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We introduce the concept of triangular 𝛼
𝑐
-admissible mappings (pair of mappings) with respect to 𝜂

𝑐
nonself-mappings and

establish the existence of PPF dependent fixed (coincidence) point theorems for contraction mappings involving triangular 𝛼
𝑐
-

admissiblemappings (pair ofmappings) with respect to 𝜂
𝑐
nonself-mappings in Razumikhin class. Several interesting consequences

of our theorems are also given.

1. Introduction and Preliminaries

The applications of fixed point theory are very important and
useful in diverse disciplines of mathematics. In fact, fixed
point theory can be applied for solving equilibriumproblems,
variational inequalities, and optimization problems. In par-
ticular, a very powerful tool is the Banach fixed point theo-
rem, which was generalized and extended in various direc-
tions: modifying Banach’s contractive condition, changing
the space, or extending single-valuedmapping tomultivalued
mapping (see [1–8] and references therein). In 1997, Bernfeld
et al. [9] introduced the concept of fixed point for mappings
that have different domains and ranges, which is called PPF
dependent fixed point or the fixed point with PPF depen-
dence. Furthermore, they gave the notion of Banach type con-
traction for nonself-mapping and also proved the existence of
PPF dependent fixed point theorems in the Razumikhin class
for Banach type contraction mappings (also see [10]). The
PPF dependent fixed point theorems are useful for proving
the solutions of nonlinear functional differential and integral
equations which may depend upon the past history, present
data, and future consideration. On the other hand, Samet
et al. [11] first introduced the concept of 𝛼-admissible self-
mappings andproved the existence of fixedpoint results using

contractive conditions involving 𝛼-admissible mappings in
complete metric spaces. They also gave some examples and
applications of the obtained results to ordinary differential
equations. In this paper, we will introduce the concept of
triangular 𝛼

𝑐
-admissible mappings (pair of mappings) with

respect to 𝜂
𝑐
nonself-mappings and establish the existence

of PPF dependent fixed point theorems for contraction
mappings involving triangular 𝛼

𝑐
-admissible mappings (pair

of mappings) with respect to 𝜂
𝑐
nonself-mappings in Razu-

mikhin class.
Throughout this paper, we assume that (𝐸, ‖ ⋅ ‖

𝐸
) is a

Banach space, 𝐼 denotes a closed interval [𝑎, 𝑏] inR, and𝐸
0
=

(𝐼, 𝐸) denotes the sets of all continuous𝐸-valued functions on
𝐼 equipped with the supremum norm ‖ ⋅ ‖

𝐸0
defined by





𝜙



𝐸0
= sup
𝑡∈𝐼





𝜙 (𝑡)



𝐸
. (1)

For a fixed element 𝑐 ∈ 𝐼, the Razumikhin or minimal
class of functions in 𝐸

0
is defined by

R
𝑐
= {𝜙 ∈ 𝐸

0
:




𝜙



𝐸0
=




𝜙 (𝑐)



𝐸
} . (2)

Clearly, every constant function from 𝐼 to 𝐸 belongs toR
𝑐
.
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Definition 1. LetR
𝑐
be the Razumikhin class; then

(i) the class R
𝑐
is algebraically closed with respect to

difference, if 𝜙 − 𝜉 ∈R
𝑐
when 𝜙, 𝜉 ∈R

𝑐
;

(ii) the classR
𝑐
is topologically closed if it is closed with

respect to the topology on 𝐸
0
generated by the norm

‖ ⋅ ‖
𝐸0
.

Definition 2 (see [9]). A mapping 𝜙 ∈ 𝐸
0
is said to be a PPF

dependent fixed point or a fixed point with PPF dependence
of mapping 𝑇 : 𝐸

0
→ 𝐸 if 𝑇𝜙 = 𝜙(𝑐) for some 𝑐 ∈ 𝐼.

Definition 3 (see [10]). Let 𝑆 : 𝐸
0
→ 𝐸
0
and 𝑇 : 𝐸

0
→ 𝐸.

A point 𝜙 ∈ 𝐸
0
is said to be a PPF dependent coincidence

point or a coincidence point with PPF dependence of 𝑆 and
𝑇 if 𝑇𝜙 = (𝑆𝜙)(𝑐) for some 𝑐 ∈ 𝐼.

Definition 4 (see [9]). The mapping 𝑇 : 𝐸
0
→ 𝐸 is called a

Banach type contraction if there exists 𝑘 ∈ [0, 1) such that




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝑘




𝜙 − 𝜉




𝐸0
, (3)

for all 𝜙, 𝜉 ∈ 𝐸
0
.

In 2012, Samet et al. [11] introduced the concepts of 𝛼-
𝜓-contractive and 𝛼-admissible mappings and established
various fixed point theorems for such mappings in complete
metric spaces. Afterwards, Karapinar and Samet [12] general-
ized these notions to obtain fixed point results. More recently,
Salimi et al. [13] modified the notions of 𝛼-𝜓-contractive and
𝛼-admissible mappings and established fixed point theorems
which are proper generalizations of the recent results in [11,
12].

Samet et al. [11] defined the notion of 𝛼-admissible map-
pings as follows.

Definition 5. Let 𝑇 be a self-mapping on 𝑋 and let 𝛼 : 𝑋 ×
𝑋 → [0, +∞) be a function.We say that𝑇 is an 𝛼-admissible
mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (4)

In [11] the authors consider the familyΨ of nondecreasing
functions 𝜓 : [0, +∞) → [0, +∞) such that ∑+∞

𝑛=1
𝜓
𝑛

(𝑡) <

+∞ for each 𝑡 > 0, where 𝜓𝑛 is the 𝑛th iterate of 𝜓 and give
the following theorem.

Theorem 6. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 be
an 𝛼-admissible mapping. Assume that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (5)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ. Also, suppose that the following
assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1,

(ii) either 𝑇 is continuous or for any sequence {𝑥
𝑛
} in 𝑋

with 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 ∈ N ∪ {0} and 𝑥

𝑛
→ 𝑥

as 𝑛 → +∞, one has 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N ∪ {0}.

Then 𝑇 has a fixed point.

Salimi et al. [13] modified and generalized the notions of
𝛼-𝜓-contractivemappings and 𝛼-admissiblemappings by the
following ways.

Definition 7 (see [13]). Let𝑇 be a self-mapping on𝑋 and𝛼, 𝜂 :
𝑋 × 𝑋 → [0, +∞) two functions. We say that 𝑇 is an 𝛼-
admissible mapping with respect to 𝜂 if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 𝜂 (𝑥, 𝑦) ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 𝜂 (𝑇𝑥, 𝑇𝑦) .

