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We study lightlike hypersurfaces of para-Sasakian manifolds tangent to the characteristic vector field. In particular, we define
invariant lightlike hypersurfaces and screen semi-invariant lightlike hypersurfaces, respectively, and give examples. Integrability
conditions for the distributions on a screen semi-invariant lightlike hypersurface of para-Sasakian manifolds are investigated. We
obtain a para-Sasakian structure on the leaves of an integrable distribution of a screen semi-invariant lightlike hypersurface.

1. Introduction

It is well known that the main difference between the
geometry of submanifolds in Riemannian manifolds and in
semi-Riemannian manifolds is that in the latter case the
induced metric tensor field by the semi-Riemannian metric
on the ambient space is not necessarily nondegenerate. If the
induced metric tensor field is degenerate the classical theory
of Riemannian submanifolds fails since the normal bundle
and the tangent bundle of the submanifold have a nonzero
intersection. In particular, from the point of physics lightlike
hypersurfaces are important as they are models of various
types of horizons, such as Killing, dynamical and conformal
horizons, studied in general relativity.

Lightlike submanifolds of semi-Riemannian manifolds
were introduced by Duggal and Bejancu in [1]. Since
then many authors studied lightlike hypersurfaces of semi-
Riemannian manifolds and especially of indefinite Sasakian
manifolds (for differential geometry of lightlike submanifolds
we refer to the book [2]).

The study of paracontact geometry was initiated by
Kaneyuki and Konzai in [3]. The authors defined almost
paracontact structure on a pseudo-Riemannian manifold𝑀
of dimension (2𝑛 + 1) and constructed the almost para-
complex structure on 𝑀

2𝑛+1
× R. Recently, Zamkovoy [4]

studied paracontact metric manifolds and some remarkable

subclasses like para-Sasakian manifolds. In particular, in the
recent years, many authors [5–9] have pointed out the impor-
tance of paracontact geometry and, in particular, of para-
Sasakian geometry, by several papers giving the relationships
with the theory of para-Kähler manifolds and its role in
pseudo-Riemannian geometry and mathematical physics.

These circumstances motivated us to initiate the study
of lightlike geometry of submanifolds in almost paracontact
metric manifolds. As a first step, in the present paper,
we study the lightlike hypersurfaces of almost paracon-
tact metric manifolds. We introduce the invariant lightlike
hypersurfaces and screen semi-invariant lightlike hyper-
surfaces of almost paracontact metric manifolds, respec-
tively, and give examples. Moreover, integrability condi-
tions for the distributions involved in the definition of
a screen semi-invariant lightlike hypersurface are investi-
gated in case of the ambient manifold being para-Sasakian
manifold.

2. Preliminaries

2.1. Almost Paracontact Metric Manifolds. A differentiable
manifold𝑀 of dimension (2𝑛+1) is called almost paracontact
manifold with the almost paracontact structure (𝜙, 𝜉, 𝜂) if it
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admits a tensor field 𝜙 of type (1, 1), a vector field 𝜉, and a
1-form 𝜂 satisfying the following conditions [3]:

𝜙
2

= 𝐼 − 𝜂 ⊗ 𝜉, (1)

𝜂 (𝜉) = 1, (2)

𝜙𝜉 = 0, (3)

𝜂 ∘ 𝜙 = 0, (4)

where 𝐼 denotes the identity transformation. Moreover, the
tensor field 𝜙 induces an almost paracomplex structure on
the paracontact distribution 𝐷 = ker 𝜂; that is, the eigen
distributions𝐷± corresponding to the eigenvalues ±1 of 𝜙 are
both 𝑛-dimensional.

If a (2𝑛 + 1)-dimensional almost paracontact manifold
𝑀 with an almost paracontact structure (𝜙, 𝜉, 𝜂) admits a
pseudo-Riemannian metric 𝑔 such that [4]

𝑔 (𝜙𝑋, 𝜙𝑌) = −𝑔 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌) , 𝑋, 𝑌 ∈ Γ (𝑇𝑀) ,

(5)

then we say that𝑀 is an almost paracontact metric manifold
with an almost paracontact metric structure (𝜙, 𝜉, 𝜂, 𝑔) and
such metric 𝑔 is called compatible metric. Any compatible
metric 𝑔 is necessarily of signature (𝑛 + 1, 𝑛).

From (5) it can be easily seen that [4]

𝑔 (𝜙𝑋, 𝑌) = −𝑔 (𝑋, 𝜙𝑌) , (6)

𝑔 (𝑋, 𝜉) = 𝜂 (𝑋) , (7)

for any 𝑋,𝑌 ∈ Γ(𝑇𝑀). The fundamental 2-form of 𝑀 is
defined by

Φ (𝑋, 𝑌) = 𝑔 (𝑋, 𝜙𝑌) . (8)

An almost paracontact metric structure becomes a paracon-
tact metric structure if 𝑔(𝑋, 𝜙𝑌) = 𝑑𝜂(𝑋, 𝑌), for all vector
fields 𝑋,𝑌 ∈ Γ(𝑇𝑀), where 𝑑𝜂(𝑋, 𝑌) = (1/2){𝑋𝜂(𝑌) −

𝑌𝜂(𝑋) − 𝜂([𝑋, 𝑌])}.
For a (2𝑛 + 1)-dimensional manifold 𝑀 with an almost

paracontact metric structure (𝜙, 𝜉, 𝜂, 𝑔) one can also con-
struct a local orthonormal basis which is called 𝜙-basis
(𝑋
𝑖
, 𝜙𝑋
𝑖
, 𝜉) (𝑖 = 1, 2, . . . , 𝑛) [4].

An almost paracontact metric structure (𝜙, 𝜉, 𝜂, 𝑔) is a
para-Sasakian manifold if and only if [4]

(∇
𝑋
𝜙)𝑌 = −𝑔 (𝑋, 𝑌) 𝜉 + 𝜂 (𝑌)𝑋, 𝑋, 𝑌 ∈ Γ (𝑇𝑀) , (9)

where 𝑋,𝑌 ∈ Γ(𝑇𝑀) and ∇ is a Levi-Civita connection on
𝑀.

From (9), it can be seen that

∇
𝑋
𝜉 = −𝜙𝑋. (10)

Example 1. Let 𝑀 = R2𝑛+1 be the (2𝑛 + 1)-dimensional
real number space with standard coordinate system
(𝑥
1
, 𝑦
1
, 𝑥
2
, 𝑦
2
, . . . , 𝑥

𝑛
, 𝑦
𝑛
, 𝑧). Defining

𝜙
𝜕

𝜕𝑥
𝛼

=
𝜕

𝜕𝑦
𝛼

, 𝜙
𝜕

𝜕𝑦
𝛼

=
𝜕

𝜕𝑥
𝛼

, 𝜙
𝜕

𝜕𝑧
= 0,

𝜉 =
𝜕

𝜕𝑧
, 𝜂 = 𝑑𝑧,

𝑔 = 𝜂 ⊗ 𝜂 +

𝑛

∑

𝛼=1

𝑑𝑥
𝛼
⊗ 𝑑𝑥
𝛼
−

𝑛

∑

𝛼=1

𝑑𝑦
𝛼
⊗ 𝑑𝑦
𝛼
,

(11)

where 𝛼 = 1, 2, . . . , 𝑛, the set (𝜙, 𝜉, 𝜂, 𝑔) is an almost
paracontact metric structure on R2𝑛+1.

2.2. Lightlike Hypersurfaces. In this section, we recall some
basic results about lightlike hypersurfaces of a semi-
Riemannian manifold (𝑀, 𝑔) [1].

Let (𝑀, 𝑔) be a (𝑛 + 1)-dimensional semi-Riemannian
manifold with index 𝑞 (0 < 𝑞 < 𝑛 + 1) and𝑀 a hypersurface
of 𝑀. Assume that the induced metric 𝑔 = 𝑔|

𝑀
on the

hypersurface is degenerate on 𝑀. Then there exists a vector
field 𝐸 ̸= 0 on𝑀 such that

𝑔 (𝐸,𝑋) = 0, ∀𝑋 ∈ Γ (𝑇𝑀) . (12)

The radical space [10] of 𝑇
𝑝
𝑀 is defined by

Rad𝑇
𝑝
𝑀 = {𝐸 ∈ Rad𝑇

𝑝
𝑀 : 𝑔 (𝐸,𝑋) = 0, ∀𝑋 ∈ Γ (𝑇

𝑝
𝑀)} ,

(13)

whose dimension is called the nullity degree of𝑔 and (𝑀, 𝑔) is
called a lightlike hypersurface of (𝑀, 𝑔). Since 𝑔 is degenerate
and any null vector is perpendicular to itself, 𝑇

𝑝
𝑀
⊥ is also

degenerate and

Rad𝑇
𝑝
𝑀 = 𝑇

𝑝
𝑀∩ 𝑇

𝑝
𝑀
⊥
. (14)

For a lightlike hypersurface𝑀, dim𝑇
𝑝
𝑀
⊥
= 1 implies that

dim (Rad𝑇
𝑝
𝑀) = 1, Rad𝑇

𝑝
𝑀 = 𝑇

𝑝
𝑀
⊥
. (15)

We call Rad𝑇
𝑝
𝑀 the radical distribution and it is spanned by

the null vector field 𝐸.
Consider complementary vector bundle 𝑆(𝑇𝑀) of

Rad𝑇𝑀 in 𝑇𝑀. This means that

𝑇𝑀 = 𝑆 (𝑇𝑀) ⊥ Rad𝑇𝑀, (16)

where ⊥ denotes the orthogonal direct sum. 𝑆(𝑇𝑀) is called
the screen distribution on 𝑀. Since the screen distribu-
tion 𝑆(𝑇𝑀) is nondegenerate, there exists a complementary
orthogonal vector subbundle 𝑆(𝑇𝑀)

⊥ to 𝑆(𝑇𝑀) in𝑇𝑀which
is called screen transversal subbundle; that is,

𝑇𝑀 = 𝑆 (𝑇𝑀) ⊥ 𝑆(𝑇𝑀)
⊥
. (17)

The rank of 𝑆(𝑇𝑀)
⊥ is 2.
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Theorem 2 (see [1]). Let (𝑀, 𝑔, 𝑆(𝑇𝑀)) be a lightlike hyper-
surface of an almost paracontact manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔). Then
there exists a unique rank one vector subbundle ltr(𝑇𝑀) of
𝑇𝑀, with base space 𝑀, such that, for any nonzero section 𝐸
of RadTM on a coordinate neighborhood 𝑈 ⊂ 𝑀, there exists
a unique section𝑁 of ltr(𝑇𝑀) on 𝑈 satisfying

𝑔 (𝑁, 𝐸) = 1, 𝑔 (𝑁,𝑁) = 0, 𝑔 (𝑁,𝑊) = 0, (18)

for all 𝑊 ∈ Γ(𝑆(𝑇𝑀))|
𝑈
. ltr(𝑇𝑀) is called the lightlike

transversal vector bundle of𝑀 with respect to 𝑆(𝑇𝑀).

