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The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with
nonlinear dissipation of the form Ku +𝑀(|𝐴

1/2
𝑢|

2

)𝐴𝑢 + 𝑔(𝑢

) = 0 under suitable assumptions on 𝐾,𝐴,𝑀(⋅), and 𝑔(⋅). Next, we

derive decay estimates of the energy under some growth conditions on the nonlinear dissipation 𝑔. Lastly, numerical simulations
in order to verify the analytical results are given.

1. Introduction

A mathematical model for the transverse deflection of
an elastic string of length 𝐿 > 0 whose ends are held a
fixed distance apart is written in the form of the hyperbolic
equation
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= 0, (1)

which was proposed by Kirchhoff [1], where 𝑢(𝑥, 𝑡) is the de-
flection of the point 𝑥 of the string at the time 𝑡 and 𝛼 > 0, 𝛽
are constants. Kirchhoff first introduced (1) in the study of the
oscillations of stretched strings and plates, so that (1) is
called the wave equation of Kirchhoff type. The Kirchhoff-
type model also appeared in scientific research for beam or
plate [2–5]. Such nonlinear Kirchhoffmodel gives one way to
describe the dynamics of an axially moving string. In recent
years, axially moving string-like continua such as wires, belts,
chains, and band saws have been the subject of study of
researchers [6–14].

Themathematical aspects of the natural generalization of
the model (1) inΩ ⊂ R𝑛:

𝑢

−𝑀(∫

Ω

|∇𝑢|
2
𝑑𝑥)Δ𝑢 + 𝑔 (𝑢


) = 0, (2)

𝑢 (0) = 𝑢
0
, 𝑢



(0) = 𝑢
1
, (3)

under some assumptions on 𝑀(⋅), 𝑔(⋅), have been studied,
using different methods, by many authors [6, 8, 15–22].

When 𝑔(⋅) = 0 and 𝑛 = 1, the problem (2)-(3) was studied
by Dickey [16] and Bernstein [15] who considered analytic
functions as the initial data (see also Yamada [21] and Ebihara
et al. [17]). In case when 𝑔(⋅) = 0 and 𝑛 ≥ 1, Pohožaev [22]
obtained the existence and uniqueness of global solutions for
the problem (2)-(3). Lions [20] also formulated Pohožaev’s
results in an abstract context and obtained better results.

Equation (2) with linear dissipative term, that is, 𝑔(𝑢) =
𝛿𝑢

(𝛿 > 0), was investigated by Mizumachi [23], Nishihara

and Yamada [24], Park et al. [25], and Jung and Choi [26]. In
fact, they studied the existence, uniqueness, and the energy
decay rates of solutions for the problem (2)-(3). On the other
hand, related works to a Kirchhoff-type equation with 𝐾𝑢



instead of 𝑢 can be found in Levine [19]. Jung and Lee [27]
got the result for a Kirchhoff-type equation with strong
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dissipative term. But they studied a simple form with the
coefficient𝑀(⋅)≡ 1. In case of the equation concerning non-
linearKirchhoff-type coefficient, recently, Kim et al. [8], Ghisi
and Gobbino [28], and Aassila and Kaya [29] have studied
existence and energy decay rates of global (or local) solutions
for the equation. By giving some suitable smallness condi-
tions on the sizes of the initial data, they assured global exis-
tence and energy decay rates for the solutions.

In this paper, we study the existence, uniqueness, and the
decay estimates of the energy for a class of Kirchhoff-type
wave equations in a Hilbert space𝐻:

𝐾𝑢

+𝑀(






𝐴
1/2

𝑢







2

)𝐴𝑢 + 𝑔 (𝑢

) = 0 in 𝐻,

𝑢 (0) = 𝑢
0
, (𝐾𝑢


) (0) = 𝐾

1/2
𝑢
1
,

(4)

where𝐾 and𝐴 are linear operators in𝐻 and𝑀(⋅)∈𝐶
1
[0,∞).

For global existence of this problem, we give some suitable
smallness conditions. So, the main contribution of these
results is to consider a general model which contains the con-
crete model (2)-(3) and to improve the results of Kouémou-
Patcheu [30] and Jung and Choi [26]. Moreover, as an
application, we give some simulation results about solution’s
shapes and the algebraic decay rate for a Kirchhoff-type wave
equation with nonlinear dissipation.

Themethod applied in this paper is based on themultipli-
ers technique [31], Galerkin’s approximate method, and some
integral inequalities due to Haraux [32].

This paper is organized as follows. In Section 2, we recall
the notation, hypotheses, and some necessary preliminaries
and prove the existence and uniqueness of global solutions
for the system (4) by employing Feado-Galerkin’s techniques
under suitable smallness condition. In Section 3, we derive
the energy decay rates by using the multiplier technique
under suitable growth conditions on 𝑔. Finally, in Section 4,
we give an example and its numerical simulations to illustrate
our results.

2. Preliminaries and Existence

Let Ω be a bounded open domain in R𝑛 having a smooth
boundary Γ and 𝐻 = 𝐿

2
(Ω) with inner product and norm

denoted by (⋅, ⋅) and |⋅|, respectively. Let𝐾 be a linear, positive,
and self-adjoint operator on 𝐻; that is, there is a constant
𝑐 > 0 such that

(𝐾𝑢, 𝑢) ≥ 𝑐|𝑢|
2
, ∀𝑢 ∈ 𝐻. (5)

Let𝐴 be a linear, self-adjoint, and positive operator in𝐻, with
domain 𝑉 := 𝐷(𝐴) dense in 𝐻, 𝐾𝐴 = 𝐴𝐾 on 𝐷(𝐴) ∩ 𝐷(𝐾),
and the graph norm denoted by ‖ ⋅ ‖. We assume that the
imbedding 𝑉 ⊂ 𝐻 is compact. Identifying𝐻 and its dual𝐻,
it follows that 𝑉 ⊂ 𝐻 ⊂ 𝑉

, where 𝑉 is the dual of 𝑉. Let
⟨⋅, ⋅⟩
𝑉

,𝑉

denote the duality pairing between 𝑉
 and 𝑉 and

𝑊:= 𝐷(𝐴
1/2

).
Throughout the paper we will make the following

assumptions.

