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This paper presents a closed-form equation of data dependent jitter (DDJ) in first order low pass systems. The DDJ relates to the
system bandwidth, the bit rate, the input rise/fall time, and the number of maximum consecutive identical bits of the data pattern.
To confirm the derived equation, simulations have been done with a first order RC low pass circuit for various system bandwidths,
bit rates, input rise/fall times, and data patterns. The simulation results agree well with the calculated DDJ values by the derived
equation.

1. Introduction

As bit rate increases, timing jitter becomes more critical
to system performances of a high speed serial interface.
Timing jitter deteriorates signal quality at the transmitter
side and degrades BER performance at the receiver side [1–
4]. To guarantee the satisfactory system performances of a
high speed serial interface, timing jitter should be accurately
predicted and carefully considered when we design system
architecture, link budget, and each circuit building block.

Timing jitter is composed of unbounded random jitter
(RJ) and bounded deterministic jitter (DJ). The RJ is pro-
duced byGaussian electrical noisewithin system components
and the DJ is categorized into duty cycle distortion (DCD)
jitter, data dependent jitter (DDJ), and bounded uncorrelated
jitter (BUJ) [5, 6]. Among them, the DDJ is focused on in
this paper. The DDJ has an impact on the high speed serial
interface especially when the bit rate increases while the
system bandwidth is restricted [7, 8]. As shown in Figure 1,
the DDJ is generated when a certain data pattern with the bit
rate, 𝑇𝑏, passes through a system with the limited bandwidth,
𝑓BW.

So far, some papers have been published to predict the
DDJ in the general transmission lines [7–9] and in the first
order low pass systems [10–14]. The DDJ in the transmission

line may apply to the interconnect channels such as off-chip
PCB traces, off-chip cables, and on-chip interconnect lines
while the DDJ in the first order low pass systemmay apply to
the transceiver circuit building blocks such as drivers, buffers,
amplifiers, and limiters. For the transmission lines, the DDJ
has been predicted by using the simulated transient step
response and the worst-case input bit sequence to shorten the
simulation time [7–9]. On the other hand, for the first order
low pass systems, the DDJ has been predicted based on the
infinite number of calculated pulse or step responses of all the
previous bits while the rise/fall time of the input signal was
assumed to be zero ideally. However, because it is not possible
to calculate the infinite number of pulse or step responses of
all the previous bits, only two or four preceding bits have been
considered instead for the actual DDJ prediction [10–14]. So,
the calculated DDJ always underestimates the real DDJ and
the prediction accuracy may degrade as the bit rate increases
relatively to the system bandwidth.

In this paper, a new closed-form equation of DDJ in the
first order low pass system is presented. The DDJ is directly
derived by solving the differential equation of the first order
RC low pass circuit and by using the repetitiveness of the
data pattern. Of course, this repetitiveness of the data pattern
can be generalized for the real random data by increasing
the pattern length to the infinity. The derived DDJ equation
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Figure 1: Response of first order low pass system.

relates to the system bandwidth, the bit rate, the input rise/fall
time, and the number of maximum consecutive identical
bits of the data pattern. Contrary to the previous works, the
calculatedDDJ by the derived equation coincides exactlywith
the simulated DDJ. Additionally, the effect of nonzero input
rise/fall time is also to be considered.

This paper is composed of five sections. In Section 2, the
closed-form DDJ equation is derived by assuming zero input
rise/fall time. Section 3 extends the derived DDJ equation to
the data pattern with nonzero input rise/fall time. To confirm
the derived DDJ equation, the simulation results are shown
in Section 4 and conclusions are given in Section 5.

2. Calculation of DDJ with Zero Input
Rise/Fall Time

2.1. Differential Equation of First Order RC Low Pass Circuit.
Given a data pattern, a bit rate, and a system bandwidth, the
DDJ can be derived by solving the differential equation of the
first order RC low pass circuit shown in Figure 2. Depending
on the bit transition patterns, such as 01, 00, 10, and 11, the
input signal, V𝑖(𝑡), and the initial condition, V𝑜(𝑛𝑇𝑏), of the
first order RC low pass circuit are given differently for each
bit duration, 𝑇𝑏, as shown in Figure 3. In the figure, the input
rise/fall time is zero ideally. So, V𝑖(𝑡) is −𝐴 or +𝐴 for 𝑛𝑇𝑏 <
𝑡 ≤ (𝑛 + 1)𝑇𝑏 and a new variable, V𝑒,𝑛, is defined as the
voltage difference between V𝑖(𝑡) and V𝑜(𝑡) at 𝑡 = 𝑛𝑇𝑏, where
𝑛 is an integer; that is, V𝑒,𝑛 = |V𝑖(𝑛𝑇𝑏) − V𝑜(𝑛𝑇𝑏)|. Also, for
the bit transition pattern of 01 or 10, another variable, 𝜏𝑑,𝑛, is
defined as the time difference between the threshold crossing
times of V𝑖(𝑡) and V𝑜(𝑡), as shown in Figures 3(a) and 3(c).The
definition of the variables can be found in Table 1.

Because there are four different sets of the input signal,
V𝑖(𝑡), and the initial condition, V𝑜(𝑛𝑇𝑏), depending on the
bit transition patterns, the below differential equation of the
first order RC low pass circuit should be solved for each bit
transition pattern:

V𝑜 (𝑡) − V𝑖 (𝑡)
𝑅

+ 𝐶
𝑑V𝑜 (𝑡)
𝑑𝑡

= 0. (1)

�i(t) �o(t)

C

R

Figure 2: First order RC low pass circuit.