One can consider the following decompositions:

𝑆(𝑇𝑀)
⊥
= Rad 𝑇𝑀 ⊕ ltr (𝑇𝑀) , (19)

𝑇𝑀
𝑀

= 𝑆 (𝑇𝑀) ⊥ {Rad 𝑇𝑀 ⊕ ltr (𝑇𝑀)}

= 𝑇𝑀 ⊕ ltr (𝑇𝑀) .

(20)

Let ∇ be the Levi-Civita connection on 𝑀. Using (20) we
deduce

∇
𝑋
𝑌 = ∇

𝑋
𝑌 + ℎ (𝑋, 𝑌) , (21)

∇
𝑋
𝑁 = −𝐴

𝑁
𝑋 + ∇

𝑡

𝑋
𝑁, (22)

for any 𝑋,𝑌 ∈ Γ(𝑇𝑀) and 𝑁 ∈ Γ(ltr(𝑇𝑀)). Then ∇ and
∇
𝑡 are called the induced connection on 𝑀 and ltr(𝑇𝑀),

respectively, and, as in the classical theory of Riemannian
hypersurfaces, ℎ and 𝐴

𝑁
are called the second fundamen-

tal form and the shape operator, respectively. The above
equations are cited as the Gauss and Weingarten equation,
respectively [1].

Locally, let 𝐸,𝑁, and𝑈 be as inTheorem 2.Then, for any
𝑋,𝑌 ∈ Γ(𝑇𝑀|

𝑈
), putting

𝐵 (𝑋, 𝑌) = 𝑔 (ℎ (𝑋, 𝑌) , 𝐸) , 𝜏 (𝑋) = 𝑔 (∇
𝑡

𝑋
𝑁,𝐸) , (23)

we can write

∇
𝑋
𝑌 = ∇

𝑋
𝑌 + 𝐵 (𝑋, 𝑌)𝑁, (24)

∇
𝑋
𝑁 = −𝐴

𝑁
𝑋 + 𝜏 (𝑋)𝑁. (25)

𝐵 is called the local second fundamental form of𝑀, because
it determines ℎ on 𝑈. Moreover, 𝐵 is degenerate and

𝐵 (𝑋, 𝐸) = 0, (26)

for any𝑋 ∈ Γ(𝑇𝑀|
𝑈
).

The decomposition (16) allows to define a canonical
projection 𝑃 : Γ(𝑇𝑀) → Γ(𝑆(𝑇𝑀)). For each 𝑋 ∈ Γ(𝑇𝑀),
we may write

𝑋 = 𝑃𝑋 + 𝜃 (𝑋) 𝐸, (27)

where 𝜃 is a 1-form given by

𝜃 (𝑋) = 𝑔 (𝑋,𝑁) . (28)

From (24), for all𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀), we get

(∇
𝑋
𝑔) (𝑌, 𝑍) = 𝐵 (𝑋, 𝑌) 𝜃 (𝑍) + 𝐵 (𝑋, 𝑍) 𝜃 (𝑌) , (29)

which implies that the induced connection ∇ is a nonmetric
connection on𝑀.

Then for any𝑋,𝑌 ∈ Γ(𝑇𝑀) and𝐸 ∈ Γ(𝑇𝑀
⊥
)we canwrite

∇
𝑋
𝑃𝑌 = ∇

∗

𝑋
𝑃𝑌 + ℎ

∗
(𝑋, 𝑃𝑌) , (30)

∇
𝑋
𝐸 = −𝐴

∗

𝐸
𝑋 + ∇

∗𝑡

𝑋
𝐸, (31)

where ∇
∗ and ∇

∗𝑡 are linear connections on the bundles
𝑆(𝑇𝑀) and Rad(𝑇𝑀), respectively. Further, ℎ∗ and 𝐴

∗ are
called the second fundamental form and the shape operator
of the screen distribution, respectively. Locally, let 𝑈 be a
coordinate neighborhood of𝑀 and 𝐸,𝑁 sections on𝑈, as in
Theorem 2. Then, putting 𝐶(𝑋, 𝑃𝑌) = 𝑔(ℎ

∗
(𝑋, 𝑃𝑌),𝑁), for

any𝑋,𝑌 ∈ Γ(𝑇𝑀|
𝑈
), one has

ℎ
∗
(𝑋, 𝑃𝑌) = 𝐶 (𝑋, 𝑃𝑌) 𝐸, 𝑔 (∇

∗𝑡

𝑋
𝐸,𝑁) = −𝜏 (𝑋) ,

(32)

and, locally on 𝑈, (30) and (31) become

∇
𝑋
𝑃𝑌 = ∇

∗

𝑋
𝑃𝑌 + 𝐶 (𝑋, 𝑃𝑌) 𝐸,

∇
𝑋
𝐸 = −𝐴

∗

𝐸
𝑋 − 𝜏 (𝑋) 𝐸.

(33)

The local second fundamental forms 𝐵 and 𝐶, respec-
tively, of𝑀 and on 𝑆(𝑇𝑀) are related to their shape operators
by

𝑔 (𝐴
∗

𝐸
𝑋, 𝑃𝑌) = 𝐵 (𝑋, 𝑃𝑌) , 𝑔 (𝐴

∗

𝐸
𝑋,𝑁) = 0, (34)

𝑔 (𝐴
𝑁
𝑋,𝑃𝑌) = 𝐶 (𝑋, 𝑃𝑌) , 𝑔 (𝐴

𝑁
𝑋,𝑁) = 0. (35)

Furthermore, one has 𝐴∗
𝐸
𝑋 = 0, ∇

𝐸
𝐸 = ∇

𝐸
𝐸 = −𝜏(𝐸)𝐸. (For

more details we refer to [1, 2].)

3. Lightlike Hypersurfaces of
Para-Sasakian Manifolds

Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional para-Sasakian
manifold and𝑀 a lightlike hypersurface of𝑀 such that the
structure vector field 𝜉 is tangent to 𝑀. For local sections 𝐸
and 𝑁 of Rad(𝑇𝑀) and ltr(𝑇𝑀), respectively, in view of (7)
we have

𝜂 (𝐸) = 0, 𝜂 (𝑁) = 0. (36)

From (6) it is easy to see that 𝜙𝐸 and 𝜙𝑁 are lightlike vector
fields and

𝜙
2

𝐸 = 𝐸, 𝜙
2

𝑁 = 𝑁. (37)

Now, for any𝑋 ∈ Γ(𝑇𝑀), we write

𝜙𝑋 = 𝜙𝑋 + 𝑢 (𝑋)𝑁, (38)

where 𝜙𝑋 ∈ Γ(𝑇𝑀) and

𝑢 (𝑋) = 𝑔 (𝜙𝑋, 𝐸) = −𝑔 (𝑋, 𝜙𝐸) . (39)
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Proposition 3. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
para-Sasakian manifold and 𝑀 a lightlike hypersurface of 𝑀
such that the structure vector field 𝜉 is tangent to𝑀. Then one
has

𝑔 (𝜙𝐸,𝑁) = −𝑔 (𝐴
𝑁
𝐸, 𝜉) , (40)

where 𝐸 is any local section of Rad(𝑇𝑀) and 𝑁 is any local
section of ltr(𝑇𝑀).

Proof. From (10) and (18) we have

𝑔 (𝜙𝐸,𝑁) = −𝑔 (∇
𝐸
𝜉,𝑁) = 𝑔 (𝜉, ∇

𝐸
𝑁) , (41)

which gives (40) by virtue of (22).

Remark 4. From (6) we get 𝑔(𝜙𝐸, 𝐸) = 0, which implies that
there is no component of 𝜙𝐸 in ltr(𝑇𝑀) and so 𝜙𝐸 ∈ Γ(𝑇𝑀).
Moreover, (40) implies that there may be a component of 𝜙𝐸
in Rad(𝑇𝑀). Thus, in view of (27), we observe that

𝜙𝐸 = 𝜙𝐸 = 𝑃𝜙𝐸 + 𝜃 (𝜙𝐸)𝐸. (42)

Proposition 5. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
para-Sasakian manifold and 𝑀 a lightlike hypersurface of 𝑀
such that the structure vector field 𝜉 is tangent to𝑀. Then one
has

𝑔 (𝑋, 𝜙𝑌) = −𝑔 (𝜙𝑋, 𝑌) − (𝑢 ⊗ 𝜃 + 𝜃 ⊗ 𝑢) (𝑋, 𝑌) , (43)

𝑔 (𝜙𝑋, 𝜙𝑌) = − 𝑔 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌)

− 𝑢 (𝑋) 𝜃 (𝜙𝑌) − 𝑢 (𝑌) 𝜃 (𝜙𝑋) ,

(44)

for any𝑋,𝑌 ∈ Γ(𝑇𝑀).

Proof. By using (38) and (39) we obtain

𝑔 (𝜙𝑋, 𝑌) = 𝑔 (𝑋, 𝜙𝑌) + 𝑢 (𝑌) 𝑔 (𝑋,𝑁) . (45)

Hence in view of (6) we get (43). From (38) we have

𝑔 (𝜙𝑋, 𝜙𝑌) = 𝑔 (𝜙𝑋, 𝜙𝑌) + 𝑢 (𝑌) 𝜃 (𝜙𝑋) + 𝑢 (𝑋) 𝜃 (𝜙𝑌) .

(46)

Thus, by using the last equation above and (5), we complete
the proof.

