics for
Integer Programming

In BBO, the migration operator provides good exploitation
ability, while the broader exploration of the search space is
mainly based on themutation operator. Simon [21] suggested
that 𝜋max should be set to a small value (about 0.01), which
results in low mutation rates. However, when being applied
to integer programming, we need to use higher mutation
rates to improve the exploration of search space. According to
our experimental studies, when 𝜋max is set to about 0.25∼0.3,
the BBO algorithm exhibits the best performance on integer
programming problems.

Note that the migration operator does not violate the
integer constraints, and the rounding of real values to integers
is required only aftermutations (Line 13 of Algorithm 1). Nev-
ertheless, even using a higher mutation rate, the performance
of BBO is far from satisfactory for integer programming.This
is mainly because randommutation operator does not utilize
any information of the population to guide the exploration of
search space. In this work, we introduce two other mutation
operators to BBO, which results in three variants of BBO for
integer programming.

3.1. A BlendedMutationOperator. In the first variant, namely,
BlendBBO, we use a blended mutation operator, which
is motivated by the blended crossover operator used by
Mühlenbein and Schlierkamp-Voosen [24] in GA and by Ma
and Simon [25] in constrained optimization. In our approach,
if a component of vector 𝐻

𝑖
is subject to mutate, we first

select another vector 𝐻
𝑗
with probability ∝ 𝜇

𝑗
and then

use the following equation to work out the new value of the
component:

𝐻
𝑖,𝑑
= round (𝛼𝐻

𝑖,𝑑
+ (1 − 𝛼)𝐻𝑗,𝑑) , (4)

where 𝛼 is a random value uniformly distributed in [0, 1].
Note that if the 𝑑th dimension of the search space has a
bound, (4) will never result in a value outside the bound.

Moreover, we employ an elitism mechanism in solution
update (as used in ES [12, 26]): the migration operator
always generates a new vector𝐻󸀠

𝑖
for each existing vector𝐻

𝑖

(rather than directly changing𝐻
𝑖
); if𝐻󸀠

𝑖
is better than𝐻

𝑖
, no

mutation will be applied and 𝐻󸀠
𝑖
directly enters to the next

generation; otherwise the mutation operator is applied to𝐻
𝑖
.

This not only decreases the required NFE but also increases
the convergence speed of the algorithm. The algorithm
flow of BBO with the blended mutation is presented in
Algorithm 2.

3.2. DE Mutation Operator. The second variant, namely,
BBO DE, replaces the random mutation operator with the
mutation operator of DE, which mutates a vector component
by adding theweighted difference between the corresponding
components of two randomly selected vectors to a third one:

𝐻
𝑖,𝑑
= round (𝐻

𝑟
1
,𝑑
+ 𝐹 (𝐻

𝑟
2
,𝑑
− 𝐻
𝑟
3
,𝑑
)) , (5)

where 𝑟
1
, 𝑟
2
, and 𝑟

3
are three unique randomly selected habitat

indices that are different to 𝑖, and 𝐹 is a constant scaling
coefficient.

DE is well known for its good exploration ability, and the
combination of BBO migration and DE mutation achieves a
good balance between exploitation and exploration. BBO DE
also uses our new solution update mechanism described
above. Therefore, the algorithm flow of BBO DE simply
replaces Lines 15 and 16 of Algorithm 2 with the DEmutation
operation described by (5).
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(1) Randomly initialize a population of 𝑛 solutions (habitats);
(2) while stop criterion is not satisfied do
(3) for 𝑖 = 1 to 𝑛 do
(4) Calculate 𝜆

𝑖
, 𝜇
𝑖
, and 𝜋

𝑖
according to 𝑓

𝑖
;

(5) for 𝑖 = 1 to 𝑛 do
(6) Let𝐻󸀠

𝑖
= 𝐻
𝑖
;

(7) for 𝑑 = 1 to 𝐷 do
(8) if rand() < 𝜆

𝑖
then //migration

(9) Select a habitat𝐻
𝑗
with probability∝ 𝜇

𝑗
;