First, when the bit transition pattern is 01 as shown in
Figure 3(a), the initial condition and the input signal are
V𝑜(𝑛𝑇𝑏) = −𝐴 + V𝑒,𝑛 and V𝑖(𝑡) = 𝐴 for 𝑛𝑇𝑏 < 𝑡 ≤ (𝑛 + 1)𝑇𝑏,
respectively. Then, the output signal is

V𝑜 (𝑡) = V𝑜 (𝑛𝑇𝑏) + {𝐴 − V𝑜 (𝑛𝑇𝑏)} (1 − 𝑒
−(𝑡−𝑛𝑇𝑏)/RC)

for 𝑛𝑇𝑏 ≤ 𝑡 ≤ (𝑛 + 1) 𝑇𝑏.
(2)

By using that V𝑜((𝑛 + 1)𝑇𝑏) = 𝐴 − V𝑒,𝑛+1, the relationship
between V𝑒,𝑛 and V𝑒,𝑛+1 is obtained as

V𝑒,𝑛+1 = 2𝐴𝑟 − V𝑒,𝑛𝑟, (3)

where 𝑟 = 𝑒
−(𝑇𝑏/RC) and, by using that V𝑜(𝑛𝑇𝑏 + 𝜏𝑑,𝑛) = 0, 𝜏𝑑,𝑛

is obtained as a function of V𝑒,𝑛:

𝜏𝑑,𝑛 = 𝑇𝑏 log𝑟 (
𝐴

2𝐴 − V𝑒,𝑛
) . (4)

Second, when the bit transition pattern is 00 as shown in
Figure 3(b), V𝑜(𝑛𝑇𝑏) = −𝐴 + V𝑒,𝑛 and V𝑖(𝑡) = −𝐴 for 𝑛𝑇𝑏 <
𝑡 ≤ (𝑛 + 1)𝑇𝑏. Then, the output signal is

V𝑜 (𝑡) = V𝑜 (𝑛𝑇𝑏) + {−𝐴 − V𝑜 (𝑛𝑇𝑏)} (1 − 𝑒
−(𝑡−𝑛𝑇𝑏)/RC)

for 𝑛𝑇𝑏 ≤ 𝑡 ≤ (𝑛 + 1) 𝑇𝑏
(5)

and, by using that V𝑜((𝑛 + 1)𝑇𝑏) = −𝐴 + V𝑒,𝑛+1, another
relationship between V𝑒,𝑛 and V𝑒,𝑛+1 is obtained:

V𝑒,𝑛+1 = V𝑒,𝑛𝑟. (6)

Finally, when the bit transition pattern is 10 or 11 as shown in
Figures 3(c) or 3(d), the same relationship between V𝑒,𝑛 and
V𝑒,𝑛+1 can be obtained as (3) or (6) and 𝜏𝑑,𝑛 can be obtained as
(4) because Figures 3(c) and 3(d) are just vertically symmetric
with Figures 3(a) and 3(b). In summary, (3) and (6) describe
how V𝑒,𝑛 is updated to V𝑒,𝑛+1 per every 𝑇𝑏 according to the
bit transition pattern and (4) describes how 𝜏𝑑,𝑛 relates to V𝑒,𝑛
when a bit transition occurs.
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Table 1: Definition of the variables.

Variable Definition
𝑓BW 3 dB bandwidth of the first order low pass system
𝑇𝑏 Bit duration
𝑓
𝑏

Bit rate, 1/𝑇
𝑏

Δ𝑇 Rise/fall time of the input signal
V𝑒,𝑛 Voltage difference between V𝑖(𝑡) and V𝑜(𝑡) at 𝑡 = 𝑛𝑇𝑏
𝜏𝑑,𝑛 Time difference between the threshold crossing times of V𝑖(𝑡) and V𝑜(𝑡) for 𝑛𝑇𝑏 < 𝑡 < (𝑛 + 1)𝑇𝑏
𝑎𝑖,𝑛 Relative bit distance of the 𝑖th bit transition backwards from V𝑒,𝑛
𝑁 Pattern length
𝐾 Number of bit transitions
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Figure 3: Input and output waveforms when the bit transition pattern is (a) 01, (b) 00, (c) 10, and (d) 11 and the input rise/fall time is zero.
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Figure 4: Relationship between V𝑒,𝑛 and 𝜏𝑑,𝑛.
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Figure 5: Output waveform when the input data pattern is PRBS3
as an example.

2.2. DDJ Calculation. By using (3), (6), and (4), the DDJ can
be derived through the following steps.

(i) Calculate V𝑒,𝑛 by using (3) and (6) for the repeated data
pattern with the finite pattern length of𝑁.

(ii) Find the maximum and minimum values, V𝑒,max and
V𝑒,min, among the set of the calculated V𝑒,𝑛 values.

(iii) Calculate 𝜏𝑑,min and 𝜏𝑑,max corresponding to V𝑒,max
and V𝑒,min by using (4). Note that 𝜏𝑑,𝑛 is inversely
proportional to V𝑒,𝑛 as shown in Figure 4.

(iv) Finally, DDJ = 𝜏𝑑,max − 𝜏𝑑,min. For random data with
the infinite pattern length, the DDJ equation should
be modified appropriately.