(M) 𝑀(𝑠) is a 𝐶
1
[0,∞) real function and 𝑀


(𝑠) ≥

0. Furthermore, there exist some positive constants

𝛽 and 𝛾
0
such that 𝑀(𝑠) ≥ 𝛽 > 0 for all 𝑠 ≥ 0 and

|𝑀

(𝑠)𝑠|/𝑀(𝑠) ≤ 𝛾

0
.

(G) 𝑔 : R → R is a nondecreasing continuous function
such that 𝑔(0) = 0 and there is a constant 𝑘 > 0 and
𝑞 ≥ 1 such that





𝑔 (𝑥)





≤ 𝑘 (1 + |𝑥|

𝑞
) ∀𝑥 ∈ R. (6)

And (𝑔(𝑢), 𝐴𝑢) ≥ 0 for all 𝑢 ∈ 𝐷(𝐴) ∩ 𝐷(𝐴
1/2

). Note
that the last assumption of (G) makes sense. In fact,
when 𝐴 = −Δ and 𝑔(𝑢) = |𝑢|

𝛼
𝑢, 𝛼 ≥ 1, we can easily

show that (𝑔(𝑢), 𝐴𝑢) ≥ 0 for all 𝑢 ∈ 𝐷(𝐴) ∩ 𝐷(𝐴
1/2

).
(H) 𝑀(𝑠) > 𝑀(𝑠)|𝑔(𝑥)|, 𝑠 ∈ [0,∞), 𝑥 ∈ R.
(S) 𝑉 ⊂ 𝐿

𝑞+1
(Ω) for some 𝑞 ≥ 1.

Let𝑀(𝑡) and 𝐸(𝑡) be defined as follows:

𝑀(𝑡) = ∫

𝑡

0

𝑀(𝑠) 𝑑𝑠 (7)
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2
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)] . (8)

And also let us consider the functions
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,
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2
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)
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2
,

𝐺 (𝑡) :=
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𝑢
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𝑀 (
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1/2

𝑢





2

)

.

(9)

Theorem 1. Let the initial conditions (𝑢
0
, 𝑢
1
) ∈ 𝑊 × 𝐿

2𝑞
(Ω)

satisfy the smallness assumption






𝑀



𝐿∞([0,𝑃(0)])

𝐵 (𝑢
0
, 𝑢
1
)√𝑄 (0) <

1

4

, (10)

where𝐵(𝑢
0
, 𝑢
1
) = max{|𝐾1/2𝑢

1
|/𝑀(|𝐴

1/2
𝑢
0
|
2
),𝑀(|𝐴

1/2
𝑢
0
|
2
)/

((𝑀(|𝐴
1/2

𝑢
0
|
2
))



− 𝑔(𝑢
1
)𝑀(|𝐴

1/2
𝑢
0
|
2
)))√𝑄(0)}. Then there is

a unique function 𝑢 ∈ 𝐿
∞
(0, 𝑇;𝑊)∩𝑊

1,∞
(0, 𝑇; 𝑉)∩𝑊

2,∞
(0,

𝑇;𝐻) such that, for any 𝑇 > 0,

𝐾𝑢

+𝑀(






𝐴
1/2

𝑢







2

)𝐴𝑢 + 𝑔 (𝑢

) = 0

𝑖𝑛 𝐿
(𝑞+1)/𝑞

(0, 𝑇; 𝑉

) ,

(11)

𝑢 (0) = 𝑢
0
, (𝐾𝑢


) (0) = 𝐾

1/2
𝑢
1
. (12)

Proof. Assume that, for simplicity,𝑉 is separable; then there is
a sequence (𝑒𝑗)

𝑗≥1
consisting of eigenfunctions of the opera-

tor𝐴 corresponding to positive real eigenvalues 𝜇
𝑗
tending to

+∞ so that 𝐴𝑒𝑗 = 𝜇
𝑗
𝑒
𝑗, 𝑗 ≥ 1.

Let us denote by 𝑉
𝑚
the linear hull of 𝑒1, 𝑒2, . . . , 𝑒𝑚. Note

that (𝑒𝑗)
𝑗≥1

is a basis of𝐻, 𝑉, and𝑊 and hence it is dense in
𝐻, 𝑉, and𝑊.
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Approximate Solutions. We search for a function 𝑢
𝑚
(𝑡) =

∑
𝑚

𝑗=1
𝑔
𝑗𝑚
(𝑡)𝑒
𝑗 such that, for any V ∈ 𝑉

𝑚
, 𝑢
𝑚
(𝑡) satisfies the

approximate equation

(𝐾𝑢


𝑚
(𝑡) + 𝑀(






𝐴
1/2

𝑢
𝑚







2

)𝐴𝑢
𝑚
+ 𝑔 (𝑢



𝑚
) , V) = 0

(13)

and the initial conditions as the projections of 𝑢
0
and 𝑢

1
over

𝑉
𝑚
satisfy

𝑢
𝑚
(0) = 𝑢

0𝑚
=

𝑚

∑

𝑗=1

(𝑢
0
, 𝑒
𝑗
) 𝑒
𝑗
→ 𝑢
0

in 𝑊 (14)

(𝐾𝑢


𝑚
) (0) = 𝐾

1/2
𝑢
1𝑚

=

𝑚

∑

𝑗=1

(𝑢
1
, 𝑒
𝑗
) 𝑒
𝑗
→ 𝐾

1/2
𝑢
1

in 𝐿
2𝑞

(Ω) .