(10) 𝐻󸀠
𝑖,𝑑
← 𝐻
𝑗,𝑑
;

(11) if 𝑓(𝐻
𝑖
) < 𝑓(𝐻󸀠

𝑖
) then 𝐻

𝑖
← 𝐻󸀠
𝑖
;

(12) else
(13) for 𝑑 = 1 to 𝐷 do
(14) if rand() < 𝜋

𝑖
then //mutation

(15) Let 𝛼 = rand() and select a habitat𝐻
𝑗
with probability∝ 𝜇

𝑗
;

(16) 𝐻
𝑖,𝑑
← round(𝛼𝐻

𝑖,𝑑
+ (1 − 𝛼)𝐻

𝑗,𝑑
);

(17) Evaluate the fitness values of the habitats;
(18) Update 𝑓max, 𝑃max, and the best known solution;
(19) return the best known solution.

Algorithm 2: The BBO with the blended mutation for integer programming.

3.3. Local Topology of the Population. The original BBO uses
a fully connected topology; that is, all the individual solutions
are directly connected in the population and can migrate
with each other. But such a global topology is computa-
tionally intensive and is prone to premature convergence.
To overcome this problem, our third variant replaces the
global topology with a local one. One of the simplest local
topologies is the ring topology, where each individual is
directly connected to two other individuals [27, 28]. But here
we employ a more generalized local topology, the random
topology, where each individual has 𝐾 immediate neighbors
that are randomly selected from the population and 𝐾 is a
control parameter [28].

In consequence, whenever an individual vector 𝐻
𝑖
is to

be immigrated, the emigrating vector is chosen from its
neighbors rather than the whole population, based on the
migration rates. The neighborhood structure can be saved
in an 𝑛 × 𝑛 matrix 𝐿: if two habitats 𝐻

𝑖
and 𝐻

𝑗
are directly

connected then 𝐿(𝑖, 𝑗) = 1; otherwise 𝐿(𝑖, 𝑗) = 0. It is easy to
see that the complexity of each iteration of the algorithm is
𝑂(𝑛𝐾𝐷 + 𝑛𝑂(𝑓)).

Storn and Price [14] have proposed several different
strategies on DE mutation. The scheme of (5) is denoted
as DE/rand/1. Another scheme is named DE/best/1, which
always chooses the best individual of the population as𝐻

𝑟
1

in
(5). Omran et al. [29] extended it to the DE/lbest/1 scheme,
which uses a ring topology and always chooses the better
neighbor of the vector to be mutated.

In our approach, BBO migration and DE mutation share
the same local random topology. That is, each 𝐻

𝑖
individual

has 𝐾 neighbors, and at each time an 𝐻
𝑗
is chosen from

the neighbors with probability ∝ 𝜇
𝑗
to participate in the

mutation such that

𝐻
𝑖,𝑑
= round (𝐻

𝑗,𝑑
+ 𝐹 (𝐻

𝑟
2
,𝑑
− 𝐻
𝑟
3
,𝑑
)) . (6)

Moreover, if the current best solution has not been
improved after every 𝑛

𝑝
generation (where 𝑛

𝑝
is a predefined

constant), we reset the neighborhood structure randomly.
The third variant is named LBBO LDE, and it also uses

the same solution update mechanism as the previous two
variants.

4. Computational Experiments

We test the three variants of BBO on a set of integer
programming benchmark problems, which are taken from
[16, 30, 31] and frequently encountered in the relevant liter-
ature. The details of the benchmark problems are described
in the Appendix. For comparison, we also implement the
basic BBO, DE, and SDE [19] for integer programming. The
branch-and-bound method is not included for comparison,
because it has shown that DE outperforms branch-and-
bound on most test problems [16, 19].