If a data pattern has the finite pattern length of 𝑁 and
passes through a first order RC low pass circuit in a steady
state, there should exist𝑁 different values of V𝑒,𝑛 in the output
waveform. For example, if a data pattern is PRBS3, the pattern
length is 7 and V𝑒,𝑛 is always mapped to one of {V𝑒,1, V𝑒,2, V𝑒,3,
V𝑒,4, V𝑒,5, V𝑒,6, V𝑒,7} as shown in Figure 5. However, all of V𝑒,𝑛 do
not need to be considered for calculation of the DDJ. Among
{V𝑒,1, V𝑒,2, V𝑒,3, V𝑒,4, V𝑒,5, V𝑒,6, V𝑒,7}, V𝑒,1, V𝑒,4, V𝑒,6, and V𝑒,7 are
needed because only they are at the bit transition edges of
PRBS3. Thus, if the number of bit transitions within a data
pattern is 𝐾, only 𝐾 values of V𝑒,𝑛 need to be considered for
calculation of the DDJ. On the other hand, V𝑒,𝑛 has Markov
property [15, 16]. A variable is said to have Markov property

if the future value depends only on the present value and not
on the past values. As seen from (3) and (6), V𝑒,𝑛+1 depends
only on V𝑒,𝑛 and not on the preceding values of V𝑒,𝑛 such as
V𝑒,𝑛−1 and V𝑒,𝑛−2. Thus,

V𝑒,2 = 2𝐴𝑟 − V𝑒,1𝑟, V𝑒,3 = V𝑒,2𝑟,
V𝑒,4 = V𝑒,3𝑟, V𝑒,5 = 2𝐴𝑟 − V𝑒,4𝑟,
V𝑒,6 = V𝑒,5𝑟, V𝑒,7 = 2𝐴𝑟 − V𝑒,6𝑟,
V𝑒,8 = 2𝐴𝑟 − V𝑒,7𝑟.

(7)

By using the repetitiveness of PRBS3, V𝑒,8 = V𝑒,1 and, thus, V𝑒,1,
V𝑒,4, V𝑒,6, and V𝑒,7 are obtained as follows:

V𝑒,1 = 2𝐴𝑟
1 − 𝑟 + 𝑟

3
− 𝑟
6

1 − 𝑟7
(8)

V𝑒,4 = 2𝐴𝑟
𝑟
2
− 𝑟
3
+ 𝑟
4
− 𝑟
6

1 − 𝑟7
(9)

V𝑒,6 = 2𝐴𝑟
𝑟 − 𝑟
4
+ 𝑟
5
− 𝑟
6

1 − 𝑟7
(10)

V𝑒,7 = 2𝐴𝑟
1 − 𝑟
2
+ 𝑟
5
− 𝑟
6

1 − 𝑟7
. (11)

Before finding V𝑒,max and V𝑒,min from (8) to (11), V𝑒,𝑛 can be
generalized to

V𝑒,𝑛 = 2𝐴𝑟
∑
𝐾

𝑖=1
(−1)
𝑖+1
𝑟
𝑎𝑖,𝑛

1 − 𝑟𝑁
(12)

for any data pattern with the finite pattern length of𝑁. Here,
𝐾 is the number of bit transitions and 𝑎𝑖,𝑛 is an integer variable
defined as the relative bit distance of the 𝑖th bit transition
backwards from V𝑒,𝑛, where 𝑎𝑖,𝑛 ∈ {0, 1, . . . , 𝑁−1}. In (12), 𝑎𝑖,𝑛
is determined by the relative bit transition positions within
the data pattern because the relationship between V𝑒,𝑛+1 and
V𝑒,𝑛 is determined by (3) whenever a bit transition occurs like
01 or 10 and by (6) whenever a bit holds like 00 or 11. Figure 6
shows that 𝑎1,1 = 0, 𝑎2,1 = 1, 𝑎3,1 = 3, and 𝑎4,1 = 6 for V𝑒,1 and
𝑎1,4 = 2, 𝑎2,4 = 3, 𝑎3,4 = 4, and 𝑎4,4 = 6 for V𝑒,4, respectively,
as an example. The obtained values of 𝑎𝑖,𝑛 in Figure 6 agree
well with (8) and (9). Thus, V𝑒,𝑛 can be generally represented
as (12) for any data pattern with the finite pattern length of𝑁
if the data pattern is known.

Now, V𝑒,max and V𝑒,min can be found among {V𝑒,1, V𝑒,2, . . . ,
V𝑒,𝑁}. If V𝑒,𝑚 = 2𝐴𝑟(∑

𝐾

𝑖=1
(−1)
𝑖+1
𝑟
𝑎𝑖,𝑚/(1 − 𝑟

𝑁
)) and V𝑒,𝑛 =

2𝐴𝑟(∑
𝐾

𝑖=1
(−1)
𝑖+1
𝑟
𝑎𝑖,𝑛/(1 − 𝑟

𝑁
)), where 𝑚 ̸= 𝑛, V𝑒,𝑚 and V𝑒,𝑛

can be compared by using the following theorems, of which
proofs are given in Appendix A.

Theorem 1. If 𝑎1,𝑚 > 𝑎1,𝑛, then V𝑒,𝑚 < V𝑒,𝑛.

Theorem 2. If 𝑎𝑖,𝑚 = 𝑎𝑖,𝑛 for all 𝑖 = 1, . . . , 2𝑘 − 1, where 𝑘 is
an integer and 𝑎2𝑘,𝑚 > 𝑎2𝑘,𝑛, then V𝑒,𝑚 > V𝑒,𝑛.