Corollary 6. Let 𝑀 be a lightlike hypersurface of a para-
Sasakian manifold such that the structure vector field 𝜉 is
tangent to𝑀. Then, for all𝑋 ∈ Γ(𝑇𝑀), one has 𝑔(𝜉, 𝜙𝑋) = 0.

Proposition 7. Let𝑀 be a lightlike hypersurface of a (2𝑛+1)-
dimensional para-Sasakian manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) such that
the structure vector field 𝜉 is tangent to𝑀. Then, for any 𝑋 ∈

Γ(𝑇𝑀), one has

𝜙
2
𝑋 = 𝑋 − 𝜂 (𝑋) 𝜉 − 𝑢 (𝜙𝑋)𝑁 − 𝑢 (𝑋) 𝜙𝑁, (47)

∇
𝑋
𝜉 = −𝜙𝑋, (48)

𝐵 (𝑋, 𝜉) = −𝑢 (𝑋) . (49)

Proof. From (1) and (38), we get (47). Next, by using (10), (24),
and (38), we have

∇
𝑋
𝜉 + 𝐵 (𝑋, 𝜉) = −𝜙𝑋 − 𝑢 (𝑋)𝑁. (50)

Then by equating the tangential and transversal parts in the
previous equation we get (48) and (49), respectively.

4. Invariant Lightlike Hypersurfaces of Almost
Paracontact Metric Manifolds

We begin with the following.

Definition 8. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
para-Sasakian manifold and 𝑀 a lightlike hypersurface of
𝑀 such that the structure vector field 𝜉 is tangent to 𝑀.
If 𝜙(𝑆(𝑇𝑀)) ⊆ 𝑆(𝑇𝑀), then 𝑀 will be called an invariant
lightlike hypersurface of𝑀.

Example 9. Let 𝑀 = R5 be the 5-dimensional real number
space with a coordinate system (𝑥

1
, 𝑦
1
, 𝑥
2
, 𝑦
2
, 𝑧). Define a

frame of vector fields on𝑀 given by WeG yczko [11]:

𝑒
1
=

𝜕

𝜕𝑥
1

, 𝑒
2
=

𝜕

𝜕𝑥
2

,

𝑒
3
=

1

1 + 𝑦
2

1

𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑦
1

− 2𝑥
1

𝜕

𝜕𝑧
,

𝑒
4
=

1

1 + 𝑦
2

1

𝜕

𝜕𝑥
2

+
𝜕

𝜕𝑦
2

− 2𝑥
2

𝜕

𝜕𝑧
,

𝑒
5
=

𝜕

𝜕𝑧
.

(51)

Defining

𝜂 = 2𝑥
1
𝑑𝑦
1
+ 2𝑥
2
𝑑𝑦
2
+ 𝑑𝑧, 𝜉 = 𝑒

5
,

𝜙𝑒
1
= −𝑒
1
, 𝜙𝑒

2
= −𝑒
2
, 𝜙𝑒

3
= 𝑒
3
,

𝜙𝑒
4
= 𝑒
4
, 𝜙𝑒

5
= 𝑒
5
,

𝑔 (𝑒
1
, 𝑒
3
) = 𝑔 (𝑒

3
, 𝑒
1
) = 𝑔 (𝑒

2
, 𝑒
4
) = 𝑔 (𝑒

4
, 𝑒
2
)

= 𝑔 (𝑒
5
, 𝑒
5
) = 1,

𝑔 (𝑒
𝑖
, 𝑒
𝑗
) = 0, otherwise,

(52)

the set (𝜙, 𝜉, 𝜂, 𝑔) is an almost paracontact metric structure
on 𝑀 with index (𝑔) = 2. Consider a hypersurface 𝑀 of 𝑀
given by

𝑥
1
= arctan𝑦

1
. (53)

It is easy to check that𝑀 is a lightlike hypersurface and

Rad (𝑇𝑀) = Span {𝐸 = 𝑒
3
} . (54)

Then the lightlike transversal vector bundle ltr(𝑇𝑀) is
spanned by

𝑁 = 𝑒
1
. (55)
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It follows that corresponding screen distribution 𝑆(𝑇𝑀) is
spanned by

{𝑊
1
= 𝑒
2
, 𝑊
2
= 𝑒
4
, 𝑊
3
= 𝑒
5
} . (56)

We easily check that

𝜙𝑊
1
= −𝑊

1
, 𝜙𝑊

2
= 𝑊
2
, 𝜙𝑊

3
= 0, (57)

which gives 𝜙(𝑆(𝑇𝑀)) ⊆ 𝑆(𝑇𝑀). Thus 𝑀 is an invariant
lightlike hypersurface of𝑀.

Now we give a characterization of an invariant lightlike
hypersurface.

Theorem 10. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
para-Sasakian manifold and 𝑀 a lightlike hypersurface of 𝑀
such that the structure vector field 𝜉 is tangent to𝑀. Then𝑀
is an invariant lightlike hypersurface of𝑀 if and only if

𝜙RadTM = RadTM, 𝜙ltrTM = ltrTM. (58)

Proof. Let 𝑀 be an invariant lightlike hypersurface of 𝑀.
From (27) and (42), for any𝑋 ∈ Γ(𝑇𝑀), we get 𝑔(𝑃𝜙𝐸, 𝑃𝑋) =
0; that is, there is no component of 𝜙𝐸 in 𝑆(𝑇𝑀). Moreover, it
is obvious from (6) that 𝜙𝐸 has no component in ltr𝑇𝑀 and
so 𝜙Rad𝑇𝑀 = Rad𝑇𝑀.

On the other hand, for any local section𝑁 of ltr𝑇𝑀, we
can write

𝜙𝑁 = 𝑃𝜙𝑁 + 𝑔 (𝜙𝑁, 𝐸)𝑁. (59)

By using the previous equation we have 𝑔(𝑃𝜙𝑁, 𝑃𝑋) = 0, for
any𝑋 ∈ Γ(𝑇𝑀), which implies that 𝜙𝑁 has no component in
𝑆(𝑇𝑀). Since 𝑔(𝜙𝑁,𝑁) = 0, then it is also seen that there is
no component of 𝜙𝑁 in Rad𝑇𝑀. Hence 𝜙ltr𝑇𝑀 = ltr𝑇𝑀.

Conversely, let 𝜙Rad𝑇𝑀 = Rad𝑇𝑀 and 𝜙ltr𝑇𝑀 =

ltr𝑇𝑀. For any𝑋 ∈ Γ(𝑆(𝑇𝑀)) we have

𝑔 (𝜙𝑋, 𝐸) = −𝑔 (𝑋, 𝜙𝐸) = 0, (60)

which implies that𝜙𝑋 has no component in ltr𝑇𝑀. Similarly,
we get

𝑔 (𝜙𝑋,𝑁) = −𝑔 (𝑋, 𝜙𝑁) = 0; (61)

thus there is no component of 𝜙𝑋 in Rad𝑇𝑀. The proof is
completed.

Corollary 11. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
para-Sasakian manifold and 𝑀 a lightlike hypersurface of 𝑀
such that the structure vector field 𝜉 is tangent to𝑀. Then𝑀
is an invariant lightlike hypersurface of𝑀 if and only if

𝜙𝐸 = ±𝐸, 𝜙𝑁 = ±𝑁. (62)

Theorem 12. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
almost paracontact metric manifold and 𝑀 an invariant
lightlike hypersurface of 𝑀. Then (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) is an almost
paracontact metric manifold.

Proof. Let𝑀 be an invariant lightlike hypersurface of𝑀. For
any𝑋,𝑌 ∈ Γ(𝑇𝑀), from (38), we get

𝜙𝑋 = 𝜙𝑋. (63)

Using (1) and (63), we have

𝜙
2
𝑋 = 𝑋 − 𝜂 (𝑋) 𝜉. (64)

Also from (63), it follows that

𝜙𝜉 = 0. (65)

Next, in view of (64) and (65) one can easily see that

𝜂 ∘ 𝜙 = 0,

𝜂 (𝜉) = 1.

(66)

Moreover, from (44), we have

𝑔 (𝜙𝑋, 𝜙𝑌) = −𝑔 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌) . (67)

From (64)-(67) we complete the proof.

Proposition 13. Let𝑀 be an invariant lightlike hypersurface
of a para-Sasakian manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔). Then we have

𝑔 (𝐴
𝑁
𝑋, 𝜉) = 0, (68)

for any 𝑋 ∈ Γ(𝑇𝑀).

Proof. Since 𝑔(𝜉,𝑁) = 0, using (10), we get

𝑔 (∇
𝑋
𝑁, 𝜉) = 𝑔 (𝑁, 𝜙𝑋) . (69)

From (25), we have the assertion of the proposition.

Theorem 14. An invariant lightlike hypersurface of a para-
Sasakian manifold is always para-Sasakian. Moreover,

𝐵 (𝑋, 𝜙𝑌)𝑁 − 𝐵 (𝑋, 𝑌) 𝜙𝑁 = 0, (70)

𝜙 (𝐴
𝑁
𝑋) = 𝐴

𝜙𝑁
𝑋 − 𝜃 (𝑋) 𝜉, (71)

for any 𝑋,𝑌 ∈ Γ(𝑇𝑀).

Proof. We have

(∇
𝑋
𝜙)𝑌 = ∇

𝑋
𝜙𝑌 − 𝜙 (∇

𝑋
𝑌)

= ∇
𝑋
𝜙𝑌 − 𝜙 (∇

𝑋
𝑌 + 𝐵 (𝑋, 𝑌)𝑁)

= ∇
𝑋
𝜙𝑌 + 𝐵 (𝑋, 𝜙𝑌)𝑁 − 𝜙∇

𝑋
𝑌 − 𝐵 (𝑋, 𝑌) 𝜙𝑁

= (∇
𝑋
𝜙)𝑌 + 𝐵 (𝑋, 𝜙𝑌)𝑁 − 𝐵 (𝑋, 𝑌) 𝜙𝑁,

(72)

which in view of (9) gives

−𝑔 (𝑋, 𝑌) 𝜉 + 𝜂 (𝑌)𝑋 = (∇
𝑋
𝜙)𝑌 + 𝐵 (𝑋, 𝜙𝑌)𝑁

− 𝐵 (𝑋, 𝑌) 𝜙𝑁.