(6)

Note that if we take 𝜂(𝑥, 𝑦) = 1, then this definition reduces
to Definition 5. Also, if we take 𝛼(𝑥, 𝑦) = 1, then we say that
𝑇 is an 𝜂-subadmissible mapping.

The following result was proved by Salimi et al. [13].

Theorem 8 (see [13]). Let (𝑋, 𝑑) be a complete metric space
and let 𝑇 be an 𝛼-admissible mapping. Assume that

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) ,

(7)

where 𝜓 ∈ Ψ and

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(8)

Also, suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1,

(ii) either 𝑇 is continuous or for any sequence {𝑥
𝑛
} in 𝑋

with 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 ∈ N∪{0} and 𝑥

𝑛
→ 𝑥 as

𝑛 → +∞, one has 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N ∪ {0}.

Then 𝑇 has a fixed point.

Recently Karapinar et al. [14] introduced the notion of
triangular 𝛼-admissible mapping as follows.

Definition 9 (see [14]). Let 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋 ×
𝑋 → (−∞, +∞). We say that 𝑇 is a triangular 𝛼-admissible
mapping if

𝛼 (𝑥, 𝑦) ≥ 1 implies 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1, 𝑥, 𝑦 ∈ 𝑋, (T1)

𝛼 (𝑥, 𝑧) ≥ 1

𝛼 (𝑧, 𝑦) ≥ 1
imply 𝛼 (𝑥, 𝑦) ≥ 1. (T2)

For more details and applications of this line of research,
we refer the reader to some related papers [15–21].

Now, motivated by Salimi et al. [13] and Karapinar et al.
[14] (see also [15–21]), we introduce the following notion.
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Definition 10. Let 𝑐 ∈ 𝐼 and 𝑇 : 𝐸
0
→ 𝐸, 𝛼, 𝜂 : 𝐸 × 𝐸 →

[0, +∞). We say that 𝑇 is a triangular 𝛼
𝑐
-admissible mapping

with respect to 𝜂
𝑐
if, for 𝜙, 𝜉, 𝜋 ∈ 𝐸

0
,

𝛼 (𝜙 (𝑐) , 𝜉 (𝑐)) ≥ 𝜂 (𝜙 (𝑐) , 𝜉 (𝑐))

⇒ 𝛼 (𝑇𝜙, 𝑇𝜉) ≥ 𝜂 (𝑇𝜙, 𝑇𝜉) ,

(TC1)

𝛼 (𝜙 (𝑐) , 𝜋 (𝑐)) ≥ 𝜂 (𝜙 (𝑐) , 𝜋 (𝑐)) ,

𝛼 (𝜋 (𝑐) , 𝜉 (𝑐)) ≥ 𝜂 (𝜋 (𝑐) , 𝜉 (𝑐))

imply 𝛼 (𝜙 (𝑐) , 𝜉 (𝑐)) ≥ 𝜂 (𝜙 (𝑐) , 𝜉 (𝑐)) .

(TC2)

Note that if we take 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐸, then
we say that 𝑇 is a triangular 𝛼

𝑐
-admissible mapping. Also, if

we take 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐸, then we say that 𝑇 is a
triangular 𝜂

𝑐
-subadmissible mapping.

Example 11. Let 𝐸 = R be a real Banach space with usual
norm and let 𝐼 = [0, 1]. Define 𝑇 : 𝐸

0
→ 𝐸 by 𝑇𝜙 = 2𝜙(1)

for all 𝜙 ∈ 𝐸
0
and 𝛼, 𝜂 : 𝐸 × 𝐸 → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

𝑥
2

+ 𝑦
2

+ |𝑥|




𝑦




+ 1, if 𝑥 ≥ 𝑦,

0, otherwise;
(9)

𝜂(𝑥, 𝑦) = 𝑥
2

+ 𝑦
2

+ |𝑥||𝑦| + 1/2. Then 𝑇 is a trian-
gular 𝛼

𝑐
-admissible mapping with respect to 𝜂

𝑐
. Indeed, if

𝛼(𝜙(1), 𝜉(1)) ≥ 𝜂(𝜙(1), 𝜉(1)), then 𝜙(1) ≥ 𝜉(1) and so 2𝜙(1) ≥
2𝜉(1). That is, 𝑇𝜙 ≥ 𝑇𝜉 which implies 𝛼(𝑇𝜙, 𝑇𝜉) ≥ 𝜂(𝑇𝜙, 𝑇𝜉).
Also, if

𝛼 (𝜙 (𝑐) , 𝜋 (𝑐)) ≥ 𝜂 (𝜙 (𝑐) , 𝜋 (𝑐)) ,

𝛼 (𝜋 (𝑐) , 𝜉 (𝑐)) ≥ 𝜂 (𝜋 (𝑐) , 𝜉 (𝑐)) ,

(10)

then 𝜙(𝑐) ≥ 𝜋(𝑐) and 𝜋(𝑐) ≥ 𝜉(𝑐) and so 𝜙(𝑐) ≥ 𝜉(𝑐). That is,
𝛼(𝜙(𝑐), 𝜉(𝑐)) ≥ 𝜂(𝜙(𝑐), 𝜉(𝑐)).

The following lemma is necessary later on.

Lemma 12. Let 𝑇 be a triangular 𝛼
𝑐
-admissible mapping with

respect to 𝜂
𝑐
. Define the sequence {𝜙

𝑛
} by the following way:

𝑇𝜙
𝑛−1
= 𝜙
𝑛
(𝑐) ; (11)

for all 𝑛 ∈ N, where 𝜙
0
∈ R
𝑐
is such that 𝛼(𝜙

0
(𝑐), 𝑇𝜙

0
) ≥

𝜂(𝜙
0
(𝑐), 𝑇𝜙

0
). Then

𝛼 (𝜙
𝑚
(𝑐) , 𝜙
𝑛
(𝑐)) ≥ 𝜂 (𝜙

𝑚
(𝑐) , 𝜙
𝑛
(𝑐)) ,

∀𝑚, 𝑛 ∈ N 𝑤𝑖𝑡ℎ 𝑚 < 𝑛.
(12)

Proof. Since 𝑇 is a triangular 𝛼
𝑐
-admissible mapping with

respect to 𝜂
𝑐
,

𝛼 (𝜙
0
(𝑐) , 𝜙
1
(𝑐)) = 𝛼 (𝜙

0
(𝑐) , 𝑇𝜙

0
) ≥ 𝜂 (𝜙

0
(𝑐) , 𝑇𝜙

0
)