(15)

For V = 𝑒
𝑗, 𝑗 = 1, 2, . . . 𝑚, the system (13)–(15) of ordinary

differential equations of variable 𝑡 has a solution 𝑢
𝑚
(𝑡) in an

interval [0, 𝑡
𝑚
).

Now we obtain a priori estimates for the solution 𝑢
𝑚
(𝑡)

and it can also be extended to [0, 𝑇) for all 𝑇 > 0.

A Priori Estimate I. Let us consider V = 𝑢


𝑚
in (13). Using (7),

we have

𝑑

𝑑𝑡

(
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+𝑀(
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))

+ 2 (𝑔 (𝑢


𝑚
(𝑡)) , 𝑢



𝑚
(𝑡)) = 0.

(16)

Integrating (16) over (0, 𝑡), 𝑡 ≤ 𝑡
𝑚
, and using (8), we have

2𝐸 (0) = [
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2

+𝑀(
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𝑢
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+2∫

𝑡

0

(𝑔 (𝑢


𝑚
(𝑠)) , 𝑢



𝑚
(𝑠)) 𝑑𝑠.

(17)

Using (5) and (7), we deduce that

2𝐸 (0) ≥






𝐾
1/2

𝑢


𝑚
(𝑡)







2

+ 𝛽






𝐴
1/2

𝑢
𝑚
(𝑡)







2

+ 2∫

𝑡

0

∫

Ω

𝑢


𝑚
(𝑠) 𝑔 (𝑢



𝑚
(𝑠)) 𝑑𝑥 𝑑𝑠,

(18)

where the left-hand side is constant independent of 𝑚 and 𝑡.
Thus estimation (18) yields, for any 0 < 𝑇 < ∞,

𝑢


𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) , (19)

𝐾
1/2

𝑢


𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) , (20)

𝐴
1/2

𝑢
𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) , (21)

𝑢


𝑚
𝑔 (𝑢


𝑚
) bounded in 𝐿

1

([0, 𝑇] × Ω) . (22)

Now we show that 𝑢
𝑚
(𝑡) can be extended to [0,∞). We

need the following smallness assumption:
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𝑚1
)
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𝐴
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𝑢
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))

−1

√𝑄 (0)

}

}

}

× √𝑄 (0) <

1

4

,

(23)

where𝑃(0) = (|𝐾
1/2

𝑢
𝑚1
|

2

/𝑀(|𝐴
1/2

𝑢
𝑚0
|

2

))+|𝐴
1/2

𝑢
𝑚0
|

2

,𝑄(0)=
(|𝐾
1/2

𝐴
1/2

𝑢
𝑚1
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2

/𝑀(|𝐴
1/2

𝑢
𝑚0
|

2

)) + |𝐴𝑢
𝑚0
|
2.

Let [0, 𝑇∗) be the maximal interval where the solution
exists. Set 𝑍(𝑡) := 𝑀(|𝐴

1/2
𝑢
𝑚
(𝑡)|
2
) and

𝑇 := sup{𝜏 ∈ [0, 𝑇
∗
) |











𝑍

(𝑡)

𝑍 (𝑡)











≤

1

2

, 𝑍 (𝑡) > 0, ∀𝑡∈[0, 𝜏)} .

(24)

With simple computations it follows that

𝑃

(𝑡) = −

1

𝑍 (𝑡)

(2 (𝑔 (𝑢


𝑚
(𝑡)) , 𝑢



𝑚
(𝑡)) +

𝑍

(𝑡)

𝑍 (𝑡)






𝑢


𝑚
(𝑡)







2

)

≤ 0,

(25)

𝑄

(𝑡)

= −

1

𝑍 (𝑡)

(2 (𝑔 (𝑢


𝑚
(𝑡)) , 𝐴𝑢



𝑚
(𝑡)) +

𝑍

(𝑡)

𝑍 (𝑡)






𝐴
1/2

𝑢


𝑚
(𝑡)







2

)

≤ 0,

(26)

(𝐺
2
)



(𝑡)

≤ −𝐺 (𝑡) {2(

𝑍

(𝑡)

𝑍 (𝑡)

−






𝑔 (𝑢


𝑚
(𝑡))






)𝐺 (𝑡) − 2





𝐴𝑢
𝑚
(𝑡)





} ,

(27)

for all 𝑡 ∈ [0, 𝑇).
Next, we show that 𝑇 = 𝑇

∗. Let us assume by contradic-
tion that 𝑇 < 𝑇

∗. Since |𝑍(𝑡)| ≤ (1/2)𝑍(𝑡) in [0, 𝑇), we have
that

0 < 𝑍 (0) 𝑒
−𝑇/2

≤ 𝑍 (𝑇) ≤ 𝑍 (0) 𝑒
𝑇/2

. (28)
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Since 𝑍(𝑡) and 𝑍

(𝑡) are continuous functions, by the maxi-

mality of 𝑇 we have that necessarily










𝑍

(𝑡)

𝑍 (𝑡)











=

1

2

. (29)

From (88) and (89) it follows that 𝑃 and 𝑄 are nonincreasing
functions; hence






𝐴
1/2

𝑢
𝑚
(𝑡)







2

≤ 𝑃 (𝑡) ≤ 𝑃 (0) ,





𝐴𝑢
𝑚
(𝑡)






2

≤ 𝑄 (𝑡) ≤ 𝑄 (0) .