Theorem 3. If 𝑎𝑖,𝑚 = 𝑎𝑖,𝑛 for all 𝑖 = 1, . . . , 2𝑘, where 𝑘 is an
integer and 𝑎2𝑘+1,𝑚 > 𝑎2𝑘+1,𝑛, then V𝑒,𝑚 < V𝑒,𝑛.
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Figure 6: How to determine (a) 𝑎𝑖,1 of V𝑒,1 and (b) 𝑎𝑖,4 of V𝑒,4 when the input data pattern is PRBS3 as an example.

For PRBS3, V𝑒,min = V𝑒,4 by Theorem 1 because 𝑎1,1 =

𝑎1,7 = 0 < 𝑎1,6 = 1 < 𝑎1,4 = 2 and V𝑒,max = V𝑒,7 by Theorem 2
because 𝑎2,1 = 1 < 𝑎2,7 = 2 as seen from (8)∼(11). These
theorems can be generally applied to any data patternwith the
finite pattern length. However, if a data pattern is random and
has the infinite pattern length, there are infinite numbers of
V𝑒,𝑛 and so V𝑒,max and V𝑒,min are obtained in the different way.
In that case, the number of maximum consecutive identical
bits is also infinite so that V𝑒,min = 0 from (12) and V𝑒,max =
2𝐴𝑟 from (3).

After V𝑒,max and V𝑒,min are found, 𝜏𝑑,max and 𝜏𝑑,min are
obtained by (4) as

𝜏𝑑,max = 𝑇𝑏 log𝑟 (
𝐴

2𝐴 − V𝑒,min
)

𝜏𝑑,min = 𝑇𝑏 log𝑟 (
𝐴

2𝐴 − V𝑒,max
)

(13)

and the DDJ is finally derived as

DDJ = 𝜏𝑑,max − 𝜏𝑑,min = 𝑇𝑏 log𝑟 (
2𝐴 − V𝑒,max

2𝐴 − V𝑒,min
) . (14)

Thus, for PRBS3,

DDJ = 𝑇𝑏 log𝑟 (
1 − 𝑟 + 𝑟

3
− 𝑟
6

1 − 𝑟3 + 𝑟4 − 𝑟5
) (15)

and, for random data,

DDJ = 𝑇𝑏 log𝑟 (1 − 𝑟) . (16)

Additionally, for other PRBS data patterns like PRBS4 and
PRBS5, the DDJ can be derived as shown in Appendix B.
Carefully observing (15), (16), (B.1), and (B.2), the DDJ can
be generally approximated to

DDJ ≈ 𝑇𝑏 log𝑟 (
1 − 𝑟

1 − 𝑟𝑀
) (17)

for any data pattern by using the number of maximum
consecutive identical bits,𝑀. For any PRBS𝑀 data patterns,

the number ofmaximum consecutive identical bits equals𝑀.
Finally, the calculated V𝑒,max, V𝑒,min, 𝜏𝑑,max, 𝜏𝑑,min, and DDJ are
compared for various data patterns in Table 2. The DDJ of
PRBS𝑀 approaches the DDJ of random data as the number
of maximum consecutive identical bits, 𝑀, increases to the
infinity.

3. Calculation of DDJ with Nonzero Input
Rise/Fall Time

3.1. Differential Equation of First Order RC Low Pass Circuit.
Now, the effect of the nonzero input rise/fall time on the DDJ
can be considered. The differential equation of (1) should be
solved again for four different bit transition patterns, such as
01, 00, 10, and 11, when the input rise/fall time is Δ𝑇 as shown
in Figure 7. Although there are more accurate models for the
rising/falling edges of the input signal, V𝑖(𝑡), the first order
model is adopted for simplicity of calculation to derive the
closed-form DDJ equations in this paper.

First, when the bit transition pattern is 01 as shown in
Figure 7(a), the initial condition is V𝑜(𝑛𝑇𝑏) = −𝐴 + V𝑒,𝑛 and
the input signal is V𝑖(𝑡) = −𝐴 + (2𝐴/Δ𝑇)(𝑡 − 𝑛𝑇𝑏) for 𝑛𝑇𝑏 <
𝑡 ≤ 𝑛𝑇𝑏 + Δ𝑇 and V𝑖(𝑡) = 𝐴 for 𝑛𝑇𝑏 + Δ𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇𝑏,
respectively. Then, the output signal is

V𝑜 (𝑡) = −𝐴 +
2𝐴

Δ𝑇
(𝑡 − 𝑛𝑇𝑏 − RC)

+ (
2𝐴

Δ𝑇
RC + V𝑒,𝑛) 𝑒

−(𝑡−𝑛𝑇𝑏)/RC

for 𝑛𝑇𝑏 < 𝑡 ≤ 𝑛𝑇𝑏 + Δ𝑇,

(18)

V𝑜 (𝑡) = V𝑜 (𝑛𝑇𝑏 + Δ𝑇)

+ {𝐴 − V𝑜 (𝑛𝑇𝑏 + Δ𝑇)} (1 − 𝑒
−(𝑡−𝑛𝑇𝑏−Δ𝑇)/RC)

for 𝑛𝑇𝑏 + Δ𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇𝑏.