(73)
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Equating tangential parts in (73) provides

(∇
𝑋
𝜙)𝑌 = − 𝑔 (𝑋, 𝑌) 𝜉 + 𝜂 (𝑌)𝑋. (74)

In view of (74) and Theorem 12, we see that 𝑀 is a para-
Sasakian manifold. Equating transversal parts in (73) yields
(70). Next, using (9) and (25), we have

−𝜃 (𝑋) 𝜉 = (∇
𝑋
𝜙)𝑁 = ∇

𝑋
𝜙𝑁 − 𝜙 (∇

𝑋
𝑁)

= − 𝐴
𝜙𝑁
𝑋 + 𝑔 (∇

𝑋
𝜙𝑁, 𝐸)𝑁 + 𝜙 (𝐴

𝑁
𝑋)

− 𝜏 (𝑋) 𝜙𝑁.

(75)

In the last equation, if we equate the tangential parts, we get
(71).

This completes the proof.

Remark 15. It is well known that, if there exists a lightlike
hypersurface in an indefinite Sasakian manifold, then the
dimension of the indefinite Sasakian manifold must be equal
or greater than 5. But in a paracontact metric manifold there
is not such a restriction in the dimension of the ambient
manifold for the existence of lightlike hypersurfaces.

Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a 3-dimensional almost paracontact
metric manifold and𝑀 a lightlike surface of𝑀 such that the
structure vector field 𝜉 is tangent to 𝑀. Since 𝜉 is a nonnull
vector field, it belongs to the screen distribution 𝑆(𝑇𝑀).Thus,
{𝜉, 𝐸,𝑁} is a quasi-orthonormal frame of 𝑇𝑀. Also with
respect to the quasi-orthonormal frame {𝜉, 𝐸,𝑁} of 𝑇𝑀 we
can write

𝜙𝐸 = 𝑎𝜉 + 𝑏𝐸 + 𝑐𝑁,

𝜙𝑁 = 𝑑𝜉 + 𝑒𝐸 + 𝑓𝑁,

(76)

where 𝑎 = 𝑔(𝜙𝐸, 𝜉) = 0, 𝑏 = 𝑔(𝜙𝐸,𝑁), 𝑐 = 𝑔(𝜙𝐸, 𝐸) = 0,
𝑑 = 𝑔(𝜙𝑁, 𝜉) = 0, 𝑒 = 𝑔(𝜙𝑁,𝑁) = 0, and 𝑓 = 𝑔(𝜙𝐸,𝑁) = 𝑏.
Thus we have

𝜙𝐸 = 𝑏𝐸,

𝜙𝑁 = 𝑏𝑁.

(77)

Hence, a lightlike surface 𝑀 of 𝑀, tangent to the structure
vector field 𝜉, is always an invariant lightlike surface.

Example 16. Let 𝑀 = R3 be a 3-dimensional almost
paracontact metric manifold with the structure (𝜙, 𝜉, 𝜂, 𝑔)

given in Example 1. Consider a surface 𝑀 of 𝑀 given by
𝑥
1
= 𝑦
1
. It is easy to check that 𝑀 is a lightlike surface and

Rad(𝑇𝑀) and ltr(𝑇𝑀) are given by

Rad𝑇𝑀 = Span{𝐸 =
𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑦
1

} ,

ltr𝑇𝑀 = Span{𝑁 =
1

2
(

𝜕

𝜕𝑥
1

−
𝜕

𝜕𝑦
1

)} ,

(78)

respectively. It follows that corresponding screen distribution
is spanned by

{𝜉 =
𝜕

𝜕𝑧
} . (79)

Then 𝜙𝐸 = 𝐸 and 𝜙𝑁 = −𝑁, which imply that 𝑀 is an
invariant lightlike surface.

Example 17. Let (𝐽, 𝐺) be the standard flat para-Kähler
structure on R2𝑛+2

𝑛
,

𝐽 (
𝜕

𝜕𝑥
𝛼

) =
𝜕

𝜕𝑥
𝛼+𝑛+1

, 𝐽 (
𝜕

𝜕𝑥
𝛼+𝑛+1

) =
𝜕

𝜕𝑥
𝛼

,

𝐺 (
𝜕

𝜕𝑥
𝛼

,
𝜕

𝜕𝑥
𝛼

) = 1, 𝐺(
𝜕

𝜕𝑥
𝛼+𝑛+1

,
𝜕

𝜕𝑥
𝛼+𝑛+1

) = −1,

(80)

for 𝛼 = 1, . . . , 𝑛, where (𝑥
1
, 𝑥
2
, . . . , 𝑥

2𝑛+2
) are the Cartesian

coordinates on R2𝑛+2
𝑛

. Consider the hypersurface 𝐻2𝑛+1
𝑛

in
R2𝑛+2
𝑛+1

given by the equation

𝐻
2𝑛+1

𝑛
= {𝑥 ∈ R

2𝑛+2

𝑛+1
:

𝑛+1

∑

𝛼=1

𝑥
2

𝑎
−

2𝑛+2

∑

𝛼=𝑛+2

𝑥
2

𝑎
= −1} . (81)

Let𝑁 = ∑
2𝑛+2

𝛼=𝑛+2
𝑥
𝑖
(𝜕/𝜕𝑥

𝑖
) be the normal vector field of𝐻2𝑛+1

𝑛
.

Then 𝐺(𝑁,𝑁) = −1.
Define a vector field 𝜉, a tensor field 𝜙 of type (1, 1), a

1-form 𝜂, and a pseudo-Riemannian metric 𝑔 on 𝐻
2𝑛+1

𝑛
by

assuming

𝐽 (𝑋) = 𝜙𝑋 − 𝜂 (𝑋)𝑁, 𝜉 = −𝐽𝑁, 𝑔 = 𝐺|𝐻2𝑛+1
𝑛

.

(82)

Then we get an almost paracontact metric structure (𝜙, 𝜉,
𝜂, 𝑔) on𝐻2𝑛+1

𝑛
. Moreover, this structure is para-Sasakian [11].

Now cut 𝐻3
1
by the hyperplane 𝑥

1
− 𝑥
3
= 0 and obtain a

lightlike surface𝑀 of𝐻3
1
with

Rad𝑇𝑀 = Span {𝐸 = 𝑈
1
} ,

𝑆 (𝑇𝑀) = Span {𝑊 = −𝑥
1
𝑈
1
− 𝑈
2
} ,

(83)

where𝑈
1
= (𝜕/𝜕𝑥

1
) + (𝜕/𝜕𝑥

3
),𝑈
2
= 𝑥
4
(𝜕/𝜕𝑥

2
) + 𝑥
2
(𝜕/𝜕𝑥

4
) ∈

Γ(𝑇𝑀). It follows that the lightlike transversal bundle ltr(𝑇𝑀)

is spanned by

𝑁 =
1

2
{

𝜕

𝜕𝑥
1

−
2𝑥
1

𝑥
2
+ 𝑥
4

𝜕

𝜕𝑥
2

−
𝜕

𝜕𝑥
3

+
2𝑥
1

𝑥
2
+ 𝑥
4

𝜕

𝜕𝑥
4

} . (84)

Furthermore,

𝜙𝐸 = 𝐸, 𝜙𝑁 = −𝑁. (85)

Thus𝑀 is an invariant surface of𝐻3
1
.
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5. Screen Semi-Invariant Lightlike
Hypersurfaces of Almost Paracontact
Metric Manifolds

If 𝐸 is local section of Γ(Rad(𝑇𝑀)), one has 𝑔(𝜙𝐸, 𝐸) =

0; therefore 𝜙𝐸 ∈ Γ(𝑇𝑀) and we get a 1-dimensional
distribution 𝜙(Rad(𝑇𝑀)) on𝑀.

Definition 18. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
almost paracontact metric manifold and𝑀 a lightlike hyper-
surface of𝑀. If

𝜙 (Rad (𝑇𝑀)) ⊂ 𝑆 (𝑇𝑀) ,

𝜙 (ltr (𝑇𝑀)) ⊂ 𝑆 (𝑇𝑀) ,

(86)

then 𝑀 will be called a screen semi-invariant lightlike
hypersurface of𝑀.

Example 19. Let 𝑀 = R7 be a 7-dimensional almost
paracontact metric manifold with the structure (𝜙, 𝜉, 𝜂, 𝑔)

given in Example 1. Consider a hypersurface 𝑀 of 𝑀 given
by

𝑥
1
= 𝑦
1
+ 𝑥
2
+ 𝑦
2
+ 𝑥
3
+ 𝑦
3
. (87)

Then the tangent bundle 𝑇𝑀 of𝑀 is spanned by

{𝑈
1
=

𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑦
1

, 𝑈
2
=

𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑥
2

,

𝑈
3
=

𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑦
2

, 𝑈
4
=

𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑥
3

,

𝑈
5
=

𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑦
3

, 𝑈
6
=

𝜕

𝜕𝑧
} .

(88)

The radical distribution Rad𝑇𝑀 and the lightlike transversal
bundle ltr(𝑇𝑀) are given by

Rad (𝑇𝑀) = Span {𝐸 = 𝑈
1
− 𝑈
2
+ 𝑈
3
− 𝑈
4
+ 𝑈
5
} ,

ltr (𝑇𝑀)=Span{𝑁=2
𝜕

𝜕𝑥
1

+
3

2

𝜕

𝜕𝑦
1

+
𝜕

𝜕𝑦
2

−
1

2

𝜕

𝜕𝑥
3

−
𝜕

𝜕𝑦
3

} .

(89)

It follows that the screen distribution 𝑆(𝑇𝑀) is spanned by
{𝑊
1
,𝑊
2
,𝑊
3
,𝑊
4
,𝑊
5
}, where

𝑊
1
= 𝑈
6
,

𝑊
2
= 𝑈
1
+ 𝑈
2
− 𝑈
3
+ 𝑈
4
− 𝑈
5
,

𝑊
3
= 𝑈
1
− 𝑈
3
+ 𝑈
5
,

𝑊
4
= − 2𝑈

1
− 𝑈
2
+ 𝑈
4
+
1

2
𝑈
5
,

𝑊
5
= 4𝑈
1
+ 𝑈
2
− 𝑈
4
.