= 𝜂 (𝜙
0
(𝑐) , 𝜙
1
(𝑐))

(13)

and so

𝛼 (𝜙
1
(𝑐) , 𝑇𝜙

1
) ≥ 𝜂 (𝜙

1
(𝑐) , 𝑇𝜙

1
) . (14)

By continuing this process we get,

𝛼 (𝜙
𝑛
(𝑐) , 𝜙
𝑛+1
(𝑐)) ≥ 𝜂 (𝜙

𝑛
(𝑐) , 𝜙
𝑛+1
(𝑐)) , ∀𝑛 ∈ N. (15)

Since

𝛼 (𝜙
𝑚
(𝑐) , 𝜙
𝑚+1
(𝑐)) ≥ 𝜂 (𝜙

𝑚
(𝑐) , 𝜙
𝑚+1
(𝑐)) ,

𝛼 (𝜙
𝑚+1
(𝑐) , 𝜙
𝑚+2
(𝑐)) ≥ 𝜂 (𝜙

𝑚+1
(𝑐) , 𝜙
𝑚+2
(𝑐)) ,

(16)

then by (TC2) we get 𝛼(𝜙
𝑚
(𝑐), 𝜙
𝑚+2
(𝑐)) ≥ 𝜂(𝜙

𝑚
(𝑐), 𝜙
𝑚+2
(𝑐)).

By continuing this process, we get

𝛼 (𝜙
𝑚
(𝑐) , 𝜙
𝑛
(𝑐)) ≥ 𝜂 (𝜙

𝑚
(𝑐) , 𝜙
𝑛
(𝑐)) ,

∀𝑚, 𝑛 ∈ N with 𝑚 < 𝑛.

(17)

2. Main Results

One of our main theorems is a result of Geraghty type [22]
obtained by a modification of the approach in [13]. Let F
denote the class of all functions 𝛽 : [0, +∞) → [0, 1)

satisfying the following condition:

𝛽 (𝑡
𝑛
) → 1 implies 𝑡

𝑛
→ 0, as 𝑛 → +∞. (18)

Theorem 13. Let 𝑇 : 𝐸
0
→ 𝐸, 𝛼, 𝜂 : 𝐸 × 𝐸 → [0, +∞) be

three mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝛼

𝑐
-admissible mapping with respect to

𝜂
𝑐
;

(iii) there exists 𝛽 ∈ F such that

𝛼 (𝜙 (𝑐) , 𝜉 (𝑐)) ≥ 𝜂 (𝜙 (𝑐) , 𝜉 (𝑐))

⇒




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛽 (





𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
,

(19)

for all 𝜙, 𝜉 ∈ 𝐸
0
;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝛼(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≥ 𝜂(𝜙

𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) for all

𝑛 ∈ N ∪ 0, then 𝛼(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≥ 𝜂(𝜙

𝑛
(𝑐), 𝜙(𝑐)) for all

𝑛 ∈ N ∪ 0;
(v) there exists 𝜙

0
∈R
𝑐
such that 𝛼(𝜙

0
(𝑐), 𝑇𝜙

0
) ≥ 𝜂(𝜙

0
(𝑐),

𝑇𝜙
0
).

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

Proof. Let 𝜙
0
∈ R
𝑐
such that 𝛼(𝜙

0
(𝑐), 𝑇𝜙

0
) ≥ 𝜂(𝜙

0
(𝑐), 𝑇𝜙

0
).

Since𝑇𝜙
0
∈ 𝐸, there exists 𝑥

1
∈ 𝐸 such that𝑇𝜙

0
= 𝑥
1
. Choose

𝜙
1
∈R
𝑐
such that

𝑥
1
= 𝜙
1
(𝑐) . (20)

By continuing this process, by induction, we can build a
sequence {𝜙

𝑛
} inR

𝑐
⊆ 𝐸 such that,

𝑇𝜙
𝑛−1
= 𝜙
𝑛
(𝑐) , ∀𝑛 ∈ N. (21)
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Hence, from Lemma 12, we have

𝛼 (𝜙
𝑚
(𝑐) , 𝜙
𝑛
(𝑐)) ≥ 𝜂 (𝜙

𝑚
(𝑐) , 𝜙
𝑛
(𝑐)) ,

∀𝑚, 𝑛 ∈ N with 𝑚 < 𝑛.
(22)

Since R
𝑐
is algebraically closed with respect to difference, it

follows that




𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
=




𝜙
𝑛−1
(𝑐) − 𝜙

𝑛
(𝑐)



𝐸
, ∀𝑛 ∈ N. (23)

Then, by (iii), we get




𝜙
𝑛
− 𝜙
𝑛+1




𝐸0
=




𝜙
𝑛
(𝑐) − 𝜙

𝑛+1
(𝑐)



𝐸
=




𝑇𝜙
𝑛−1
− 𝑇𝜙
𝑛




𝐸

≤ 𝛽 (




𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
)




𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
,

(24)

and so




𝜙
𝑛
− 𝜙
𝑛+1




𝐸0
≤ 𝛽 (





𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
)




𝜙
𝑛−1
− 𝜙
𝑛




𝐸0

<




𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
,

(25)

for all 𝑛 ∈ N. This implies that the sequence {‖𝜙
𝑛
− 𝜙
𝑛+1
‖
𝐸0

}

is decreasing in R
+
. Then, there exists 𝑟 ≥ 0 such that

lim
𝑛→+∞

‖𝜙
𝑛
− 𝜙
𝑛+1
‖
𝐸0

= 𝑟. Assume 𝑟 > 0. Now, by taking
limit as 𝑛 → +∞ in (24), we get

𝑟 ≤ lim
𝑛→+∞

𝛽 (




𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
) 𝑟, (26)

which implies 1 ≤ lim
𝑛→+∞

𝛽(‖𝜙
𝑛−1
− 𝜙
𝑛
‖
𝐸0

). That is,

lim
𝑛→+∞

𝛽 (




𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
) = 1, (27)

and since 𝛽 ∈ F, lim
𝑛→+∞

‖𝜙
𝑛−1
− 𝜙
𝑛
‖
𝐸0

= 0 which is a
contradiction. Hence, 𝑟 = 0. That is,

lim
𝑛→+∞





𝜙
𝑛−1
− 𝜙
𝑛




𝐸0
= 0. (28)

Now, we prove that the sequence {𝜙
𝑛
} is Cauchy in R

𝑐
.