For all the six algorithms, we use the same population size
𝑛 = 50 and run them on each problem for 40 times with
different random seeds. The migration control parameters
are set as 𝐼 = 𝐸 = 1 for BBO, BlendBBO, BBO DE,
and LBBO LDE, and the mutation control parameter 𝜋max
is set to 0.01 for BBO and 0.25 for BlendBBO (BBO DE
and LBBO LDE do not use this parameter). Empirically, the
neighborhood size 𝐾 and the threshold of nonimprovement
generations 𝑛

𝑝
are both set to 3 for LBBO LDE. The other

parameters with regard to DE and SDE are set as suggested in
[14, 32].

The first two problems 𝐹
1
and 𝐹

2
are high-dimensional

problems. For 𝐹
1
, we, respectively, consider it in 10 and

30 dimensions. Table 1 presents the success rates (SR) and
required NFE of the algorithms to achieve the optimum
in 10 dimensions, and Figure 2 presents the corresponding
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Table 1: SR and required NFE of the algorithms on 𝐹
1
in 10

dimensions.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 20% 1946 2215 2080.50 190.21
DE 100% 3200 4100 3777.50 239.78
SDE 100% 3050 4050 3762.40 265.23
BBO DE 100% 3102 3964 3674.80 269.07
LBBO LDE 100% 2061 2694 2493.75 145.59

Table 2: SR and required NFE of the algorithms on 𝐹
1
in 30

dimensions.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 0% NA NA NA NA
DE 0% NA NA NA NA
SDE 85% 7850 11350 9301.00 1130.10
BBO DE 90% 6765 9752 8204.25 920.39
LBBO LDE 100% 5923 7071 6471.60 272.29

convergence curves of the algorithms. As we can see, the
original BBO fails to solve the problem, and the SR of
BlendBBO is only 20%. The four algorithms utilizing the DE
mutation operator can guarantee the optimal result on the 10-
dimensional problem, among which LBBO LDE shows the
best performance, and the other three algorithms have similar
performance, but the result of BBO DE is slightly better than
DE and SDE.

Table 2 and Figure 3, respectively, present the results
and the convergence curves of the algorithms on 𝐹

1
in

30 dimensions. On this high-dimensional problem, BBO,
BlendBBO, and DE all fail to obtain the optimum, SDE and
BBO DE, respectively, have SR of 85% and 90% for obtaining
the optimum, and only our LBBO LDE can always guarantee
the optimum.

From the convergence curves we can also find that the
BBO algorithm converges very fast at the early stage, but
thereafter its performance deteriorates because it is ineffective
to explore other potentially promising areas of the search
space. By combining with the DE mutation operator, our
hybrid BBO methods inherit the fast convergence speed of
BBO, at the same time taking advantage of the exploration
ability of DE.

For𝐹
2
, we, respectively, consider it in 5 and 15 dimensions,

the experimental results of which are, respectively, presented
in Tables 3 and 4 and the convergence curves of which are
presented in Figures 4 and 5. The results are similar to those
of 𝐹
1
: for the low dimensional problem, SDE, BBO DE, and

LBBO LDE are efficient; for the high-dimensional problem,
only LBBO LDE can guarantee the optimum; the perfor-
mance LBBO LDE is the best while that of BBO is the worst;
SDE performs better than DE and BBO DE performs slightly
better than SDE, and BlendBBO outperforms BBO but is
worse than the algorithms with the DE mutation operator.
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Figure 2: The convergence curves of the algorithms on 𝐹
1
in 10

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.
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Figure 3: The convergence curves of the algorithms on 𝐹
1
in 30

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.

Table 3: SR and required NFE of the algorithms on 𝐹
2
in 5

dimensions.

Method SR Best Worst Mean Std
BBO 10% 3663 5168 4415.50 1064.20
BlendBBO 55% 1154 1545 1363.36 121.94
DE 95% 1500 2100 1797.37 188.91
SDE 100% 1450 2600 2022.35 368.17
BBO DE 100% 1773 2669 2336.65 258.22
LBBO LDE 100% 1058 1898 1451.20 214.48

𝐹
3
is a 5-dimensional problem more difficult than 𝐹

2
.