(90)

Furthermore,

𝜙𝐸 = 𝑊
2
∈ Γ (𝑆 (𝑇𝑀)) ,

𝜙𝑁 = −𝑊
4
∈ Γ (𝑆 (𝑇𝑀)) .

(91)

Thus,𝑀 is a screen semi-invariant lightlike hypersurface
of𝑀.

From now on, we will write (𝑀, 𝑔, 𝑆(𝑇𝑀)) to denote a
screen semi-invariant lightlike hypersurface, together with
the choices of a fixed nonzero section 𝐸 of Rad𝑇𝑀, a fixed
screen distribution 𝑆(𝑇𝑀), ltr(𝑇𝑀), and𝑁 as inTheorem 2.

Since𝑀 is a screen semi-invariant lightlike hypersurface,
then we have 𝜙𝑁 ∈ 𝑆(𝑇𝑀) and

𝑔 (𝜙𝑁, 𝐸) = −𝑔 (𝑁, 𝜙𝐸) = 0, 𝑔 (𝜙𝑁,𝑁) = 0, (92)

which imply that 𝜙𝑁 is orthogonal to 𝑆(𝑇𝑀)
⊥ by virtue of

(19). Also, from (5), we obtain

𝑔 (𝜙𝑁, 𝜙𝐸) = −1. (93)

Therefore, 𝜙(Rad(𝑇𝑀)) ⊕ 𝜙(ltr(𝑇𝑀)) is a nondegenerate
vector subbundle of 𝑆(𝑇𝑀) of rank 2.

In the following, being 𝑆(𝑇𝑀) and 𝜙(Rad(𝑇𝑀)) ⊕

𝜙(ltr(𝑇𝑀)) nondegenerate, we can define the unique nonde-
generate distribution𝐷

0
such that [2]

𝑆 (𝑇𝑀) = {𝜙 (Rad (𝑇𝑀)) ⊕ 𝜙 (ltr (𝑇𝑀))} ⊥ 𝐷
0
. (94)

Then 𝜉 ∈ Γ(𝐷
0
) and 𝐷

0
is invariant under 𝜙; that is, 𝜙(𝐷

0
) =

𝐷
0
. Moreover, from (16), (20), and (94) we write

𝑇𝑀 = {𝜙 (Rad (𝑇𝑀)) ⊕ 𝜙 (ltr (𝑇𝑀))} ⊥ 𝐷
0
⊥ Rad (𝑇𝑀) ,

(95)

𝑇𝑀 = {𝜙 (Rad (𝑇𝑀)) ⊕ 𝜙 (ltr (𝑇𝑀))}

⊥ 𝐷
0
⊥ {Rad (𝑇𝑀) ⊕ ltr (𝑇𝑀)} .

(96)

For an almost paracontactmetricmanifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔),
we construct a useful local orthonormal basis. Let 𝑈 be a
coordinate neighborhood on 𝑀 and 𝑒

1
any unit vector field

on𝑈 orthogonal to 𝜉. Then 𝜙𝑒
1
is a vector field orthogonal to

both 𝑒
1
and 𝜉, and𝑔(𝜙𝑒

1
, 𝜙𝑒
1
) = −1. Choose a unit vector field

𝑒
2
orthogonal to 𝜉, 𝑒

1
, and 𝜙𝑒

1
. Then 𝜙𝑒

2
is also orthogonal

to 𝜉, 𝑒
1
, 𝑒
2
, and 𝜙𝑒

1
and 𝑔(𝜙𝑒

2
, 𝜙𝑒
2
) = −1. Proceeding in

this way we obtain a set of local orthonormal vector fields
{𝑒
𝑖
, 𝜙𝑒
𝑖
, 𝜉} (𝑖 = 1, 2, . . . , 𝑛 − 2). Now construct the unit vector

field 𝑒
𝑛−1

= (𝐸 + 𝑁)/√2 orthogonal to 𝜉, 𝑒
𝑖
, and 𝜙𝑒

𝑖
(𝑖 =

1, 2, . . . , 𝑛−2).Then 𝜙𝑒
𝑛−1

= (𝜙𝐸+𝜙𝑁)/√2 is also orthogonal
to 𝜉, 𝑒

𝑖
, and 𝜙𝑒

𝑖
(𝑖 = 1, 2, . . . , 𝑛 − 2) and 𝑔(𝜙𝑒

𝑛−1
, 𝜙𝑒
𝑛−1

) = −1.
By a similar way set a unit vector field 𝑒

𝑛
= (𝜙𝐸 − 𝜙𝑁)/√2

orthogonal to 𝜉, 𝑒
𝑖
, and 𝜙𝑒

𝑖
(𝑖 = 1, 2, . . . , 𝑛 − 1). It is easy to

see that 𝜙𝑒
𝑛
= (𝐸 −𝑁)/√2 is also orthogonal to 𝜉, 𝑒

𝑖
, 𝜙𝑒
𝑖
(𝑖 =

1, 2, . . . , 𝑛 − 1) and 𝑔(𝜙𝑒
𝑛
, 𝜙𝑒
𝑛
) = −1. Hence, from a quasi-

orthonormal basis {𝑒
𝑖
, 𝜙𝑒
𝑖
, 𝐸,𝑁, 𝜙𝐸, 𝜙𝑁, 𝜉} (𝑖 = 1, 2, . . . , 𝑛 −

2) of𝑀, we obtain a local orthonormal basis

{𝑒
𝑖
, 𝑒
𝑛−1

=
𝐸 + 𝑁

√2

, 𝑒
𝑛
=
𝜙𝐸 − 𝜙𝑁

√2

,

𝜙𝑒
𝑖
, 𝜙𝑒
𝑛−1

=
𝜙𝐸 + 𝜙𝑁

√2

, 𝜙𝑒
𝑛
=
𝐸 − 𝑁

√2

, 𝜉} ,

(97)
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where 𝑖 = 1, 2, . . . , 𝑛 − 2, called 𝜙-basis. Thus we have the
following.

Proposition 20. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional
almost paracontact metric manifold and 𝑀 a screen semi-
invariant lightlike hypersurface of𝑀. Then there always exists
a 𝜙-basis on 𝑀 generated from a quasi-orthonormal basis
{𝑒
𝑖
, 𝜙𝑒
𝑖
, 𝐸,𝑁, 𝜙𝐸, 𝜙𝑁, 𝜉}, 𝑖 = 1, 2, . . . , 𝑛 − 2, of𝑀.

Now, we consider the distributions 𝐷 = Rad(𝑇𝑀) ⊥

𝜙(Rad(𝑇𝑀)) ⊥ 𝐷
0
, 𝐷 = 𝜙(ltr(𝑇𝑀)) on 𝑀. Then 𝐷 is a 𝜙-

invariant distribution and we have

𝑇𝑀 = 𝐷 ⊕ 𝐷

. (98)

Thus, every𝑋 ∈ Γ(𝑇𝑀) can be expressed by
𝑋 = 𝑅𝑋 + 𝑄𝑋, (99)

where 𝑅 and 𝑄 are the projections of 𝑇𝑀 into 𝐷 and 𝐷
,

respectively. Hence, we may write 𝜙𝑋 = 𝜙𝑅𝑋, for any 𝑋 ∈

Γ(𝑇𝑀). Let us consider the local lightlike vector fields 𝑈 =

𝜙𝑁 ∈ Γ(𝜙(ltr(𝑇𝑀))) and 𝑉 = 𝜙𝐸 ∈ Γ(𝐷). From (1), (38), and
(39), we obtain

𝜙
2

𝑋 = 𝜙
2
𝑋 + 𝑢 (𝑋)𝑈 + 𝑢 (𝜙𝑋)𝑁. (100)

By comparing the tangential and transversal parts in (100) we
get

𝜙
2
= 𝐼 − 𝜂 ⊗ 𝜉 − 𝑢 ⊗ 𝑈, (101)

𝑢 ∘ 𝜙 = 0, (102)

respectively. Next, from (3) one can easily see that
𝜙𝜉 = 0, 𝑢 (𝜉) = 0. (103)

Since 𝜙
2

𝑁 = 𝑁, by using (38), we also have
𝜙𝑈 = 0, 𝑢 (𝑈) = 1. (104)

Furthermore, from (4), we have
𝜂 (𝑈) = 0. (105)

Finally, we get

(𝜂 ∘ 𝜙)𝑋 = 𝜂 (𝜙𝑋 − 𝑢 (𝑋)𝑁) , (106)

which gives
𝜂 ∘ 𝜙 = 0. (107)

Thus we have the following.

Proposition 21. Let 𝑀 be a screen semi-invariant light-
like hypersurface of an almost paracontact metric mani-
fold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔). Then 𝑀 possesses a para (𝜙, 𝜉, 𝜂, 𝑈, 𝑢)-
structure; that is,

𝜙
2
= 𝐼 − 𝜂 ⊗ 𝜉 − 𝑢 ⊗ 𝑈, 𝜙𝜉 = 0,

𝜙𝑈 = 0, 𝜂 ∘ 𝜙 = 0,

𝑢 ∘ 𝜙 = 0, 𝜂 (𝜉) = 1, 𝑢 (𝑈) = 1,

𝜂 (𝑈) = 0, 𝑢 (𝜉) = 0.

(108)

Theorem 22. Let 𝑀 be a screen semi-invariant lightlike
hypersurface of a para-Sasakian manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔). Then
one has

(∇
𝑋
𝜙)𝑌 = −𝑔 (𝑋, 𝑌) 𝜉 + 𝜂 (𝑌)𝑋 + 𝑢 (𝑌)𝐴

𝑁
𝑋 + 𝐵 (𝑋, 𝑌)𝑈,

(109)

(∇
𝑋
𝑢)𝑌 = −𝐵 (𝑋, 𝜙𝑌) − 𝑢 (𝑌) 𝜏 (𝑋) , (110)

for all𝑋,𝑌 ∈ Γ(𝑇𝑀).