(19)

By using that V𝑜((𝑛 + 1)𝑇𝑏) = 𝐴 − V𝑒,𝑛+1, the relationship
between V𝑒,𝑛 and V𝑒,𝑛+1 is obtained as

V𝑒,𝑛+1 = 2𝐴𝑆𝑟 − V𝑒,𝑛𝑟, (20)
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Table 2: Calculated V𝑒,max, V𝑒,min, 𝜏𝑑,max, 𝜏𝑑,min, and DDJ values for various data patterns. The input rise/fall time is zero. 𝑇𝑏 = 100 ps and
𝑓BW = 2GHz.

Data pattern PRBS3 PRBS4 PRBS5 Random
V𝑒,max (V) 0.52 0.56 0.57 0.57
V𝑒,min (V) 0.04 0.01 0.00 0.00
𝜏𝑑,max (ps) 53.70 54.75 55.02 55.16
𝜏𝑑,min (ps) 30.99 29.23 28.67 28.51
DDJ (ps) 22.71 25.52 26.35 26.65
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Figure 7: Input and output waveforms when the bit transition pattern is (a) 01, (b) 00, (c) 10, and (d) 11 and the input rise/fall time is nonzero.

where 𝑟 = 𝑒
−(𝑇𝑏/RC) and 𝑆 = (RC/Δ𝑇)(𝑒Δ𝑇/RC − 1). Also, by

using that V𝑜(𝑛𝑇𝑏+(Δ𝑇/2)+𝜏𝑑,𝑛) = 0, 𝜏𝑑,𝑛 can be obtained as a
function of V𝑒,𝑛. However, to solve V𝑜(𝑛𝑇𝑏+(Δ𝑇/2)+𝜏𝑑,𝑛) = 0,
(18) should be used if 𝜏𝑑,𝑛 < Δ𝑇/2 and (19) should be used
if 𝜏𝑑,𝑛 > Δ𝑇/2. Because V𝑜(𝑛𝑇𝑏 + Δ𝑇) < 0 is equivalent to
𝜏𝑑,𝑛 > Δ𝑇/2 in Figure 7(a), we can say that (18) should be

used if V𝑜(𝑛𝑇𝑏 + Δ𝑇) > 0 and (19) should be used if V𝑜(𝑛𝑇𝑏 +
Δ𝑇) < 0. Figure 8 shows the sufficient condition for 𝜏𝑑,𝑛 >
Δ𝑇/2 regardless of V𝑒,𝑛 as region 1 and 𝜏𝑑,𝑛 < Δ𝑇/2 regardless
of V𝑒,𝑛 as region 2, respectively. Region 3 is located between
region 1 and region 2, in which 𝜏𝑑,𝑛 can be larger or less than
Δ𝑇/2 depending on V𝑒,𝑛.The regions 1, 2, and 3 of Figure 8 can
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Figure 8: Sufficient conditions for 𝜏𝑑,𝑛 > Δ𝑇/2 and 𝜏𝑑,𝑛 < Δ𝑇/2

regardless of V𝑒,𝑛.

be obtained by solving V𝑜(𝑛𝑇𝑏+Δ𝑇) = 0. Here,𝑓BW is the 3 dB
bandwidth of the first order low pass system which is defined
as 𝑓BW = 1/2𝜋RC. Thus, 𝜏𝑑,𝑛 is obtained as

𝜏𝑑,𝑛 = 𝑇𝑏 log𝑟 (
𝐴

2𝐴𝑆 − V𝑒,𝑛
) −

Δ𝑇

2
(21)

from (19) in region 1 and

𝜏𝑑,𝑛 = 𝑇𝑏 log𝑟 {
(2𝐴/Δ𝑇) (RC − 𝜏𝑑,𝑛)

(2𝐴/Δ𝑇)RC + V𝑒,𝑛
} −

Δ𝑇

2
(22)

from (18) in region 2, respectively. In region 3, either (21) or
(22) should be appropriately chosen for 𝜏𝑑,𝑛 but after both (21)
and (22) are evaluated and compared with Δ𝑇/2 because (21)
is used if 𝜏𝑑,𝑛 > Δ𝑇/2 and (22) is used if 𝜏𝑑,𝑛 < Δ𝑇/2. Second,
when the bit transition pattern is 00 as shown in Figure 7(b),
the initial condition and the input signal are equal to those
of Figure 3(b) so that the same relationship between V𝑒,𝑛 and
V𝑒,𝑛+1 is obtained:

V𝑒,𝑛+1 = V𝑒,𝑛𝑟. (23)

Finally, when the bit transition pattern is 10 or 11 as shown in
Figures 7(c) or 7(d), the same relationship between V𝑒,𝑛 and
V𝑒,𝑛+1 can be obtained as (20) or (23) and 𝜏𝑑,𝑛 can be obtained
from (21) or (22) because Figures 7(c) and 7(d) are just
vertically symmetric with Figures 7(a) and 7(b), respectively.