(30)

Moreover by Lemma 3.1 in [28] we have that

𝐺 (𝑡) ≤ max{𝐺 (0) ,

𝑍 (0)

𝑍

(0) − 𝑔 (𝑢

𝑚1
) 𝑍 (0)

√𝑄 (0)} ,

∀𝑡 ∈ [0, 𝑇] .

(31)

By (91)–(31), and the smallness assumption (23), we have that











𝑍
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2𝑀
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𝑢
𝑚
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2
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𝑚
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𝑚
(𝑇))
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𝑍 (0)

𝑍

(0) − 𝑔 (𝑢

𝑚1
) 𝑍 (0)

√𝑄 (0)}

× √𝑄 (0)

<

1

2

.

(32)

This contradicts (29). Therefore it follows that 𝑢
𝑚
(𝑡) can

be extended to [0, 𝑇) for any 𝑇 ∈ (0,∞).
Furthermore, putting V = 𝐴𝑢



𝑚
in (13), we get

(𝐾𝑢


𝑚
, 𝐴𝑢


𝑚
)
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)
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𝑚
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𝑚
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𝑚
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𝑚
)

𝑀(




𝐴
1/2

𝑢
𝑚






2

)

= 0.

(33)

From this we obtain

1

2

𝑑

𝑑𝑡

(

(𝐾𝑢


𝑚
, 𝐴𝑢


𝑚
)

𝑀(




𝐴
1/2

𝑢
𝑚






2

)

+




𝐴𝑢
𝑚






2

) +

(𝑔 (𝑢


𝑚
) , 𝐴𝑢



𝑚
)

𝑀(




𝐴
1/2

𝑢
𝑚






2

)

= −

(𝐾𝑢


𝑚
, 𝐴𝑢


𝑚
)𝑀

(






𝐴
1/2

𝑢
𝑚







2

) (𝐴
1/2

𝑢


𝑚
, 𝐴
1/2

𝑢
𝑚
)

{𝑀(




𝐴
1/2

𝑢
𝑚






2

)}

2
.

(34)

Integrating (34) over (0, 𝑡) and taking into account assump-
tions (M) and (G), and applying Gronwall’s inequality, we
obtain

𝐴𝑢
𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) . (35)

From (6) and (22), it follows that

𝑔 (𝑢


𝑚
) bounded in 𝐿

(𝑞+1)/𝑞

([0, 𝑇] × Ω) . (36)

A Priori Estimate II. Taking V = 𝑢


𝑚
(𝑡) in (13) and choosing

𝑡 = 0, we obtain





𝐾
1/2

𝑢


𝑚
(0)







2

+ (𝑀(






𝐴
1/2

𝑢
0𝑚







2

)𝐴𝑢
0𝑚

+ 𝑔 (𝑢
1𝑚
) , 𝑢


𝑚
(0))

= 0.

(37)

Thus we have





𝐾
1/2

𝑢


𝑚
(0)







2

≤ (




𝑔 (𝑢
1𝑚
)




+







𝑀(






𝐴
1/2

𝑢
0𝑚







2

)𝐴𝑢
0𝑚







)






𝑢


𝑚
(0)







≤ (




𝑔 (𝑢
1𝑚
)




+







𝑀(






𝐴
1/2

𝑢
0







2

)𝐴𝑢
0







)

×






𝐾
1/2

𝑢


𝑚
(0)






.

(38)

Thanks to the assumption (6), we deduce from (15) that

(𝑔 (𝑢
1𝑚
)) is bounded in 𝐿

2

(Ω) . (39)

Therefore we conclude that the right-hand side is bounded;
that is,

𝐾
1/2

𝑢


𝑚
(0) bounded in 𝐻. (40)

APriori Estimate III. For 𝑡 < 𝑇, we apply (13) at points 𝑡 and 𝑡+
𝜁 such that 0 < 𝜁 < 𝑇 − 𝑡. By taking the difference V = 𝑢



𝑚
(𝑡 +

𝜁) − 𝑢


𝑚
(𝑡) in (13) and the assumption (G), we obtain

0 ≥ (𝐾𝑢


𝑚
(𝑡 + 𝜁) − 𝐾𝑢



𝑚
(𝑡) , 𝑢


𝑚
(𝑡 + 𝜁) − 𝑢



𝑚
(𝑡))

+ (𝑀(






𝐴
1/2

𝑢
𝑚
(𝑡 + 𝜁)







2

)𝐴𝑢
𝑚
(𝑡 + 𝜁)

−𝑀(






𝐴
1/2

𝑢
𝑚
(𝑡)







2

)𝐴𝑢
𝑚
(𝑡) , 𝑢


𝑚
(𝑡 + 𝜁) − 𝑢



𝑚
(𝑡)) .