Proposition 23. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a para-Sasakian man-
ifold and (𝑀, 𝑔, 𝑆(𝑇𝑀)) a screen semi-invariant lightlike
hypersurface of 𝑀. Then M is totally geodesic if and only if,
for any 𝑋 ∈ Γ(𝑇𝑀) and for 𝑌 ∈ Γ(𝐷),

(∇
𝑋
𝜙)𝑌 = −𝑔 (𝑋, 𝑌) 𝜉 + 𝜂 (𝑌)𝑋, (111)

𝐴
𝑁
𝑋 = −𝜙∇

𝑋
𝑢 + 𝑔 (𝑋,𝑈) 𝜉. (112)

Proof. Let assume that 𝑀 is totally geodesic; that is, for any
𝑋,𝑌 ∈ Γ(𝑇𝑀), 𝐵(𝑋, 𝑌) = 0. Then, for 𝑌 ∈ Γ(𝐷) using 𝑢(𝑌) =
0 in (109) we have

(∇
𝑋
𝜙)𝑌 = −𝑔 (𝑋, 𝑌) 𝜉 + 𝜂 (𝑌)𝑋. (113)

Similarly, using (109) we have

(∇
𝑋
𝜙)𝑈 = 𝐴

𝑁
𝑋 − 𝑔 (𝑋,𝑈) 𝜉 + 𝜂 (𝑈)𝑋, (114)

which gives

𝐴
𝑁
𝑋 = −𝜙∇

𝑋
𝑈 + 𝑔 (𝑋,𝑈) 𝜉, (115)

by virtue of 𝜙𝑈 = 0 and 𝜂(𝑈) = 0.
Conversely, suppose that the conditions (111) and (112)

hold and we will prove that 𝐵 vanishes. If 𝑌 ∈ Γ(𝑇𝑀), using
the decomposition (98), there exists 𝛼 ∈ I(𝑈) such that

𝑌 = 𝑌
𝐷
+ 𝛼𝑈 (116)

and for any𝑋 ∈ Γ(𝑇𝑀) we obtain

𝐵 (𝑋, 𝑌) = 𝐵 (𝑋, 𝑌
𝐷
) + 𝛼𝐵 (𝑋,𝑈) . (117)

For 𝑌 = 𝑌
𝐷
, using (109) and (111), we find

𝐵 (𝑋, 𝑌
𝐷
) = 𝑢 (𝑌

𝐷
) 𝐴
𝑁
𝑋 = 0, (118)

which implies that 𝐵(𝑋, 𝑌
𝐷
) = 0.

Also, for any 𝑌 = 𝑈 from (109), using (112), we get

𝐵 (𝑋,𝑈)𝑈 = 0, (119)

which implies 𝐵(𝑋,𝑈) = 0. This completes the proof.

Proposition 24. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a para-Sasakian man-
ifold and (𝑀, 𝑔, 𝑆(𝑇𝑀)) a screen semi-invariant lightlike
hypersurface of𝑀. Then one has, for any 𝑋 ∈ Γ(𝑇𝑀),

(i) if the vector field 𝑈 is parallel, then

𝐴
𝑁
𝑋 = 𝜂 (𝐴

𝑁
𝑋) 𝜉 + 𝑢 (𝐴

𝑁
𝑋)𝑈, 𝜏 (𝑋) = 0; (120)

(ii) if the vector field 𝑉 is parallel, then

𝐴
∗

𝐸
𝑋 = 𝜂 (𝐴

∗

𝐸
𝑋) 𝜉 + 𝑢 (𝐴

∗

𝐸
𝑋)𝑈, 𝜏 (𝑋) = 0, (121)

where 𝑈 = 𝜙𝑁 and 𝑉 = 𝜙𝐸.
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6. Integrability of Distributions on a Screen
Semi-Invariant Lightlike Hypersurface of
a Para-Sasakian Manifold

6.1. The Distribution 𝐷
0
. Firstly, we consider the distribu-

tion 𝐷
0
, defined in (94). Using (95) and putting 𝜇 =

{𝜙(Rad(𝑇𝑀))⊕𝜙(ltr(𝑇𝑀))} ⊥ Rad(𝑇𝑀), for any𝑋 ∈ Γ(𝑇𝑀),
𝑌 ∈ Γ(𝐷

0
), and 𝑍 ∈ Γ(𝜇) we have

∇
𝑋
𝑌 =

∘

∇
𝑋
𝑌 +

∘

ℎ (𝑋, 𝑌) , (122)

∇
𝑋
𝑍 = −

∘

𝐴
𝑍
𝑋 + ∇

𝜇

𝑋
𝑍, (123)

where
∘

∇ is a linear connection on the bundle𝐷
0
,
∘

ℎ : Γ(𝑇𝑀)×

Γ(𝐷
0
) → Γ(𝜇) is an I(𝑀) bilinear,

∘

𝐴 is an I(𝑀) linear
operator on Γ(𝐷

0
), respectively, and ∇𝜇 is a linear connection

on 𝜇.

Lemma 25. Let (𝑀, 𝑔, 𝑆(𝑇𝑀)) be a screen semi-invariant
lightlike hypersurface of a para-Sasakian manifold (𝑀, 𝜙,

𝜉, 𝜂, 𝑔) and 𝑈 ⊂ 𝑀 a coordinate neighborhood as fixed in
Theorem 2. Then, for any 𝑋,𝑌 ∈ Γ(𝐷

0
), one has

𝑔 ((∇
𝑋
𝜙)𝑌, 𝐸) = 0, (124)

𝑔 ((∇
𝑋
𝜙)𝑌,𝑁) = 0. (125)

Proof. Calculation is straightforward by using (9).

Let 𝑈 ⊂ 𝑀 be a coordinate neighborhood as fixed in
Theorem 2. Then according to decomposition given by (95)
we set

𝛼
1
(𝑋, 𝑌) = −𝑔 (

∘

ℎ (𝑋, 𝑌) , 𝜙𝑁) ,

𝛼
2
(𝑋, 𝑌) = −𝑔 (

∘

ℎ (𝑋, 𝑌) , 𝜙𝐸) ,

𝛼
3
(𝑋, 𝑌) = 𝑔 (

∘

ℎ (𝑋, 𝑌) ,𝑁) ,

(126)

for any𝑋,𝑌 ∈ Γ(𝐷
0
|
𝑈
). So (122) can be written locally as

∇
𝑋
𝑌 =

∘

∇
𝑋
𝑌 + 𝛼
1
(𝑋, 𝑌) 𝜙𝐸 + 𝛼

2
(𝑋, 𝑌) 𝜙𝑁 + 𝛼

3
(𝑋, 𝑌) 𝐸.

(127)

We will express 𝛼
1
, 𝛼
2
, and 𝛼

3
in terms of 𝐵 and 𝐶. Firstly, we

compute

𝑔 (∇
𝑋
𝑌, 𝜙𝑁) = 𝑔 (

∘

∇
𝑋
𝑌 + 𝛼
1
(𝑋, 𝑌) 𝜙𝐸 + 𝛼

2
(𝑋, 𝑌) 𝜙𝑁

+𝛼
3
(𝑋, 𝑌) 𝐸, 𝜙𝑁) = −𝛼

1
(𝑋, 𝑌) .

(128)

Then, by using (125), (24) and (25), we get

𝑔 (∇
𝑋
𝑌, 𝜙𝑁) = − 𝑔 (𝜙∇

𝑋
𝑌,𝑁) = −𝑔 (𝜙∇

𝑋
𝑌,𝑁)

= 𝑔 ((∇
𝑋
𝜙)𝑌,𝑁) − 𝑔 (∇

𝑋
𝜙𝑌,𝑁)

= − 𝑔 (∇
𝑋
𝜙𝑌,𝑁)

= 𝑔 (𝜙𝑌, ∇
𝑋
𝑁)

= − 𝑔 (𝐴
𝑁
𝑋, 𝜙𝑌) = −𝐶 (𝑋, 𝜙𝑌) ,

(129)

in view of 𝐷
0
being 𝜙-invariant and ∇ being a metric

connection.
Next we have

𝑔 (∇
𝑋
𝑌, 𝜙𝑁) = 𝑔 (

∘

∇
𝑋
𝑌 + 𝛼
1
(𝑋, 𝑌) 𝜙𝐸 + 𝛼

2
(𝑋, 𝑌) 𝜙𝑁

+𝛼
3
(𝑋, 𝑌) 𝐸, 𝜙𝐸) = −𝛼

2
(𝑋, 𝑌) ,

(130)

And, using (124), (24), and (31) in the previous equation, we
obtain

𝑔 (∇
𝑋
𝑌, 𝜙𝐸) = − 𝑔 (𝜙∇

𝑋
𝑌, 𝐸) = −𝑔 (𝜙∇

𝑋
𝑌, 𝐸)

= 𝑔 ((∇
𝑋
𝜙)𝑌, 𝐸) − 𝑔 (∇

𝑋
𝜙𝑌, 𝐸)

= − 𝑔 (∇
𝑋
𝜙𝑌, 𝐸)

= 𝑔 (𝜙𝑌, ∇
𝑋
𝐸) = −𝐵 (𝑋, 𝜙𝑌) .

(131)

By a similar way, we compute

𝑔 (∇
𝑋
𝑌,𝑁) = 𝑔 (

∘

∇
𝑋
𝑌 + 𝛼
1
(𝑋, 𝑌) 𝜙𝐸 + 𝛼

2
(𝑋, 𝑌) 𝜙𝑁

+𝛼
3
(𝑋, 𝑌) 𝐸,𝑁) = 𝛼

3
(𝑋, 𝑌) .

(132)

Since ∇
𝑋
𝑌 = ∇

∗

𝑋
𝑌 + 𝐶(𝑋, 𝑌)𝐸, then we get

𝑔 (∇
𝑋
𝑌,𝑁) = 𝐶 (𝑋, 𝑌) . (133)

Therefore using the expressions of 𝛼
1
, 𝛼
2
, and 𝛼

3
in (127) we

write

∇
𝑋
𝑌 =

∘

∇
𝑋
𝑌 + 𝐶 (𝑋, 𝜙𝑌) 𝜙𝐸 + 𝐵 (𝑋, 𝜙𝑌) 𝜙𝑁

+ 𝐶 (𝑋, 𝑌) 𝐸,

(134)

which implies that
∘

ℎ (𝑋, 𝑌) = 𝐶 (𝑋, 𝜙𝑌) 𝜙𝐸 + 𝐵 (𝑋, 𝜙𝑌) 𝜙𝑁 + 𝐶 (𝑋, 𝑌) 𝐸.