3.2. DDJ Calculation. As seen from (20) and (23), V𝑒,𝑛 has
Markov property also when the input rise/fall time is Δ𝑇.
Thus, V𝑒,𝑛 can be generally represented as

V𝑒,𝑛 = 2𝐴𝑆𝑟
∑
𝐾

𝑖=1
(−1)
𝑖+1
𝑟
𝑎𝑖,𝑛

1 − 𝑟𝑁
(24)

for any data pattern with the finite pattern length of 𝑁 by
following the same steps explained in Section 2.2. Here, 𝐾 is
the number of bit transitionswithin the data pattern and 𝑎𝑖,𝑛 is

an integer variable defined as the relative bit distance of the 𝑖th
bit transition backwards from V𝑒,𝑛, where 𝑎𝑖,𝑛 ∈ {0, 1, . . . , 𝑁 −

1}.The only difference between (24) and (12) is the additional
multiplication factor, 𝑆, in (24). So, V𝑒,max and V𝑒,min can
be found among {V𝑒,1, V𝑒,2, . . . , V𝑒,𝑁} by comparaing only 𝑎𝑖,𝑛
values based on the same theorems stated in Section 2.2. Of
course, if a data pattern is random and has the infinite pattern
length, V𝑒,min = 0 and V𝑒,max = 2𝐴𝑆𝑟. For any data pattern,
𝜏𝑑,max and 𝜏𝑑,min can be obtained from either (21) or (22)
depending on 𝑓BW/𝑓𝑏 and Δ𝑇/𝑇𝑏. If 𝑓BW/𝑓𝑏 and Δ𝑇/𝑇𝑏 are
in region 1 of Figure 8,

𝜏𝑑,max = 𝑇𝑏 log𝑟 (
𝐴

2𝐴𝑆 − V𝑒,min
) −

Δ𝑇

2

𝜏𝑑,min = 𝑇𝑏 log𝑟 (
𝐴

2𝐴𝑆 − V𝑒,max
) −

Δ𝑇

2

(25)

from (21) and if 𝑓BW/𝑓𝑏 and Δ𝑇/𝑇𝑏 are in region 2,

𝜏𝑑,max = 𝑇𝑏 log𝑟 {
(2𝐴/Δ𝑇) (RC − 𝜏𝑑,max)

(2𝐴/Δ𝑇)RC + V𝑒,min
} −

Δ𝑇

2

𝜏𝑑,min = 𝑇𝑏 log𝑟 {
(2𝐴/Δ𝑇) (RC − 𝜏𝑑,min)

(2𝐴/Δ𝑇)RC + V𝑒,max
} −

Δ𝑇

2

(26)

from (22).Otherwise, if𝑓BW/𝑓𝑏 andΔ𝑇/𝑇𝑏 are in region 3, the
appropriate equations should be chosen from (25) and (26)
for calculation of 𝜏𝑑,max and 𝜏𝑑,min by comparing the calcu-
lated values of 𝜏𝑑,max and 𝜏𝑑,min with Δ𝑇/2. Consequently, the
DDJ is derived as

DDJ = 𝜏𝑑,max − 𝜏𝑑,min = 𝑇𝑏 log𝑟 (
2𝐴𝑆 − V𝑒,max

2𝐴𝑆 − V𝑒,min
) (27)

in region 1 and the DDJ is calculated by using (26) in region 2.
Although (27) and (14) look a bit different, the DDJ equation
of (27) equals the DDJ equation of (14) since V𝑒,min and V𝑒,max
are linearly proportional to the multiplication factor, 𝑆, as
shown in (24) and thus 𝑆 is cancelled out from (27). This
means that the DDJ value does not depend on Δ𝑇 in region 1
and equals the DDJ value when Δ𝑇 = 0. On the other hand,
the DDJ value in region 2 is slightly larger than the DDJ value
when Δ𝑇 = 0. However, the difference is quite small and
acceptable because the system bandwidth is relatively large
compared to the bit rate in region 2 as shown in Figure 8 and
so the DDJ value is very small in itself.

4. Simulation Results

Figure 9 shows the eye diagrams of the simulated input and
output waveforms when the data pattern is (a) PRBS3 and
(b) random, respectively. The input rise/fall time is zero, the
bit rate is 10Gb/s, and the system bandwidth is 2GHz. All
the waveforms were obtained by running Cadence Spectre.
In Figure 9(a), among {V𝑒,1, V𝑒,4, V𝑒,6, V𝑒,7}, V𝑒,max = V𝑒,7 and
V𝑒,min = V𝑒,4, as discussed in Section 2.2. So, 𝜏𝑑,max = 𝜏𝑑,4,
𝜏𝑑,min = 𝜏𝑑,7, and DDJ = 𝜏𝑑,4 − 𝜏𝑑,7. In Figure 9(b), V𝑒,min = 0

and V𝑒,max = 2𝐴𝑟, and 𝜏𝑑,max and 𝜏𝑑,min correspond to V𝑒,min
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Figure 9: Eye diagrams of the simulated input and output waveforms when the input data pattern is (a) PRBS3 and (b) random. The input
rise/fall time is zero. 𝑇
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and V𝑒,max, respectively. All the simulated V𝑒,max, V𝑒,min, 𝜏𝑑,max,
𝜏𝑑,min, and DDJ for various data patterns agree exactly with
the calculated values in Table 2.

Figure 10 compares the eye diagrams of the simulated
output waveforms for Δ𝑇 = 0 and Δ𝑇 = 0.4𝑇𝑏. The data
pattern is random, the bit rate is 10Gb/s, and the system
bandwidth is 2GHz. The input signal, of which rise/fall time
is modeled by Δ𝑇 as first order approximation, is applied to
the first order low pass system. As shown in Figure 10, two
output waveforms slightly differ from each other only around
the transition edges of the input signals; however, they exactly
coincide with each other around the transition edges of the
output signals. Thus, the simulated DDJ when Δ𝑇 = 0.4𝑇𝑏

equals the simulated DDJ when Δ𝑇 = 0. This coincidence
betweenΔ𝑇 = 0 andΔ𝑇 = 0.4𝑇𝑏 is due to the fact that𝑓BW/𝑓𝑏
and Δ𝑇/𝑇𝑏 are in region 1.