As we can see from the results shown in Table 5, BBO
and BlendBBO always fail on the problem, and DE, SDE,
and LBBO LDE can guarantee the optimum. The required
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Figure 4: The convergence curves of the algorithms on 𝐹
2
in 5

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.
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Figure 5: The convergence curves of the algorithms on 𝐹
2
in 15

dimensions, where the vertical axis represents the objective value
and the horizontal axis represents the number of generations.

Table 4: SR and required NFE of the algorithms on 𝐹
2
in 15

dimensions.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 2.5% 4815 4815 4815 NA
DE 95% 5300 6650 5978.95 335.95
SDE 95% 5000 6400 5698.32 389.24
BBO DE 97.5% 5030 6210 5639.11 362.69
LBBO LDE 100% 3488 4528 4188.30 300.77

NFE of DE is slightly better than SDE and LBBO LDE, but
LBBO LDE converges faster than DE, as shown in Figure 6.
𝐹
4
is a relatively easy problem, on which even the worst

BBO has an SR of 75%, and all the other algorithms can

5000

4000

3000

2000

1000

0

−1000

0 10 20 30 40 50 60 70 80 90 100

BBO
BlendBBO
DE

SDE
BBO DE
LBBO LDE

F3

Figure 6:The convergence curves of the algorithms on𝐹
3
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.
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Figure 7:The convergence curves of the algorithms on𝐹
4
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.

guarantee the optimum. LBBO LDE is the best one in terms
of both NFE and convergence speed, as shown in Table 6 and
Figure 7.

The remaining three test problems are also relatively easy.
The experimental results are presented in Tables 7, 8, and 9,
and the convergence curves are shown in Figures 8, 9, and 10,
respectively. As we can clearly see, the four algorithms with
the DE mutation operator can always obtain the optima on
these problems, and LBBO LDE shows the best performance.

In summary, our LBBO LDE outperforms the other
algorithms on all of the test problems. Generally speaking,
the original BBO converges fast at first, but it is easy to
be trapped by the local optima. BlendBBO alleviates the
dilemma to a certain degree, but the DE mutation operator
is more effective than the blended mutation operator, as
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Figure 8:The convergence curves of the algorithms on𝐹
5
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.
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Figure 9:The convergence curves of the algorithms on𝐹
6
, where the

vertical axis represents the objective value and the horizontal axis
represents the number of generations.

Table 5: SR and required NFE of the algorithms on 𝐹
3
.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 0% NA NA NA NA
DE 100% 2050 2950 2490.00 262.38
SDE 100% 2500 4050 3260.00 638.05
BBO DE 10% 4810 5246 5028.00 308.30
LBBO LDE 100% 1758 4181 2958.85 849.24

demonstrated by our experimental results. By combining
BBO and DE, the BBO DE algorithm provides an efficient
alternative to popular methods such as SDE. The local
topology used in LBBO LDE further improves the search
ability and suppresses the premature convergence, especially
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Figure 10: The convergence curves of the algorithms on 𝐹
7
, where

the vertical axis represents the objective value and the horizontal axis
represents the number of generations.

Table 6: SR and required NFE of the algorithms on 𝐹
4
.

Method SR Best Worst Mean Std
BBO 75% 477 3429 1726.87 1020.19
BlendBBO 100% 258 552 424.50 85.34
DE 100% 300 650 420.00 93.75
SDE 100% 250 600 520.00 129.65
BBO DE 10% 59 1058 632.30 277.77
LBBO LDE 100% 236 525 400.60 72.20

Table 7: SR and required NFE of the algorithms on 𝐹
5
.

Method SR Best Worst Mean Std
BBO 0% NA NA NA NA
BlendBBO 25% 1223 2676 1842 692.53
DE 100% 1200 1700 1445.00 140.39
SDE 100% 1100 1750 1550.50 196.45
BBO DE 100% 2473 4498 3681.25 620.36
LBBO LDE 100% 1012 1874 1532.35 249.46

Table 8: SR and required NFE of the algorithms on 𝐹
6
.