(135)

Theorem 26. Let (𝑀, 𝑔, 𝑆(𝑇𝑀)) be a screen semi-
invariant lightlike hypersurface of a para-Sasakian manifold
(𝑀, 𝜙, 𝜉, 𝜂, 𝑔). Then the distribution 𝐷

0
is integrable if and

only if

𝐶 (𝑋, 𝑌) = 𝐶 (𝑌,𝑋) , 𝐵 (𝑋, 𝜙𝑌) = 𝐵 (𝜙𝑋, 𝑌) ,

𝐶 (𝑋, 𝜙𝑌) = 𝐶 (𝜙𝑋, 𝑌) ,

(136)

where𝑋,𝑌 ∈ Γ(𝐷
0
).
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Proof. Since ∇ is torsion free connection, by using (134), we
have

[𝑋, 𝑌] =
∘

∇
𝑋
𝑌 −

∘

∇
𝑌
𝑋 + (𝐶 (𝑋, 𝜙𝑌) − 𝐶 (𝜙𝑋, 𝑌)) 𝜙𝐸

+ (𝐵 (𝑋, 𝜙𝑌) − 𝐵 (𝜙𝑋, 𝑌)) 𝜙𝑁

+ (𝐶 (𝑋, 𝑌) − 𝐶 (𝑌,𝑋)) 𝐸,

(137)

for any 𝑋,𝑌 ∈ Γ(𝐷
0
). Now suppose that 𝐷

0
is integrable.

Then the components of [𝑋, 𝑌] with respect to 𝜙𝐸, 𝜙𝑁, and
𝐸 vanish. So, we get (136).

Conversely, if (136) is satisfied, then we get (137)

[𝑋, 𝑌] =
∘

∇
𝑋
𝑌 −

∘

∇
𝑌
𝑋, (138)

for any𝑋,𝑌 ∈ Γ(𝐷
0
), which implies that [𝑋, 𝑌] ∈ Γ(𝐷

0
).This

completes the proof.

Corollary 27. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a para-Sasakian manifold
and (𝑀, 𝑔, 𝑆(𝑇𝑀)) a screen semi-invariant lightlike hypersur-
face of 𝑀. Then

∘

ℎ is symmetric on 𝐷
0
if and only if 𝐷

0
is

integrable.

Theorem 28. Let (𝑀, 𝑔, 𝑆(𝑇𝑀)) be a screen semi-
invariant lightlike hypersurface of a para-Sasakian manifold
(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) and the distribution 𝐷

0
on 𝑀 is integrable.

Then 𝐷
0
is minimal with respect to the symmetric connection

∇ on𝑀; that is, trace(
∘

ℎ) = 0, if and only if

𝐶 (𝑋, 𝑌) = 𝐶 (𝜙𝑋, 𝜙𝑌) , (139)

for any𝑋,𝑌 ∈ Γ(𝐷
0
).

Proof. Using decomposition (94), we find rank𝐷
0
= 2𝑛 − 3.

Now, from Proposition 20, consider an orthonormal 𝜙-basis
{𝑒
𝑖
, 𝜙𝑒
𝑖
, 𝜉} of𝐷

0
, 𝑖 = 1, 2, . . . , 𝑛 − 2. Then we have

trace (
∘

ℎ) =

𝑛−2

∑

𝑖=1

∘

ℎ (𝑒
𝑖
, 𝑒
𝑖
) −

𝑛−2

∑

𝑖=1

∘

ℎ (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
) +

∘

ℎ (𝜉, 𝜉) . (140)

Also from (25) and (35) we have
∘

ℎ (𝜉, 𝜉) = 𝐶 (𝜉, 𝜙𝜉) 𝜙𝐸 + 𝐵 (𝜉, 𝜙𝜉) 𝜙𝑁 + 𝐶 (𝜉, 𝜉) 𝐸 = 0.

(141)

Hence, using integrability condition of𝐷
0
we get

∘

ℎ (𝑒
𝑖
, 𝑒
𝑖
) −

∘

ℎ (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
) = (𝐶 (𝑒

𝑖
, 𝑒
𝑖
) − 𝐶 (𝜙𝑒

𝑖
, 𝜙𝑒
𝑖
)) 𝐸 = 0,

(142)

which completes the proof.

Now, using the decomposition (96) and putting 𝜔 =

{𝜙(Rad(𝑇𝑀))⊕𝜙(ltr(𝑇𝑀))} ⊥ {Rad(𝑇𝑀)⊕ ltr(𝑇𝑀)}, for any
𝑋 ∈ Γ(𝑇𝑀), 𝑌 ∈ Γ(𝐷

0
), and 𝑍 ∈ Γ(𝜔), we write

∇
𝑋
𝑌 = ∇̂

𝑋
𝑌 + ℎ̂ (𝑋, 𝑌) , (143)

∇
𝑋
𝑍 = −𝐴

𝑍
𝑋 + ∇

𝜔

𝑋
𝑍, (144)

where ∇̂ is a linear connection on the bundle𝐷
0
, ℎ̂ : Γ(𝑇𝑀)×

Γ(𝐷
0
) → Γ(𝜔) is I(𝑀) bilinear and 𝐴 is an I(𝑀) linear

operator on Γ(𝐷
0
), and ∇𝜔 is a linear connection on 𝜔.

Let 𝑈 ⊂ 𝑀 be a coordinate neighborhood as fixed in
Theorem 2. Then, by using (96), we set

𝛽
1
(𝑋, 𝑌) = −𝑔 (ℎ̂ (𝑋, 𝑌) , 𝜙𝑁) ,

𝛽
2
(𝑋, 𝑌) = −𝑔 (ℎ̂ (𝑋, 𝑌) , 𝜙𝐸) ,

𝛽
3
(𝑋, 𝑌) = 𝑔 (ℎ̂ (𝑋, 𝑌) ,𝑁) ,

𝛽
4
(𝑋, 𝑌) = 𝑔 (ℎ̂ (𝑋, 𝑌) , 𝐸) ,

(145)

for any𝑋,𝑌 ∈ Γ(𝐷
0
|
𝑈
). Hence, (143) can be written locally:

∇
𝑋
𝑌 = ∇̂

𝑋
𝑌 + 𝛽
1
(𝑋, 𝑌) 𝜙𝐸 + 𝛽

2
(𝑋, 𝑌) 𝜙𝑁

+ 𝛽
3
(𝑋, 𝑌) 𝐸 + 𝛽

4
(𝑋, 𝑌)𝑁.

(146)

From the expression of 𝛽
𝑖
, 𝑖 = 1, 2, 3, 4, in terms of 𝐵 and 𝐶,

we obtain

∇
𝑋
𝑌 = ∇̂

𝑋
𝑌 + 𝐶 (𝑋, 𝜙𝑌) 𝜙𝐸 + 𝐵 (𝑋, 𝜙𝑌) 𝜙𝑁

+ 𝐶 (𝑋, 𝑌) 𝐸 + 𝐵 (𝑋, 𝑌)𝑁,

(147)

ℎ̂ (𝑋, 𝑌) = 𝐶 (𝑋, 𝜙𝑌) 𝜙𝐸 + 𝐵 (𝑋, 𝜙𝑌) 𝜙𝑁

+ 𝐶 (𝑋, 𝑌) 𝐸 + 𝐵 (𝑋, 𝑌)𝑁.

(148)

Theorem 29. Let (𝑀, 𝑔, 𝑆(𝑇𝑀)) be a screen semi-
invariant lightlike hypersurface of a para-Sasakian manifold
(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) with the integrable distribution 𝐷

0
. Then 𝐷

0
is

minimal; that is, trace(“h) = 0, if and only if

𝐶 (𝑋, 𝑌) = 𝐶 (𝜙𝑋, 𝜙𝑌) , 𝐵 (𝑋, 𝑌) = 𝐵 (𝜙𝑋, 𝜙𝑌) ,

(149)

for any 𝑋,𝑌 ∈ Γ(𝐷
0
).

Proof. Let {𝑒
𝑖
, 𝜙𝑒
𝑖
, 𝜉}, 𝑖 = 1, 2, . . . , 𝑛 − 2, be an orthonormal

𝜙-basis. Then, we have

trace (ℎ̂) =
𝑛−2

∑

𝑖=1

ℎ̂ (𝑒
𝑖
, 𝑒
𝑖
) −

𝑛−2

∑

𝑖=1

ℎ̂ (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
) + ℎ̂ (𝜉, 𝜉) . (150)

It is easy to see that ℎ̂(𝜉, 𝜉) =
∘

ℎ(𝜉, 𝜉) + 𝐵(𝜉, 𝜉)𝑁 = 0. Also,
using (147), we get

ℎ̂ (𝑒
𝑖
, 𝑒
𝑖
) − ℎ̂ (𝜙𝑒

𝑖
, 𝜙𝑒
𝑖
) = (𝐶 (𝑒

𝑖
, 𝑒
𝑖
) − 𝐶 (𝜙𝑒

𝑖
, 𝜙𝑒
𝑖
)) 𝐸

+ (𝐵 (𝑒
𝑖
, 𝑒
𝑖
) − 𝐵 (𝜙𝑒

𝑖
, 𝜙𝑒
𝑖
))𝑁

= 0,

(151)

by virtue of integrability condition of 𝐷
0
. This completes the

proof.
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Theorem 30. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a para-Sasakian manifold
and (𝑀, 𝑔, 𝑆(𝑇𝑀)) a screen semi-invariant lightlike hypersur-
face of𝑀. If𝐷

0
is integrable, then the leaves of𝐷

0
have a para-

Sasakian structure.

Proof. Let (𝑀, 𝑔, 𝑆(𝑇𝑀)) be a screen semi-invariant lightlike
hypersurface and

∘

𝑀 a leaf of 𝐷
0
. Then, for any 𝑝 ∈

∘

𝑀, we
have 𝑇

𝑝

∘

𝑀 = (𝐷
0
)
𝑝
. Since 𝑆 : Γ(𝑇𝑀) → Γ(𝐷) and𝐷 = 𝐷

0
⊥

𝜙(Rad(𝑇𝑀)) ⊥ Rad(𝑇𝑀), we get

𝜙𝑋
0
= 𝜙𝑆𝑋

0
= 𝜙𝑋
0
, (152)

for any𝑋
0
∈ 𝑇

∘

𝑀.
By putting

∘

𝜙 = 𝜙|
𝐷
0

and ∘𝜂 = 𝜂|
𝐷
0

, one can see that
∘

𝜙

defines an (1, 1)-tensor field on
∘

𝑀 because𝐷
0
is 𝜙-invariant.