Figure 11(a) shows the comparison of the simulated DDJ
with the calculated DDJ by (16) in this work and the
calculated DDJ by (10) in [10]. The calculated DDJ in this
work better estimates the simulated DDJ. As the system
bandwidth, 𝑓BW, decreases, the calculated DDJ by (10) in
[10] underestimates the simulated DDJ because (10) in [10]
was derived by using only two preceding bits as discussed
in Appendix C. Figure 11(b) shows the simulated DDJ for
various input rise/fall times. Δ𝑇 varies from 0 to 0.75𝑇𝑏. If
𝑓BW/𝑓𝑏 andΔ𝑇/𝑇𝑏 are in region 1, the simulatedDDJ does not
depend onΔ𝑇; however, in region 2, the simulated DDJ starts
to deviate as Δ𝑇 increases. Even in this case, the deviation
of the simulated DDJ is smaller than 0.008UI because the
absolute DDJ value is very small in itself, that is, less than
0.01UI, in region 2. The system bandwidth, 𝑓BW, is relatively
large compared to the bit rate, 𝑓𝑏, in region 2 as shown in
Figure 8.

Additionally, the simulatedDDJ values when the low pass
system has the additional second pole, 𝑓𝑝2, are summarized
in Table 3. As shown in the table, the calculated DDJ values
by the derived equations agree well with the simulated results
with the accuracy of less than 0.021UI when the second
pole is larger than 5 times of the first pole, that is, 10GHz.
However, if the second pole approaches the first pole, the
system bandwidth now decreases less than the first pole so
that the simulated results start to deviate from the calculated
DDJ values.

5. Conclusion

The closed-form equation of DDJ in a first order low
pass system has been derived. If the bit rate, the system
bandwidth, the input rise/fall time, and the number of
maximum consecutive identical bits are given, the DDJ can
be calculated exactly in region 1 and accurately in regions
2 and 3. The simulated DDJ agrees well with the calculated
DDJ. Because the DDJ in the transmission line may apply to
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Figure 11: (a) Comparison of the DDJ values calculated by (16) in this work and by (10) in [10] and (b) the simulated DDJ values versus
various input rise/fall times.

Table 3: Simulated DDJ values when the low pass system has the
additional second pole, 𝑓𝑝2. The input rise/fall time is zero. 𝑇𝑏 =
100 ps and 𝑓𝑝1 = 2GHz.

Second pole Data pattern
PRBS3 PRBS4 PRBS5 Random

No second pole 22.71 25.52 26.35 26.65
𝑓𝑝2 = 20GHz 22.81 25.68 26.52 26.83
𝑓
𝑝2

= 10GHz 24.35 27.48 28.41 28.75
𝑓𝑝2 = 5GHz 32.23 36.86 38.48 38.81

the interconnect channels such as off-chip PCB traces, off-
chip cables, and on-chip interconnect lines and the DDJ in
the first order low pass system may apply to the transceiver
circuit building blocks such as drivers, buffers, amplifiers, and
limiters, the derived equation can be generally used for a high
speed serial interface when we design system architecture,
link budget, and each circuit building block which can be
modeled as a first order low pass system.

Appendices

A. Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. Subtracting V𝑒,𝑚 from V𝑒,𝑛 leads to

V𝑒,𝑛 − V𝑒,𝑚 =
2𝐴𝑟

1 − 𝑟𝑁
{

𝐾

∑

𝑖=1

(−1)
𝑖+1
𝑟
𝑎𝑖,𝑛 −

𝐾

∑

𝑖=1

(−1)
𝑖+1
𝑟
𝑎𝑖,𝑚}

>
2𝐴𝑟

1 − 𝑟𝑁
(𝑟
𝑎1,𝑛 − 𝑟

𝑎2,𝑛 − 𝑟
𝑎1,𝑚) ,

(A.1)

because 𝑟𝑎𝑖,𝑛 −𝑟𝑎𝑖+1,𝑛 > 0. By using the fact that 𝑟𝑎1,𝑛 −𝑟𝑎2,𝑛 −𝑟𝑎1,𝑚
is minimum when 𝑎2,𝑛 = 𝑎1,𝑛 + 1 and 𝑎1,𝑚 = 𝑎1,𝑛 + 1,

V𝑒,𝑛 − V𝑒,𝑚 >
2𝐴𝑟

1 − 𝑟𝑁
(𝑟
𝑎1,𝑛 − 𝑟

𝑎1,𝑛+1 − 𝑟
𝑎1,𝑛+1)

=
2𝐴𝑟

1 − 𝑟𝑁
𝑟
𝑎1,𝑛 (1 − 2𝑟) > 0,

(A.2)

because 𝑟 is smaller than 0.5 as far as the system bandwidth,
𝑓BW, is larger than 11% of the bit rate, 𝑓𝑏 = 1/𝑇𝑏, which is
typical of the high speed serial interface systems [8].