(41)

Thus we have

0 ≥

1

2

𝑑

𝑑𝑡

[






𝐾
1/2

(𝑢


𝑚
(𝑡 + 𝜁) − 𝑢



𝑚
(𝑡))







2

]

+𝑀(






𝐴
1/2

𝑢
𝑚
(𝑡 + 𝜁)







2

)

× (𝐴𝑢
𝑚
(𝑡 + 𝜁) − 𝐴𝑢

𝑚
(𝑡) , 𝑢


𝑚
(𝑡 + 𝜁) − 𝑢



𝑚
(𝑡))

+ [𝑀(






𝐴
1/2

𝑢
𝑚
(𝑡 + 𝜁)







2

) −𝑀(






𝐴
1/2

𝑢
𝑚
(𝑡)







2

)]

× (𝐴𝑢
𝑚
(𝑡) , 𝑢


𝑚
(𝑡 + 𝜁) − 𝑢



𝑚
(𝑡)) .

(42)

Set

Φ
𝜁𝑚

(𝑡) =






𝐾
1/2

(𝑢


𝑚
(𝑡 + 𝜁) − 𝑢



𝑚
(𝑡))







2

. (43)
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By using (42), Young’s inequality, the assumption (M), and
the fact that 𝐾 is positive self-adjoint operator, we see that
Φ


𝜁𝑚
(𝑡) ≤ 𝑐Φ

𝜁𝑚
(𝑡). Therefore we deduce

Φ
𝜁𝑚

(𝑡) ≤ Φ
𝜁𝑚

(0) exp (𝑐𝑇) ∀𝑡 ∈ [0, 𝑇] . (44)

Dividing the two sides of (44) by 𝜁2, letting 𝜁 → 0, and using
(43), we deduce

𝑐






𝑢


𝑚







2

≤






𝐾
1/2

𝑢


𝑚
(0)







2

. (45)

From (40), it follows that |𝑢
𝑚
|
2
≤ 𝐶.

Since 𝑢
𝑚
∈ 𝐶
2
[0, 𝑇], the previous inequality is verified for

all 𝑡 ∈ [0, 𝑇]. Therefore we conclude that

𝑢


𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) . (46)

Moreover, using (19) and (46), it follows that

𝑢


𝑚
bounded in 𝐿

2

(0, 𝑇;𝐻) ,

𝑢


𝑚
bounded in 𝐿

2

(0, 𝑇;𝐻) .

(47)

Applying a compactness theorem given in [33], we obtain

𝑢


𝑚
precompact in 𝐿

2

(0, 𝑇;𝐻) . (48)

Passage to the Limit. Applying the Dunford-Pettis theorem,
we conclude from (19), (21), (36), and (46)-(48), replacing the
sequence 𝑢

𝑚
with a subsequence if needed, that

𝑢
𝑚
→ 𝑢 weak-star in 𝐿

∞

(0, 𝑇; 𝑉) , (49)
𝑢


𝑚
→ 𝑢
 weak-star in 𝐿

∞

(0, 𝑇;𝐻) , (50)
𝑢


𝑚
→ 𝑢
 weak-star in 𝐿

∞

(0, 𝑇;𝐻) , (51)
𝑢


𝑚
→ 𝑢
 a.e in Ω × [0, 𝑇] , (52)

𝑔 (𝑢


𝑚
) → 𝜓 weak-starin 𝐿

(𝑞+1)/𝑞

(0, 𝑇;𝐻) , (53)

𝑀(






𝐴
1/2

𝑢
𝑚







2

)𝐴𝑢
𝑚
→ 𝜒 weak-star in 𝐿

∞

(0, 𝑇;𝐻)

(54)

for suitable functions 𝑢 ∈ 𝐿
∞
(0, 𝑇; 𝑉), 𝜒 ∈ 𝐿

∞
(0, 𝑇;𝐻), and

𝜓 ∈ 𝐿
(𝑞+1)/𝑞

(Ω × [0, 𝑇]).
Now we are going to show that 𝑢 is a solution of the

problem (11)-(12). Indeed, from (49) to (51), we have

∫

Ω

𝑢
𝑚
(0) 𝑒
𝑗
𝑑𝑥 → ∫

Ω

𝑢 (0) 𝑒
𝑗
𝑑𝑥,

∫

Ω

𝑢


𝑚
(0) 𝑒
𝑗
𝑑𝑥 → ∫

Ω

𝑢


(0) 𝑒
𝑗
𝑑𝑥

(55)

for each fixed 𝑗 ≥ 1. So we conclude that, for any 𝑗 ≥ 1,

∫

Ω

(𝑢
𝑚
(0) − 𝑢

0
) 𝑒
𝑗
𝑑𝑥 = ∫

Ω

(𝑢


(0) − 𝑢
1
) 𝑒
𝑗
𝑑𝑥 = 0

as 𝑚 → ∞,

(56)

which shows that (12) holds.

We will prove that, in fact, 𝜒 = 𝑀(|𝐴
1/2

𝑢|
2
)𝐴𝑢; that is,

𝑀(






𝐴
1/2

𝑢
𝑚







2

)𝐴𝑢
𝑚
→ 𝑀(






𝐴
1/2

𝑢







2

)𝐴𝑢

weak-star in 𝐿
∞

(0,∞;𝐻) .

(57)

For V ∈ 𝐿
2
(0, 𝑇;𝐻), we have

∫

𝑇

0

(𝜒 −𝑀(






𝐴
1/2

𝑢







2

)𝐴𝑢, V) 𝑑𝑡

= ∫

𝑇

0

(𝜒 −𝑀(






𝐴
1/2

𝑢
𝑚







2

)𝐴𝑢
𝑚
, V) 𝑑𝑡

+ ∫

𝑇

0

𝑀(






𝐴
1/2

𝑢







2

) (𝐴𝑢
𝑚
− 𝐴𝑢, V) 𝑑𝑡

+ ∫

𝑇

0

(𝑀(






𝐴
1/2

𝑢
𝑚







2

) −𝑀(






𝐴
1/2

𝑢







2

))

× (𝐴𝑢
𝑚
, V) 𝑑𝑡.