From (101), we get
∘

𝜙𝑋
0
= 𝑋
0
−
∘

𝜂 (𝑋
0
) 𝜉,

∘

𝜂 (𝜉) = 1,

(153)

for any𝑋
0
∈ 𝑇

∘

𝑀. Hence (
∘

𝑀,
∘

𝜙, 𝜉,
∘

𝜂) is an almost paracontact
manifold.

Next, by using (38), for any𝑋
0
, 𝑌
0
∈ Γ(𝑇

∘

𝑀), we have

𝑔 (
∘

𝜙𝑋
0
,
∘

𝜙𝑌
0
) = 𝑔 (𝜙𝑋

0
− 𝑢 (𝑋

0
)𝑁, 𝜙𝑌

0
− 𝑢 (𝑌

0
)𝑁)

= −𝑔 (𝑋
0
, 𝑌
0
) +
∘

𝜂 (𝑋
0
)
∘

𝜂 (𝑌
0
) ,

(154)

which implies that (
∘

𝑀,
∘

𝜙, 𝜉,
∘

𝜂, 𝑔) is an almost paracontact
metric manifold.

Moreover, for any 𝑋
0
, 𝑌
0

∈ Γ(𝑇
∘

𝑀), 𝑑𝜂(𝑋
0
, 𝑌
0
) =

𝑑
∘

𝜂(𝑋
0
, 𝑌
0
), and

∘

Φ(𝑋
0
, 𝑌
0
) = 𝑔(𝑋

0
,
∘

𝜙𝑌
0
) = 𝑔(𝑋

0
,
∘

𝜙𝑌
0
) =

𝑑𝜂(𝑋
0
, 𝑌
0
) = 𝑑

∘

𝜂(𝑋
0
, 𝑌
0
). Also𝑁∘

𝜙
+2𝑑

∘

𝜂⊗ 𝜉 and𝑁𝜙+2𝑑𝜂⊗𝜉
coincide on𝐷

0
.

Finally, we have

(
∘

∇
𝑋
0

𝑔) (𝑌
0
, 𝑍
0
) = 𝑋

0
𝑔 (𝑌
0
, 𝑍
0
)

− 𝑔 (
∘

∇
𝑋
0

𝑌
0
, 𝑍
0
) − 𝑔 (𝑌

0
,
∘

∇
𝑋
0

𝑍
0
)

= 𝑋
0
𝑔 (𝑌
0
, 𝑍
0
)

− 𝑔 (∇
𝑋
0

𝑌
0
, 𝑍
0
) + 𝑔 (

∘

ℎ (𝑋
0
, 𝑌
0
) , 𝑍
0
)

− 𝑔 (𝑌
0
, ∇
𝑋
0

𝑍
0
) + 𝑔 (𝑌

0
,

∘

ℎ (𝑋
0
, 𝑍
0
))

= (∇
𝑋
0

𝑔) (𝑌
0
, 𝑍
0
) = 0,

(155)

for any 𝑋
0
, 𝑌
0
, 𝑍
0
∈ Γ(𝑇

∘

𝑀), which implies that
∘

∇ is a Levi-
Civita connection and using (5) we get

(
∘

∇
𝑋
0

∘

𝜙)𝑌
0
= −𝑔 (𝑋

0
, 𝑌
0
) 𝜉 + 𝜂 (𝑌

0
)𝑋
0
. (156)

This completes the proof.

6.2. Integrability of 𝐷. In this section, we consider the
distribution 𝐷, which is defined by 𝐷 = Rad(𝑇𝑀) ⊥

𝜙(Rad(𝑇𝑀)) ⊥ 𝐷
0
. Firstly we have the following.

Lemma 31. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a para-Sasakian manifold
and (𝑀, 𝑔, 𝑆(𝑇𝑀)) a screen semi-invariant lightlike hypersur-
face of𝑀. Then, for any𝑋 ∈ Γ(𝑇𝑀) and 𝑌 ∈ Γ(𝑇𝑀), one has

𝑔 ((∇
𝑋
𝜙)𝑌, 𝐸) = 0; (157)

that is, the component of (∇
𝑋
𝜙)𝑌 along ltr(TM) vanishes.

Proposition 32. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a para-Sasakian man-
ifold and (𝑀, 𝑔, 𝑆(𝑇𝑀)) a screen semi-invariant lightlike
hypersurface of𝑀. Then the distribution𝐷 is integrable if and
only if 𝐵 satisfies the following conditions:

(i) 𝐵(𝑋, 𝜙𝑌) = 𝐵(𝜙𝑋, 𝑌), for any 𝑋,𝑌 ∈ Γ(𝐷
0
),

(ii) 𝐵(𝑋,𝑉) = 0, for any 𝑋 ∈ Γ(𝐷
0
),

(iii) 𝐵(𝑉,𝑉) = 0,

where 𝑉 = 𝜙𝐸.

Proof. For any 𝑋,𝑌 ∈ Γ(𝐷), we obtain the component of
[𝑋, 𝑌] along 𝜙ltr(𝑇𝑀) as

𝑔 ([𝑋, 𝑌] , 𝜙𝐸) = 𝑔 (𝜙𝑋,𝐴
∗

𝐸
𝑌) − 𝑔 (𝜙𝑌,𝐴

∗

𝐸
𝑋) . (158)

From the definition of the distribution𝐷, we set

𝑋 = 𝑋
0
+ 𝜎
1
𝐸 + 𝜎
2
𝜙𝐸, 𝑌 = 𝑌

0
+ 𝜌
1
𝐸 + 𝜌
2
𝜙𝐸. (159)

Since 𝐷 is 𝜙-invariant, from the previous expressions of
𝑋,𝑌 ∈ Γ(𝐷) and from (26), we have

𝑔 ([𝑋, 𝑌] , 𝜙𝐸) = (𝜎
1
𝜌
2
− 𝜎
2
𝜌
1
) 𝐵 (𝑉, 𝑉) − 𝜌

2
𝐵 (𝜙𝑋

0
, 𝑉)

+ 𝜎
2
𝐵 (𝜙𝑌

0
, 𝑉)

− 𝜎
1
𝐵 (𝑌
0
, 𝑉) + 𝜌

1
𝐵 (𝑋
0
, 𝑉)

− 𝐵 (𝑋
0
, 𝜙𝑌
0
) + 𝐵 (𝑌

0
, 𝜙𝑋
0
) ,

(160)

for any𝑋,𝑌 ∈ Γ(𝑇𝑀).
Now assume that𝐷 is integrable. Since 𝜙𝐸, 𝐸,𝑋

0
, and 𝑌

0

are sections of𝐷, then we get

0 = 𝑔 ([𝜙𝐸, 𝐸] , 𝜙𝐸) = −𝑔 (𝜙𝐸, 𝜙𝐸) = −𝐵 (𝑉,𝑉) . (161)

If𝑋 ∈ Γ(𝐷
0
), we find

0 = 𝑔 ([𝑋, 𝐸] , 𝜙𝐸) = 𝐵 (𝐸, 𝜙𝑋) − 𝐵 (𝑋, 𝜙𝐸) = −𝐵 (𝑋,𝑉) ,

(162)

and if𝑋,𝑌 ∈ Γ(𝐷
0
) we get

0 = 𝑔 ([𝑋, 𝑌] , 𝜙𝐸) = 𝐵 (𝜙𝑌,𝑋) − 𝐵 (𝜙𝑋, 𝑌) . (163)

Consequently using (160) with (i), (ii), and (iii), it is easy to
check that [𝑋, 𝑌] in Γ(𝐷). This completes the proof.
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Proposition 33. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a para-Sasakian man-
ifold and (𝑀, 𝑔, 𝑆(𝑇𝑀)) be a screen semi-invariant lightlike
hypersurface of 𝑀. If (𝑀, 𝑔, 𝑆(𝑇𝑀)) is totally geodesic, then
the following statements hold.

(i) The distribution 𝐷 is integrable.
(ii) The distribution 𝐷 is parallel with respect to the

induced connection ∇.

Proof. (i) Assume that (𝑀, 𝑔, 𝑆(𝑇𝑀)) is totally geodesic.
Then we can state that the distribution 𝐷 is integrable from
Proposition 32.

(ii) For any 𝑋 ∈ Γ(𝑇𝑀) and 𝑌 ∈ Γ(𝐷
0
), using (157), we

get

𝑔 (∇
𝑋
𝐸, 𝜙𝐸) = 𝑔 (∇

𝑋
𝐸, 𝜙𝐸)

= −𝑔 (𝐸, ∇
𝑋
𝜙𝐸)

= 𝐵 (𝑋, 𝜙𝐸) = 0,

𝑔 (∇
𝑋
𝜙𝐸, 𝜙𝐸) = 𝑔 (∇

𝑋
𝜙𝐸, 𝜙𝐸)

= −𝑔 (𝜙∇
𝑋
𝜙𝐸, 𝐸)

= 𝑔 ((∇
𝑋
𝜙) 𝜙𝐸, 𝐸) − 𝑔 (∇

𝑋
𝜙
2

𝐸, 𝐸)

= 𝑔 (∇
𝑋
𝐸, 𝐸) = 0,

𝑔 (∇
𝑋
𝑌
0
, 𝜙𝐸) = 𝑔 (∇

𝑋
𝑌
0
, 𝜙𝐸)

= −𝑔 (𝜙∇
𝑋
𝑌
0
, 𝐸)

= 𝑔 ((∇
𝑋
𝜙)𝑌
0
, 𝐸) − 𝑔 (∇

𝑋
𝜙𝑌
0
, 𝐸)

= −𝑔 (∇
𝑋
𝜙𝑌
0
, 𝐸)

= −𝐵 (𝑋, 𝜙𝑌
0
) = 0.

(164)

This completes the proof.
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