Proof of Theorem 2. Subtracting V𝑒,𝑛 from V𝑒,𝑚 leads to

V𝑒,𝑚 − V𝑒,𝑛 =
2𝐴𝑟

1 − 𝑟𝑁
{

𝐾

∑

𝑖=1

(−1)
𝑖+1
𝑟
𝑎𝑖,𝑚 −

𝐾

∑

𝑖=1

(−1)
𝑖+1
𝑟
𝑎𝑖,𝑛}

>
2𝐴𝑟

1 − 𝑟𝑁
(−𝑟
𝑎2𝑘,𝑚 + 𝑟

𝑎2𝑘,𝑛 − 𝑟
𝑎2𝑘+1,𝑛)

(A.3)

because 𝑟𝑎𝑖,𝑛 − 𝑟𝑎𝑖+1,𝑛 > 0. By using the fact that −𝑟𝑎2𝑘,𝑚 + 𝑟𝑎2𝑘,𝑛 −
𝑟
𝑎2𝑘+1,𝑛 is minimum at 𝑎2𝑘,𝑚 = 𝑎2𝑘,𝑛 + 1 and 𝑎2𝑘+1,𝑛 = 𝑎2𝑘,𝑛 + 1,

V𝑒,𝑚 − V𝑒,𝑛 >
2𝐴𝑟

1 − 𝑟𝑁
(−𝑟
𝑎2𝑘,𝑛+1 + 𝑟

𝑎2𝑘,𝑛 − 𝑟
𝑎2𝑘,𝑛+1)

=
2𝐴𝑟

1 − 𝑟𝑁
𝑟
𝑎2𝑘,𝑛 (1 − 2𝑟) > 0

(A.4)

because 𝑟 is smaller than 0.5.
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Proof of Theorem 3. Subtracting V𝑒,𝑚 from V𝑒,𝑛 leads to

V𝑒,𝑛 − V𝑒,𝑚 =
2𝐴𝑟

1 − 𝑟𝑁
{

𝐾

∑

𝑖=1

(−1)
𝑖+1
𝑟
𝑎𝑖,𝑛 −

𝐾

∑

𝑖=1

(−1)
𝑖+1
𝑟
𝑎𝑖,𝑚}

>
2𝐴𝑟

1 − 𝑟𝑁
(𝑟
𝑎2𝑘+1,𝑛 − 𝑟

𝑎2𝑘+2,𝑛 − 𝑟
𝑎2𝑘+1,𝑚) ,

(A.5)

because 𝑟𝑎𝑖,𝑛 −𝑟𝑎𝑖+1,𝑛 > 0. By using the fact that 𝑟𝑎2𝑘+1,𝑛 −𝑟𝑎2𝑘+2,𝑛 −
𝑟
𝑎2𝑘+1,𝑚 is minimum at 𝑎2𝑘+2,𝑛 = 𝑎2𝑘+1,𝑛 + 1 and 𝑎2𝑘+1,𝑚 =

𝑎2𝑘+1,𝑛 + 1,

V𝑒,𝑛 − V𝑒,𝑚 >
2𝐴𝑟

1 − 𝑟𝑁
(𝑟
𝑎2𝑘+1,𝑛 − 𝑟

𝑎2𝑘+1,𝑛+1 − 𝑟
𝑎2𝑘+1,𝑛+1)

=
2𝐴𝑟

1 − 𝑟𝑁
𝑟
𝑎2𝑘+1,𝑛 (1 − 2𝑟) > 0

(A.6)

because 𝑟 is smaller than 0.5.

B. Closed-Form DDJ Equations of
PRBS4 and PRBS5

Following the same steps explained in Section 2.2, the DDJ
can be derived for other PRBS data. For PRBS4

DDJ = 𝑇𝑏 log𝑟 (
1 − 𝑟 + 𝑟

4
− 𝑟
8
+ 𝑟
9
− 𝑟
10
+ 𝑟
11
− 𝑟
13

1 − 𝑟4 + 𝑟5 − 𝑟6 + 𝑟7 − 𝑟9 + 𝑟11 − 𝑟12
)

(B.1)

and for PRBS5

DDJ

= 𝑇𝑏 log𝑟 ((1 − 𝑟 + 𝑟
5
− 𝑟
6
+ 𝑟
7
− 𝑟
8
+ 𝑟
9
− 𝑟
12
+ 𝑟
13
− 𝑟
15

+ 𝑟
18
− 𝑟
23
+ 𝑟
25
− 𝑟
27
+ 𝑟
28
− 𝑟
29
)

× (1 − 𝑟
5
+ 𝑟
7
− 𝑟
9
+ 𝑟
10
− 𝑟
11
+ 𝑟
13
− 𝑟
14
+ 𝑟
18

− 𝑟
19
+ 𝑟
20
− 𝑟
21
+ 𝑟
22
− 𝑟
25
+ 𝑟
26
− 𝑟
28
)
−1

) .

(B.2)

C. Comments on the DDJ
Equation of (10) in [10]

In [10], the closed-form DDJ equation of (10) has been
calculated for the first order low pass system by considering
only two preceding bits, 𝑎−1 and 𝑎−2, as follows:

DDJ = 𝜏

2
ln( 1 + 𝛼

1 − 𝛼 + 𝛼2
) , (C.1)

where 𝜏 = 1/2𝜋𝑓BW and 𝛼 = 𝑒
−2𝜋𝑓BW𝑇𝑏 . However, as the bit

rate increases relatively to the system bandwidth, 𝛼 increases
and the impact of additional bits such as 𝑎−3 and 𝑎−4 should
be considered as shown in Figure 3 of [10]. Consequently, the
calculated DDJ by (10) in [10], which is rewritten in (C.1),
underestimates the simulated DDJ as shown in Figure 11(a).
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