Assume the contrary; then there exist 𝜀 > 0 and two
sequences {𝑚

𝑘
} and {𝑛

𝑘
} with 𝑘 ≤ 𝑚

𝑘
< 𝑛
𝑘
such that






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

≥ 𝜀,






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘−1





𝐸0

< 𝜀. (29)

From

𝜀 ≤






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

≤






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘−1





𝐸0

+






𝜙
𝑛𝑘−1
− 𝜙
𝑛𝑘





𝐸0

< 𝜀 +






𝜙
𝑛𝑘−1
− 𝜙
𝑛𝑘





𝐸0

,

(30)

letting 𝑘 → +∞, we get

lim
𝑛→+∞






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

= 𝜀. (31)

By triangle inequality, we have





𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

≤






𝜙
𝑚𝑘
− 𝜙
𝑚𝑘+1





𝐸0

+






𝜙
𝑚𝑘+1

− 𝜙
𝑛𝑘+1





𝐸0

+






𝜙
𝑛𝑘
− 𝜙
𝑛𝑘+1





𝐸0

.

(32)

On the other hand, by (iii) and (21), we have





𝜙
𝑚𝑘+1

− 𝜙
𝑛𝑘+1





𝐸0

≤ 𝛽 (






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

)






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

.

(33)

Therefore, we get





𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

≤






𝜙
𝑚𝑘
− 𝜙
𝑚𝑘+1





𝐸0

+ 𝛽 (






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

)






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

+






𝜙
𝑛𝑘
− 𝜙
𝑛𝑘+1





𝐸0

,

(34)

which implies

(1 − 𝛽 (






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

))






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

≤






𝜙
𝑚𝑘
− 𝜙
𝑚𝑘+1





𝐸0

+






𝜙
𝑛𝑘
− 𝜙
𝑛𝑘+1





𝐸0

.

(35)

Taking limit as 𝑘 → +∞ in the above inequality and applying
(28) and (31), we get

lim
𝑘→+∞

(1 − 𝛽 (






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

)) = 0, (36)

which implies lim
𝑘→+∞

𝛽(‖𝜙
𝑚𝑘
− 𝜙
𝑛𝑘
‖
𝐸0

) = 1 and since 𝛽 ∈
F, we deduce

lim
𝑘→+∞






𝜙
𝑚𝑘
− 𝜙
𝑛𝑘





𝐸0

= 0, (37)

which is a contradiction. Consequently

lim
𝑚,𝑛→+∞





𝜙
𝑛
− 𝜙
𝑚




𝐸0
= 0, (38)

and hence {𝜙
𝑛
} is a Cauchy sequence in R

𝑐
⊆ 𝐸
0
. By the

completeness of 𝐸
0
we get that {𝜙

𝑛
} converges to a point 𝜙∗ ∈

𝐸
0
; that is, 𝜙

𝑛
→ 𝜙
∗ as 𝑛 → +∞. SinceR

𝑐
is topologically

closed, we deduce 𝜙∗ ∈ R
𝑐
. From (iv) we have 𝛼(𝜙

𝑛
(𝑐),

𝜙
∗

(𝑐)) ≥ 𝜂(𝜙
𝑛
(𝑐), 𝜙
∗

(𝑐)) for all 𝑛 ∈ N ∪ 0. Then, from (iii)
we get




𝑇𝜙
∗

− 𝜙
∗

(𝑐)



𝐸
≤




𝑇𝜙
∗

− 𝑇𝜙
𝑛




𝐸
+




𝑇𝜙
𝑛
− 𝜙
∗

(𝑐)



𝐸

=




𝑇𝜙
∗

− 𝑇𝜙
𝑛




𝐸
+




𝜙
𝑛+1
(𝑐) − 𝜙

∗

(𝑐)



𝐸

≤ 𝛽 (




𝜙
∗

− 𝜙
𝑛




𝐸0
)




𝜙
∗

− 𝜙
𝑛




𝐸0

+




𝜙
𝑛+1
(𝑐) − 𝜙

∗

(𝑐)



𝐸
,

(39)

for all 𝑛 ∈ N. Taking limit as 𝑛 → +∞ in the above inequality,
we get





𝑇𝜙
∗

− 𝜙
∗

(𝑐)



𝐸
= 0; (40)

that is,

𝑇𝜙
∗

= 𝜙
∗

(𝑐) , (41)

which implies that 𝜙∗ is a PPF dependent fixed point of 𝑇 in
R
𝑐
.
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If inTheorem 13 we take 𝜂(𝜙(𝑐), 𝜉(𝑐)) = 1 for all 𝜙, 𝜉 ∈ 𝐸
0
,

then we deduce the following corollary.

Corollary 14. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝛼 : 𝐸 × 𝐸 → [0, +∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝛼

𝑐
-admissible mapping;

(iii) there exists 𝛽 ∈ F such that

𝛼 (𝜙 (𝑐) , 𝜉 (𝑐)) ≥ 1

⇒




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛽 (





𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
,

(42)

for all 𝜙, 𝜉 ∈ 𝐸
0
;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝛼(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0, then

𝛼(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼(𝜙

0
(𝑐), 𝑇𝜙

0
) ≥ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

If inTheorem 13 we take 𝛼(𝜙(𝑐), 𝜉(𝑐)) = 1 for all 𝜙, 𝜉 ∈ 𝐸
0
,

then we deduce the following corollary.

Corollary 15. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝜂 : 𝐸 × 𝐸 → [0, +∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝜂

𝑐
-subadmissible mapping;

(iii) there exists 𝛽 ∈ F such that

𝜂 (𝜙 (𝑐) , 𝜉 (𝑐)) ≤ 1

⇒




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛽 (





𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
,

(43)

for all 𝜙, 𝜉 ∈ 𝐸
0
;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝜂(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0, then

𝜂(𝜙
𝑛
(𝑐), 𝜙) ≤ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂(𝜙

0
(𝑐), 𝑇𝜙

0
) ≤ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

Definition 16. Let 𝑐 ∈ 𝐼 and 𝑆 : 𝐸
0
→ 𝐸
0
, 𝑇 : 𝐸

0
→ 𝐸,

𝛼, 𝜂 : 𝐸 × 𝐸 → [0, +∞). We say that (𝑆, 𝑇) is a triangular
𝛼
𝑐
-admissible pair with respect to 𝜂

𝑐
if, for 𝜙, 𝜉, 𝜋 ∈ 𝐸

0
,

𝛼 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) ≥ 𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐))

⇒ 𝛼 (𝑇𝜙, 𝑇𝜉) ≥ 𝜂 (𝑇𝜙, 𝑇𝜉) ,

(ST1)

𝛼 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) ≥ 𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) ,

𝛼 ((𝑆𝜉) (𝑐) , (𝑆𝜋) (𝑐)) ≥ 𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐))

⇒ 𝛼 ((𝑆𝜙) (𝑐) , (𝑆𝜋) (𝑐)) ≥ 𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜋) (𝑐)) .

(44)

Note that if we take 𝜂(𝜙(𝑐), 𝜉(𝑐)) = 1, then, we say that (𝑆, 𝑇) is
a triangular𝛼

𝑐
-admissible pair. Also, if we take𝛼(𝜙(𝑐), 𝜉(𝑐)) =

1, then we say that (𝑆, 𝑇) is a triangular 𝜂
𝑐
-subadmissible pair.

The following theorem gives a result of existence of PPF
dependent coincidence points.

Theorem 17. Let 𝑆 : 𝐸
0
→ 𝐸
0
, 𝑇 : 𝐸

0
→ 𝐸, and 𝛼, 𝜂 :

𝐸 × 𝐸 → [0, +∞) be four mappings satisfying the following
assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is algebraically

closed with respect to difference;
(ii) (𝑆, 𝑇) is a triangular 𝛼

𝑐
-admissible pair with respect to

𝜂
𝑐
;

(iii) there exists 𝛽 ∈ F such that

𝛼 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) ≥ 𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐))

⇒




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛽 (





𝑆𝜙 − 𝑆𝜉




𝐸0
)




𝑆𝜙 − 𝑆𝜉




𝐸0
,

(45)

for all 𝜙, 𝜉 ∈R
𝑐
;

(iv) if {𝑆𝜙
𝑛
} is a sequence in R

𝑐
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≥ 𝜂((𝑆𝜙

𝑛
)(𝑐),

(𝑆𝜙
𝑛+1
)(𝑐)) for all 𝑛 ∈ N∪0, then𝛼((𝑆𝜙

𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≥

𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈ R
𝑐
such that 𝛼((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≥

𝜂((𝑆𝜙
0
)(𝑐), 𝑇𝜙

0
);

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, there exists 𝜙∗ ∈ R
𝑐
such that 𝑆𝜙∗ ∈ R

𝑐
is a 𝑃𝑃𝐹

dependent fixed point of 𝑇 and hence 𝜙∗ is a 𝑃𝑃𝐹 dependent
coincidence point of 𝑆 and 𝑇.

Proof. Let 𝜙
0
∈ R

𝑐
such that 𝛼((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≥

𝜂((𝑆𝜙
0
)(𝑐), 𝑇𝜙

0
). By condition (vii), there exists 𝜙

1
∈R
𝑐
such

that

𝑇𝜙
0
= (𝑆𝜙

1
) (𝑐) . (46)

By continuing this process, by induction, we can build a
sequence {𝜙

𝑛
} inR

𝑐
such that

𝑇𝜙
𝑛−1
= (𝑆𝜙

𝑛
) (𝑐) , ∀𝑛 ∈ N. (47)

Hence, from Lemma 12, we have

𝛼 ((𝑆𝜙
𝑚
) (𝑐) , (𝑆𝜙

𝑛
) (𝑐)) ≥ 𝜂 ((𝑆𝜙

𝑚
) (𝑐) , (𝑆𝜙

𝑛
) (𝑐)) ,

∀𝑚, 𝑛 ∈ N with 𝑚 < 𝑛.
(48)

Since 𝑆(R
𝑐
) is algebraically closed with respect to difference,

it follows that




𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
=




(𝑆𝜙
𝑛−1
)(𝑐) − (𝑆𝜙

𝑛
)(𝑐)



𝐸
, ∀𝑛 ∈ N.

(49)
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Then, by (iii), we get





𝑆𝜙
𝑛
− 𝑆𝜙
𝑛+1




𝐸0
=




(𝑆𝜙
𝑛
) (𝑐) − (𝑆𝜙

𝑛+1
) (𝑐)



𝐸

=




𝑇𝜙
𝑛−1
− 𝑇𝜙
𝑛




𝐸

≤ 𝛽 (




𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
)




𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
,

(50)

and so




𝑆𝜙
𝑛
− 𝑆𝜙
𝑛+1




𝐸0
≤ 𝛽 (





𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
)




𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0

<




𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
,

(51)

for all 𝑛 ∈ N.This implies that the sequence {‖𝑆𝜙
𝑛
− 𝑆𝜙
𝑛+1
‖
𝐸0

}

is decreasing in R
+
. Then, there exists 𝑟 ≥ 0 such that

lim
𝑛→+∞

‖𝑆𝜙
𝑛
− 𝑆𝜙
𝑛+1
‖
𝐸0

= 𝑟. Assume 𝑟 > 0. Now by taking
limit as 𝑛 → +∞ in (50) we get

𝑟 ≤ lim
𝑛→+∞

𝛽 (




𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
) 𝑟, (52)

which implies 1 ≤ lim
𝑛→+∞

𝛽(‖𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛
‖
𝐸0

). That is,

lim
𝑛→+∞

𝛽 (




𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
) = 1, (53)

and since 𝛽 ∈ F, lim
𝑛→+∞

‖𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛
‖
𝐸0

= 0 which is a
contradiction. Hence, 𝑟 = 0. That is,

lim
𝑛→+∞





𝑆𝜙
𝑛−1
− 𝑆𝜙
𝑛




𝐸0
= 0. (54)

Now, we prove that the sequence {𝑆𝜙
𝑛
} is Cauchy in

𝑆(R
𝑐
). Assume the contrary; then there exist 𝜀 > 0 and two

sequences {𝑚
𝑘
} and {𝑛

𝑘
} with 𝑘 ≤ 𝑚

𝑘
< 𝑛
𝑘
such that






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

≥ 𝜀,






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘−1





𝐸0

< 𝜀. (55)

From

𝜀 ≤






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

≤






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘−1





𝐸0

+






𝑆𝜙
𝑛𝑘−1
− 𝑆𝜙
𝑛𝑘





𝐸0

< 𝜀 +






𝑆𝜙
𝑛𝑘−1
− 𝑆𝜙
𝑛𝑘





𝐸0

,

(56)

letting 𝑘 → +∞, we get

lim
𝑛→+∞






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

= 𝜀. (57)

By triangle inequality, we have






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

≤






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑚𝑘+1





𝐸0

+






𝑆𝜙
𝑚𝑘+1

− 𝑆𝜙
𝑛𝑘+1





𝐸0

+






𝑆𝜙
𝑛𝑘
− 𝑆𝜙
𝑛𝑘+1





𝐸0

.