(58)

We deduce from (49) and (54) that the first and second
terms in (58) tend to zero as 𝑚 → ∞. For the last term,
using the fact that𝑀 is𝐶1 and (21), we can derive (with some
positive constants 𝑐

1
, 𝑐
2
)

∫

𝑇

0

(𝑀(






𝐴
1/2

𝑢
𝑚







2

) −𝑀(






𝐴
1/2

𝑢







2

)) (𝐴𝑢
𝑚
, V) 𝑑𝑡

≤ 𝑐
1
∫

𝑇

0





𝐴 (𝑢
𝑚
+ 𝑢) , 𝑢

𝑚
− 𝑢





𝑑𝑡

≤ 𝑐
2
(∫

𝑇

0





𝑢
𝑚
− 𝑢






2

𝑑𝑡)

1/2

.

(59)

Since 𝑢
𝑚
is bounded in 𝐿

∞
(0, 𝑇; 𝑉) and the injection of 𝑉 in

𝐻 is compact, we have

𝑢
𝑚
→ 𝑢 strongly in 𝐿

2

(0, 𝑇;𝐻) . (60)

From (58) to (60), we deduce (57). It follows from (49), (51),
and (57) that, for each fixed V ∈ 𝐿

𝑞+1
(0, 𝑇; 𝑉),

∫

𝑇

0

(𝐾𝑢


𝑚
+𝑀(






𝐴
1/2

𝑢
𝑚







2

)𝐴𝑢
𝑚
, V) 𝑑𝑡

→ ∫

𝑇

0

(𝐾𝑢

+𝑀(






𝐴
1/2

𝑢







2

)𝐴𝑢, V) 𝑑𝑡

(61)

as𝑚 → +∞.
For the nonlinear term, 𝑔(𝑢), it remains to show that, for

any fixed V ∈ 𝐿
𝑞+1

(0, 𝑇; 𝑉),

∫

𝑇

0

∫

Ω

V𝑔 (𝑢
𝑚
) 𝑑𝑥 𝑑𝑡 → ∫

𝑇

0

∫

Ω

V𝑔 (𝑢) 𝑑𝑥 𝑑𝑡 (62)

as𝑚 → ∞.
At this moment we use the following lemma due to Jung

and Choi (see [26, page 12]).



6 The Scientific World Journal

Lemma 2. Suppose thatΩ× [0, 𝑇] is a bounded open domain
ofR𝑛×R; 𝑔

𝑚
and 𝑔 are in 𝐿𝑞(Ω×[0, 𝑇]), 1 < 𝑞 < ∞, such that

𝑔
𝑚

→ 𝑔 a.e., in Ω × [0, 𝑇]. Then 𝑔
𝑚

→ 𝑔 weakly in 𝐿
𝑞
(Ω ×

[0, 𝑇]).

From (53), 𝑔(𝑢
𝑚
) → 𝑔(𝑢


) a.e. in Ω × [0, 𝑇]. By (36), we

can use the above lemma and so we have 𝜓 = 𝑔(𝑢

); that is,

𝑔 (𝑢
𝑚
) → 𝑔 (𝑢) weak in 𝐿

(𝑞+1)/𝑞

(Ω × (0, 𝑇)) , (63)

which implies (62). Therefore we obtain

∫

𝑇

0

(𝐾𝑢

+𝑀(






𝐴
1/2

𝑢







2

)𝐴𝑢 + 𝑔 (𝑢

) , V) 𝑑𝑡 = 0,

∀V ∈ 𝐿
𝑞+1

(0, 𝑇; 𝑉) .

(64)

The uniqueness is obtained by a standard method, so we
omit the proof here.

3. Energy Estimates

In this section we study the energy estimate under suitable
growth conditions on 𝑔.

Let us assume that there exist a number𝑝 ≥ 1 and positive
constants 𝑐

1
, 𝑖 = 1, 2, such that

𝑐
1
min {


𝐾
1/2

𝑥






,






𝐾
1/2

𝑥







𝑝

}

≤




𝑔 (𝑥)





≤ 𝑐
2
max {


𝐾
1/2

𝑥






,






𝐾
1/2

𝑥







1/𝑝

}

(65)

for all 𝑥 ∈ R.

Theorem 3. Assume that (65) holds. Then one obtains the
following energy decay:

𝐸 (𝑡) ≤

{

{

{

𝑐
0
𝐸 (0) 𝑒

−𝑤𝑡
∀𝑡 ≥ 0, 𝑖𝑓 𝑝 = 1,

𝑐
0
(1 + 𝑡)

−2/(𝑝−1)
∀𝑡 ≥ 0, 𝑖𝑓 𝑝 > 1,

(66)

where 𝑐
0
, 𝑤, and 𝑐

0
are some positive constants.