Method SR Best Worst Mean Std
BBO 45% 140 1989 1150.22 678.16
BlendBBO 80% 178 635 455.81 128.81
DE 100% 200 550 392.50 140.39
SDE 100% 200 500 405.20 103.72
BBO DE 100% 196 995 708.50 198.38
LBBO LDE 100% 183 511 410.05 86.37

on high-dimensional problems where the performance of
DE and SDE deteriorates quickly. Therefore, LBBO LDE
is a very competitive heuristic method for solving integer
programming problem.
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Table 9: SR and required NFE of the algorithms on 𝐹
7
.

Method SR Best Worst Mean Std
BBO 60% 167 3403 1714.75 986.18
BlendBBO 70% 262 721 459.50 149.00
DE 100% 350 600 480.00 76.78
SDE 100% 300 650 451.00 89.33
BBO DE 100% 479 1327 978.40 311.11
LBBO LDE 100% 249 614 389.45 96.08

5. Conclusion

In this paper we develop three algorithms for integer pro-
gramming based on the BBO heuristic.The BlendBBO uses a
blendedmutation operator, BBO DE integrates theDEmuta-
tion operator, and LBBO LDE further uses a local neigh-
borhood structure for selecting individuals for migration
and mutation. Experimental results show that LBBO LDE
has the best performance on a set of benchmark integer
programming problem.

In general, the LBBO LDE algorithm with local neigh-
borhood size 𝐾 of 3∼5 is efficient on the test problem, but
none of the values can provide the best performance on
all the problems. Currently we are studying a mechanism
that dynamically adjusts the neighborhood size as well as
other control parameters according to the search state [33].
Moreover, the test problems considered in the paper only
have bounds for decision variables but do not include other
constraints, and we are extending the proposed approach
to solve more complex constrained optimization problems,
including multiobjective ones [34–36]. We also believe that
our approach can be adapted to effectively handle other kinds
of combinatorial optimization problems, such as 0-1 integer
programming and permutation-based optimization.

Appendix

Integer Programming Benchmark Problems

Consider

𝐹
1 (�⃗�) =

𝐷

∑
𝑖=1

𝑥
𝑖
, �⃗�∗ = (0)

𝐷, 𝐹
1
(�⃗�∗) = 0,

𝐹
2 (�⃗�) =

𝐷

∑
𝑖=1

𝑥2
𝑖
, �⃗�∗ = (0)

𝐷, 𝐹
2
(�⃗�∗) = 0,

𝐹
3 (�⃗�) = − (15, 27, 36, 18, 12) �⃗�

⊤

+ �⃗�(

35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10 −20 32

)�⃗�⊤,

�⃗�∗ = (0, 11, 22, 16, 6) or �⃗�∗ = (0, 12, 23, 17, 6) ,

𝐹
3
(�⃗�∗) = −737,

𝐹
4 (�⃗�) = (9𝑥

2

1
+ 2𝑥2
2
− 11)
2

+ (3𝑥
1
+ 4𝑥2
2
− 7)
2

,

�⃗�∗ = (1, 1) , 𝐹
4
(�⃗�∗) = 0,

𝐹
5 (�⃗�) = (𝑥1 + 10𝑥2)

2
+ 5(𝑥
3
− 𝑥
4
)
2

+ (𝑥
2
− 2𝑥
3
)
4
+ 10(𝑥

1
− 𝑥
4
)
4
,

�⃗�∗ = (0)
4, 𝐹

5
(�⃗�∗) = 0,

𝐹
6 (�⃗�) = 2𝑥

2

1
+ 3𝑥2
2
+ 4𝑥
1
𝑥
2
− 6𝑥
1
− 3𝑥
2
,

�⃗�∗ = (2, −1) , 𝐹
6
(�⃗�∗) = −6,

𝐹
7 (�⃗�) = −3803.84 − 138.08𝑥1 − 232.93𝑥2

+ 123.08𝑥2
1
+ 203.64𝑥2

2
+ 182.25𝑥

1
𝑥
2
,

�⃗�∗ = (0, 1) , 𝐹
7
(�⃗�∗) = 3833.12.

(A.1)

In the above problems, the ranges of variables are all set as
�⃗� ∈ [−100, 100]𝐷.
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