(58)

On the other hand, by (iii) and (47), we have





𝑆𝜙
𝑚𝑘+1

− 𝑆𝜙
𝑛𝑘+1





𝐸0

≤ 𝛽 (






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

)






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

.

(59)

Therefore, we get





𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

≤






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑚𝑘+1





𝐸0

+ 𝛽 (






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

)






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

+






𝑆𝜙
𝑛𝑘
− 𝑆𝜙
𝑛𝑘+1





𝐸0

,

(60)

which implies

(1 − 𝛽 (






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

))






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

≤






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑚𝑘+1





𝐸0

+






𝑆𝜙
𝑛𝑘
− 𝑆𝜙
𝑛𝑘+1





𝐸0

.

(61)

Taking limit as 𝑘 → +∞ in the above inequality and applying
(54) and (57), we get

lim
𝑘→+∞

(1 − 𝛽 (






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

)) = 0, (62)

which implies lim
𝑘→+∞

𝛽(‖𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘
‖
𝐸0

) = 1 and since𝛽 ∈
F, we deduce

lim
𝑘→+∞






𝑆𝜙
𝑚𝑘
− 𝑆𝜙
𝑛𝑘





𝐸0

= 0, (63)

which is a contradiction. Consequently

lim
𝑚,𝑛→+∞





𝑆𝜙
𝑛
− 𝑆𝜙
𝑚




𝐸0
= 0, (64)

and hence {𝑆𝜙
𝑛
} is a Cauchy sequence in 𝑆(R

𝑐
) ⊂R

𝑐
. By the

completeness of 𝑆(R
𝑐
), there exists 𝜙∗ ∈R

𝑐
such that 𝑆𝜙

𝑛
→

𝑆𝜙
∗ as 𝑛 → +∞. From (iv), we have 𝛼((𝑆𝜙

𝑛
)(𝑐), (𝑆𝜙

∗

)(𝑐)) ≥

𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

∗

)(𝑐)) for all 𝑛 ∈ N ∪ 0. Then from (iii) we get




𝑇𝜙
∗

− (𝑆𝜙
∗

) (𝑐)



𝐸

≤




𝑇𝜙
∗

− 𝑇𝜙
𝑛




𝐸
+




𝑇𝜙
𝑛
− (𝑆𝜙

∗

) (𝑐)



𝐸

=




𝑇𝜙
∗

− 𝑇𝜙
𝑛




𝐸
+




(𝑆𝜙
𝑛+1
) (𝑐) − (𝑆𝜙

∗

) (𝑐)



𝐸

≤ 𝛽 (




𝑆𝜙
∗

− 𝑆𝜙
𝑛




𝐸0
)




𝑆𝜙
∗

− 𝑆𝜙
𝑛




𝐸0

+




(𝑆𝜙
𝑛+1
) (𝑐) − (𝑆𝜙

∗

) (𝑐)



𝐸
,

(65)

for all 𝑛 ∈ N. Taking limit as 𝑛 → +∞ in the above inequality,
we get





𝑇𝜙
∗

− (𝑆𝜙
∗

)(𝑐)



𝐸
= 0. (66)

That is,

𝑇𝜙
∗

= (𝑆𝜙
∗

) (𝑐) , (67)

which implies that 𝑆𝜙∗ is a PPF dependent fixed point of 𝑇 in
𝑆(R
𝑐
) and hence 𝜙∗ is a PPF dependent coincidence point of

𝑆 and 𝑇.
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If inTheorem 17 we take 𝜂(𝜙(𝑐), 𝜉(𝑐)) = 1 for all 𝜙, 𝜉 ∈ 𝐸
0
,

then we deduce the following corollary.

Corollary 18. Let 𝑆 : 𝐸
0
→ 𝐸

0
, 𝑇 : 𝐸

0
→ 𝐸, and 𝛼 :

𝐸 × 𝐸 → [0, +∞) be three mappings satisfying the following
assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is algebraically

closed with respect to difference;

(ii) (𝑆, 𝑇) is a triangular 𝛼
𝑐
-admissible pair;

(iii) there exists 𝛽 ∈ F such that

𝛼 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) ≥ 1

⇒




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛽 (





𝑆𝜙 − 𝑆𝜉




𝐸0
)




𝑆𝜙 − 𝑆𝜉




𝐸0
,

(68)

for all 𝜙, 𝜉 ∈R
𝑐
;

(iv) if {𝑆𝜙
𝑛
} is a sequence in R

𝑐
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≥ 1 for all 𝑛 ∈

N ∪ 0, then 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≥ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.

If inTheorem 13 we take 𝛼(𝜙(𝑐), 𝜉(𝑐)) = 1 for all 𝜙, 𝜉 ∈ 𝐸
0
,

then we deduce the following corollary.

Corollary 19. Let 𝑆 : 𝐸
0
→ 𝐸
0
,𝑇 : 𝐸

0
→ 𝐸, and 𝜂 : 𝐸×𝐸 →

[0, +∞) be three mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is algebraically

closed with respect to difference;

(ii) (𝑆, 𝑇) is a triangular 𝛼
𝑐
-subadmissible pair;

(iii) there exists 𝛽 ∈ F such that

𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) ≤ 1

⇒




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛽 (





𝑆𝜙 − 𝑆𝜉




𝐸0
)




𝑆𝜙 − 𝑆𝜉




𝐸0
,

(69)

for all 𝜙, 𝜉 ∈R
𝑐
;

(iv) if {𝑆𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≤ 1 for all 𝑛 ∈

N ∪ 0, then 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≤ 1;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≤ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.

2.1. Consequences of Corollary 14

Theorem 20. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝛼 : 𝐸 × 𝐸 → [0, +∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝛼

𝑐
-admissible mapping;

(iii) there exists 𝛽 ∈ F such that

𝛼 (𝜙 (𝑐) , 𝜉 (𝑐))




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛽 (





𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
,

(70)

for all 𝜙, 𝜉 ∈ 𝐸
0
;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝛼(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0, then

𝛼(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼(𝜙

0
(𝑐), 𝑇𝜙

0
) ≥ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

Proof. Let 𝛼(𝜙(𝑐), 𝜉(𝑐)) ≥ 1; then by (iii) we have




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝛼 (𝜙 (𝑐) , 𝜉 (𝑐))





𝑇𝜙 − 𝑇𝜉




𝐸

≤ 𝛽 (




𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
.

(71)

That is, all conditions of Corollary 14 hold and 𝑇 has a PPF
dependent fixed point 𝜙∗ ∈R

𝑐
.