Proof. Let 𝑇 > 0 be arbitrary and fixed and let 𝑢 ∈ 𝐿
∞
(0,

𝑇; 𝑉)∩𝑊
2,∞

(0, 𝑇;𝐻) be a solution of (11) and (12). Multiply-
ing (11) by 𝑢 and integrating by parts inΩ×(𝑠, 𝑇) (0 ≤ 𝑠 < 𝑇),
we obtain that

𝐸 (𝑇) − 𝐸 (𝑠) = −∫

𝑇

𝑠

(𝑔 (𝑢


(𝑡)) , 𝑢


(𝑡)) 𝑑𝑡. (67)

By (𝑔(𝑢

(𝑡)), 𝑢


(𝑡)) ≥ 0 and being the primitive of an inte-

grable function, it follows that the energy 𝐸 is nonincreasing,
locally absolutely continuous and

𝐸


(𝑡) = − (𝑔 (𝑢


(𝑡)) , 𝑢


(𝑡)) a.e. in [0,∞) . (68)

Here and in what follows we will denote by 𝑐 diverse positive
constants. We are going to show that the energy of this sol-
ution satisfies

∫

𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

≤ 𝑐𝐸 (𝑠) ∀0 ≤ 𝑠 ≤ 𝑇 < ∞. (69)

Once (69) is satisfied, the integral inequalities given in
Komornik [31] and Haraux [32] will establish (66).

Now, multiplying (11) by 𝐸(𝑡)
(𝑝−1)/2

𝑢 and integrating by
parts, we have

0 = ∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

(𝐾𝑢

+𝑀(






𝐴
1/2

𝑢







2

)𝐴𝑢 + 𝑔 (𝑢

) , 𝑢) 𝑑𝑡

= [𝐸(𝑡)
(𝑝−1)/2

(𝐾𝑢

, 𝑢)]

𝑇

𝑠

−

𝑝 − 1

2

∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−3)/2

𝐸


(𝑡) (𝐾𝑢

, 𝑢) 𝑑𝑡

− ∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2




𝐾
1/2

𝑢





2

𝑑𝑡

+ ∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

(𝑀(






𝐴
1/2

𝑢







2

)






𝐴
1/2

𝑢







2

, 𝑢) 𝑑𝑡

+ ∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

(𝑔 (𝑢

) , 𝑢) 𝑑𝑡.

(70)

Note that by the assumption (M) and (21), we can choose
some positive number

𝛼 = max
𝑠∈[0,|𝐴

1/2
𝑢|
2

]

{𝑀 (𝑠)} < ∞ (71)

so that 2𝐸(𝑡) ≤ |𝐾
1/2

𝑢

|
2
+ 𝛼|𝐴

1/2
𝑢|
2. Thus we deduce that

2𝛽

𝛼

∫

𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

𝑑𝑡

≤ −[𝐸(𝑡)
(𝑝−1)/2

(𝐾𝑢

, 𝑢)]

𝑇

𝑠

+

𝑝 − 1

2

∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−3)/2

𝐸


(𝑡) (𝐾𝑢

, 𝑢) 𝑑𝑡

+ ∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

((1 + 𝛼
−1
)






𝐾
1/2

𝑢





2

− (𝑔 (𝑢

) , 𝑢)) 𝑑𝑡

≡ 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(72)

Using the continuity of the imbedding 𝑉 ⊂ 𝐻, the Cauchy-
Schwarz and the Young inequalities, we obtain






(𝐾𝑢

, 𝑢)






≤ 𝑐






𝐾𝑢




‖𝑢‖ ≤ 𝑐𝐸 (𝑡) . (73)

Hence, since 𝐸(𝑡) is nonincreasing, we obtain

𝐼
1
≤ 𝑐𝐸
(𝑝−1)/2

(0) 𝐸 (𝑠) ,

𝐼
2
≤

(𝑝 − 1)

2

∫

𝑇

𝑠

𝑐𝐸(𝑡)
(𝑝−1)/2

𝐸


(𝑡) 𝑑𝑡

≤ 𝑐𝐸
(𝑝−1)/2

(0) 𝐸 (𝑠) .

(74)

In order to estimate the last term 𝐼
3
of (72), we set

Ω
1
= {𝑥 ∈ Ω :






𝐾
1/2

𝑢


(𝑡, 𝑥)






≤ 1} ,

Ω
2
= {𝑥 ∈ Ω :






𝐾
1/2

𝑢


(𝑡, 𝑥)






> 1} .

(75)
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Then we have

∫

Ω






𝐾
1/2

𝑢


(𝑡, 𝑥)
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2
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(76)

The Hölder inequality yields

∫
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𝐾
1/2

𝑢


(𝑡, 𝑥)







2

𝑑𝑥 ≤ 𝑐(∫

Ω
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𝐾
1/2

𝑢


(𝑡, 𝑥)







𝑝+1

𝑑𝑥)
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Ω
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𝐾
1/2

𝑢


(𝑡, 𝑥)







2

𝑑𝑥

≡ 𝐽
1
+ 𝐽
2
.

(77)

Using (65) and (68), we deduce that

𝐽
1
≤ 𝑐(∫

Ω
1

𝑢

𝑔 (𝑢

) 𝑑𝑥)

2/(𝑝+1)

≤ 𝑐






𝐸


(𝑡)







2/(𝑝+1)

,

𝐽
2
≤ 𝑐∫

Ω
2






𝑢

𝑔 (𝑢

)






𝑑𝑥 ≤ 𝑐 (−𝐸



(𝑡)) .

(78)

Combining these two inequalities with (77), we obtain

∫

Ω






𝐾
1/2

𝑢


(𝑡, 𝑥)







2
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(𝑡))
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(𝑡)) .

(79)

Applying Young’s inequality, it follows that, for any 𝜖 > 0,

∫

𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2




𝐾
1/2

𝑢





2
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(1−𝑝)/2
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(𝑝−1)/2

(0)) 𝐸 (𝑠) .