Theorem 21. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝛼 : 𝐸 × 𝐸 → [0, +∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝛼

𝑐
-admissible mapping;

(iii) there exists 𝛽 ∈ F such that

(




𝑇𝜙 − 𝑇𝜉




𝐸
+ 𝜖)
𝛼(𝜙(𝑐),𝜉(𝑐))

≤ 𝛽 (




𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
+ 𝜖,

(72)

for all 𝜙, 𝜉 ∈ 𝐸
0
, where 𝜖 ≥ 1;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝛼(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0, then

𝛼(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼(𝜙

0
(𝑐), 𝑇𝜙

0
) ≥ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

Proof. Let 𝛼(𝜙(𝑐), 𝜉(𝑐)) ≥ 1; then by (iii) we have





𝑇𝜙 − 𝑇𝜉




𝐸
+ 𝜖 ≤ (





𝑇𝜙 − 𝑇𝜉




𝐸
+ 𝜖)
𝛼(𝜙(𝑐),𝜉(𝑐))

≤ 𝛽 (




𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
+ 𝜖,

(73)

which implies ‖𝑇𝜙 − 𝑇𝜉‖
𝐸
≤ 𝛽(‖𝜙 − 𝜉‖

𝐸0

)‖𝜙 − 𝜉‖
𝐸0

. That is,
all conditions of Corollary 14 hold and𝑇 has a PPF dependent
fixed point 𝜙∗ ∈R

𝑐
.
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Theorem 22. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝛼 : 𝐸 × 𝐸 → [0, +∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝛼

𝑐
-admissible mapping;

(iii) there exists 𝛽 ∈ F such that

(𝛼 (𝜙 (𝑐) , 𝜉 (𝑐)) − 1 + 𝜎)
‖𝑇𝜙−𝑇𝜉‖

𝐸
≤ 𝜖
𝛽(‖𝜙−𝜉‖

𝐸0
)‖𝜙−𝜉‖

𝐸0 , (74)

for all 𝜙, 𝜉 ∈ 𝐸
0
, where 1 < 𝜖 ≤ 𝜎;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝛼(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0, then

𝛼(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼(𝜙

0
(𝑐), 𝑇𝜙

0
) ≥ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

Proof. Let 𝛼(𝜙(𝑐), 𝜉(𝑐)) ≥ 1; then by (iii) we have

𝜎
‖𝑇𝜙−𝑇𝜉‖

𝐸
≤ (𝛼 (𝜙 (𝑐) , 𝜉 (𝑐)) − 1 + 𝜎)

‖𝑇𝜙−𝑇𝜉‖
𝐸

≤ 𝜖
𝛽(‖𝜙−𝜉‖

𝐸0
)‖𝜙−𝜉‖

𝐸0 ≤ 𝜎
𝛽(‖𝜙−𝜉‖

𝐸0
)‖𝜙−𝜉‖

𝐸0 ,

(75)

which implies ‖𝑇𝜙 − 𝑇𝜉‖
𝐸
≤ 𝛽(‖𝜙 − 𝜉‖

𝐸0

)‖𝜙 − 𝜉‖
𝐸0

. That is,
all conditions of Corollary 14 hold and𝑇 has a PPF dependent
fixed point 𝜙∗ ∈R

𝑐
.

2.2. Consequences of Corollary 15

Theorem 23. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝜂 : 𝐸 × 𝐸 → [0, +∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝜂

𝑐
-subadmissible mapping;

(iii) there exists 𝛽 ∈ F such that




𝑇𝜙 − 𝑇𝜉




𝐸
≤ 𝜂 (𝜙 (𝑐) , 𝜉 (𝑐)) 𝛽 (





𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
, (76)

for all 𝜙, 𝜉 ∈ 𝐸
0
;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

∞ and 𝜂(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0, then

𝜂(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂(𝜙

0
(𝑐), 𝑇𝜙

0
) ≤ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

Theorem 24. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝜂 : 𝐸 × 𝐸 → [0,∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝜂

𝑐
-subadmissible mapping;

(iii) there exists 𝛽 ∈ F such that





𝑇𝜙 − 𝑇𝜉




𝐸
+ 𝜖 ≤ (𝛽 (





𝜙 − 𝜉




𝐸0
)




𝜙 − 𝜉




𝐸0
+ 𝜖)

𝜂(𝜙(𝑐),𝜉(𝑐))

,

(77)

for all 𝜙, 𝜉 ∈ 𝐸
0
, where 𝜖 ≥ 1 and 𝜓 ∈ Ψ;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝜂(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0, then

𝜂(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂(𝜙

0
(𝑐), 𝑇𝜙

0
) ≤ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

Theorem 25. Let 𝑇 : 𝐸
0
→ 𝐸 and 𝜂 : 𝐸 × 𝐸 → [0, +∞) be

two mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that R
𝑐
is topologically closed

and algebraically closed with respect to difference;
(ii) 𝑇 is a triangular 𝜂

𝑐
-subadmissible mapping;

(iii) there exists 𝛽 ∈ F such that

𝜎
‖𝑇𝜙−𝑇𝜉‖

𝐸
≤ (𝜂 (𝜙 (𝑐) , 𝜉 (𝑐)) + 𝜖 − 1)

𝛽(‖𝜙−𝜉‖
𝐸0
)‖𝜙−𝜉‖

𝐸0 , (78)

for all 𝜙, 𝜉 ∈ 𝐸
0
, where 1 < 𝜖 ≤ 𝜎 and 𝜓 ∈ Ψ;

(iv) if {𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝜙

𝑛
→ 𝜙 as 𝑛 →

+∞ and 𝜂(𝜙
𝑛
(𝑐), 𝜙
𝑛+1
(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0, then

𝜂(𝜙
𝑛
(𝑐), 𝜙(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂(𝜙

0
(𝑐), 𝑇𝜙

0
) ≤ 1.

Then, 𝑇 has a 𝑃𝑃𝐹 dependent fixed point 𝜙∗ ∈R
𝑐
.

2.3. Consequences of Corollary 18

Theorem26. Let 𝑆 : 𝐸
0
→ 𝐸
0
,𝑇 : 𝐸

0
→ 𝐸, and𝛼 : 𝐸×𝐸 →

[0, +∞) be three mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is algebraically

closed with respect to difference;
(ii) (𝑆, 𝑇) is a triangular 𝛼

𝑐
-admissible pair;

(iii) there exists 𝛽 ∈ F such that

𝛼 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐))




𝑇𝜙 − 𝑇𝜉




𝐸

≤ 𝛽 (




𝑆𝜙 − 𝑆𝜉




𝐸0
)




𝑆𝜙 − 𝑆𝜉




𝐸0
,

(79)

for all 𝜙, 𝜉 ∈R
𝑐
;

(iv) if {𝑆𝜙
𝑛
} is a sequence in R

𝑐
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≥ 1 for all 𝑛 ∈

N ∪ 0, then 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≥ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.