(80)

It remains to estimate the second term of 𝐼
3
. Using (88) we

have
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(81)

Similarly, using (6), we obtain
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From (81) and (82), we deduce
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Using Young’s inequality and

𝐸(𝑡)
𝑝/2

(−𝐸


(𝑡))

1/2

= 𝐸(𝑡)
(𝑝+1)/4

(𝐸(𝑡)
(𝑝−1)/4
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(𝑡))

1/2

) ,

(84)
it follows from (82) that, for any 𝜖 > 0,

− ∫
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s
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(85)

Combining (80) with (85) and setting �̃� = 1 + 𝛼
−1, we obtain
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(86)

Therefore we conclude that

(

2𝛽

𝛼

− (�̃� + 2) 𝜖𝑐)∫

𝑇

𝑠

𝐸
(𝑝+1)/2

≤ 𝑐 (�̃�𝜖
(1−𝑝)/2

+ 𝜖
−𝑝

+ (�̃� + 𝜖
−1
) 𝐸(0)

(𝑝−1)/2
) 𝐸 (𝑠) .

(87)

Now we choose 𝜖 as 𝜖 ∈ (0, 2𝛽/(3𝛼 + 1)𝑐); then (69) follows.
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Table 1: Simulation parameters which are satisfied by theoretical conditions.

Symbols Definition Values Reference
𝐴(𝑥) Cross-sectional area 0.7853 (10

−4 sin (210𝜋𝑥) + 1) cm2 [34]
𝜌 Mass density of the unit length 7.850 g/cm2 [34]
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Figure 1: Solution shapes and contour lines with respect to 𝜅 = 10 and 𝜅 = 10
−0.3.

4. Numerical Result

In this section, we consider a Kirchhoff-type equation with
heterogeneous string as an application:

(𝐴 (𝑥) 𝜌) 𝑢


(𝑥, 𝑡) − (1 + ∫

1

0

|∇𝑢 (𝑥, 𝑡)|
2
𝑑𝑥)Δ𝑢 (𝑥, 𝑡)

+ 𝜅






𝑢


(𝑥, 𝑡)







2

𝑢


(𝑥, 𝑡) = 0,

(88)

in (𝑥, 𝑡) ∈ (0, 1) × (0, 3) , (89)

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0 on (0, 3) , (90)

𝑢
0
= 𝑢 (𝑥, 0) = exp(−64(𝑥 −

1

2

)

2

) in (0, 1) , (91)

𝑢
1
= 𝑢
𝑡
(𝑥, 0) = 0 in (0, 1) , (92)

where 𝜅 is a positive constant and𝐴(𝑥), 𝜌 are given in Table 1.

Then, the operators 𝐾 = 𝐴(𝑥)𝜌𝐼(𝐼 : 𝐻 → 𝐻;

identity operator), 𝐴 = −Δ, and the functions 𝑀(𝑠) = 𝑠 +

1 and 𝑔(𝑥) = 𝜅|𝑥|
2
𝑥 so that we can easily check that the

hypotheses (M), (G), (H), and (S) in Preliminaries are sat-
isfied.The smallness condition satisfies (‖∇𝑢

0
‖
2
+1)‖Δ𝑢

0
‖
2
≈

0.213 ≤ 1/4. Therefore, by Theorem 1, we can deduce the
following results.
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Figure 2: Algebraic decay rates of the energy in case of 𝜅 = 10 and
𝜅 = 10

−0.3.

Theorem 4. For any 𝑇 > 0, there is a unique solution 𝑢 ∈

𝐿
∞
(0, 𝑇;𝐻

2
(0, 1)) ∩ 𝑊

1,∞
(0, 𝑇;𝐻

1

0
(0, 1)) ∩ 𝑊

2,∞
(0, 𝑇; 𝐿

2
(0,

1)) to the system (88)–(92).

The energy for the system (88)–(92) is given by

𝐸 (𝑡) =

1

2

[∫

1

0









√𝐴 (𝑥) 𝜌𝑢


(𝑥, 𝑡)









2

𝑑𝑥 + ∫

1

0

|∇𝑢 (𝑥, 𝑡)|
2
𝑑𝑥

+

1

2

(∫

1

0

|∇𝑢 (𝑥, 𝑡)|
2
𝑑𝑥)

2

] .

(93)

Next, in order to get the energy decay of (88)–(92), we need
the value of the parameter 𝑝 in (65). We can easily check that
𝑝 = 3 when 𝑔(𝑥) = 𝜅|𝑥|

2
𝑥.

Therefore, byTheorem 3, we get the energy decay rates for
the energy 𝐸(𝑡) as follows.

Theorem 5. We obtain the following energy decay:

𝐸 (𝑡) ≤ 𝑐
1
(1 + 𝑡)

−1
∀𝑡 ≥ 0, (94)

where 𝑐
1
is a positive constant.

For the numerical simulation, we use the finite difference
methods (FDM) which are the implicit multistep methods in
time and second-order central difference methods for the
space derivative in space in numerical algorithms (see [8, 9,
11]).

Figures 1(a)–1(d) show displacements of solutions to the
system (88)–(92) with 𝜅 = 10 and 𝜅 = 10

−0.3, respectively.
In case of 𝜅 = 10 and 𝜅 = 10

−0.3, we deduce the algebraic
decay rate for the energy as shown in Figure 2, respectively.
The blue line and red dotted circled line (or blue circled line)

show 𝑐
1
(𝑡+1)
1 and𝐸(𝑡) per the two values, respectively, where

the parameter value 𝑐
1

= 30.2 in (94). This result shows
that the energy decay rates for solutions are algebraic in case
that the system (88)–(92) with the nonlinear damping term
𝜅|𝑢
𝑡
|
2
𝑢
𝑡
.
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