Theorem27. Let 𝑆 : 𝐸
0
→ 𝐸
0
,𝑇 : 𝐸

0
→ 𝐸, and𝛼 : 𝐸×𝐸 →

[0, +∞) be three mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is algebraically

closed with respect to difference;
(ii) (𝑆, 𝑇) is a triangular 𝛼

𝑐
-admissible pair;
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(iii) there exists 𝛽 ∈ F such that

(




𝑇𝜙 − 𝑇𝜉




𝐸
+ 𝜖)
𝛼((𝑆𝜙)(𝑐),(𝑆𝜉)(𝑐))

≤ 𝛽 (




𝑆𝜙 − 𝑆𝜉




𝐸0
)




𝑆𝜙 − 𝑆𝜉




𝐸0
+ 𝜖,

(80)

for all 𝜙, 𝜉 ∈R
𝑐
where 𝜖 ≥ 1;

(iv) if {𝑆𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≥ 1 for all 𝑛 ∈

N ∪ 0, then 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≥ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.

Theorem28. Let 𝑆 : 𝐸
0
→ 𝐸
0
,𝑇 : 𝐸

0
→ 𝐸, and𝛼 : 𝐸×𝐸 →

[0, +∞) be three mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is topologically

closed and algebraically closed with respect to differ-
ence;

(ii) (𝑆, 𝑇) is a triangular 𝛼
𝑐
-admissible pair;

(iii) there exists 𝛽 ∈ F such that

(𝛼 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) − 1 + 𝜎)
‖𝑇𝜙−𝑇𝜉‖

𝐸

≤ 𝜖
𝛽(‖𝑆𝜙−𝑆𝜉‖

𝐸0
)‖𝑆𝜙−𝑆𝜉‖

𝐸0

(81)

for all 𝜙, 𝜉 ∈R
𝑐
, where 1 < 𝜖 ≤ 𝜎;

(iv) if {𝑆𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≥ 1 for all 𝑛 ∈

N ∪ 0, then 𝛼((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≥ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝛼((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≥ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.

2.4. Consequences of Corollary 19

Corollary 29. Let 𝑆 : 𝐸
0
→ 𝐸
0
, 𝑇 : 𝐸

0
→ 𝐸, and 𝜂 : 𝐸 ×

𝐸 → [0, +∞) be three mappings satisfying the following asser-
tions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is algebraically

closed with respect to difference;
(ii) (𝑆, 𝑇) is a triangular 𝛼

𝑐
-subadmissible pair;

(iii) there exists 𝛽 ∈ F such that




𝑇𝜙 − 𝑇𝜉




𝐸

≤ 𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) 𝛽 (




𝑆𝜙 − 𝑆𝜉




𝐸0
)




𝑆𝜙 − 𝑆𝜉




𝐸0
,

(82)

for all 𝜙, 𝜉 ∈R
𝑐
;

(iv) if {𝑆𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≤ 1 for all 𝑛 ∈

N ∪ 0, then 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≤ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.

Corollary 30. Let 𝑆 : 𝐸
0
→ 𝐸
0
, 𝑇 : 𝐸

0
→ 𝐸, and 𝜂 : 𝐸 ×

𝐸 → [0, +∞) be three mappings satisfying the following
assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is algebraically

closed with respect to difference;
(ii) (𝑆, 𝑇) is a triangular 𝛼

𝑐
-subadmissible pair;

(iii) there exists 𝛽 ∈ F such that




𝑇𝜙 − 𝑇𝜉




𝐸
+ 𝜖

≤ (𝛽 (




𝑆𝜙 − 𝑆𝜉




𝐸0
)




𝑆𝜙 − 𝑆𝜉




𝐸0
+ 𝜖)

𝜂((𝑆𝜙)(𝑐),(𝑆𝜉)(𝑐))

(83)

for all 𝜙, 𝜉 ∈R
𝑐
, where 𝜖 ≥ 1;

(iv) if {𝑆𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≤ 1 for all 𝑛 ∈

N ∪ 0, then 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≤ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.

Corollary 31. Let 𝑆 : 𝐸
0
→ 𝐸
0
,𝑇 : 𝐸

0
→ 𝐸, and 𝜂 : 𝐸×𝐸 →

[0, +∞) be three mappings satisfying the following assertions:

(i) there exists 𝑐 ∈ 𝐼 such that 𝑆(R
𝑐
) ⊂R

𝑐
is topologically

closed and algebraically closed with respect to differ-
ence;

(ii) (𝑆, 𝑇) is a triangular 𝛼
𝑐
-subadmissible pair;

(iii) there exists 𝛽 ∈ F such that

𝜎
‖𝑇𝜙−𝑇𝜉‖

𝐸
≤ (𝜂 ((𝑆𝜙) (𝑐) , (𝑆𝜉) (𝑐)) + 𝜖 − 1)

𝛽(‖𝑆𝜙−𝑆𝜉‖
𝐸0
)‖𝑆𝜙−𝑆𝜉‖

𝐸0

(84)

for all 𝜙, 𝜉 ∈R
𝑐
, where 1 < 𝜖 ≤ 𝜎;

(iv) if {𝑆𝜙
𝑛
} is a sequence in 𝐸

0
such that 𝑆𝜙

𝑛
→ 𝑆𝜙 as

𝑛 → +∞ and 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙

𝑛+1
)(𝑐)) ≤ 1 for all 𝑛 ∈

N ∪ 0, then 𝜂((𝑆𝜙
𝑛
)(𝑐), (𝑆𝜙)(𝑐)) ≤ 1 for all 𝑛 ∈ N ∪ 0;

(v) there exists 𝜙
0
∈R
𝑐
such that 𝜂((𝑆𝜙

0
)(𝑐), 𝑇𝜙

0
) ≤ 1;

(vi) 𝑆(R
𝑐
) is complete inR

𝑐
;

(vii) 𝑇(R
𝑐
) ⊂ {(𝑆𝜙)(𝑐) : 𝜙 ∈R

𝑐
}.

Then, 𝑆 and 𝑇 have a 𝑃𝑃𝐹 dependent coincidence point 𝜙∗ ∈
R
𝑐
.
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