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The paper presents the optimal homotopy perturbation method, which is a new method to find approximate analytical
solutions for nonlinear partial differential equations. Based on the well-known homotopy perturbation method, the optimal
homotopy perturbation method presents an accelerated convergence compared to the regular homotopy perturbation method.
The applications presented emphasize the high accuracy of the method by means of a comparison with previous results.

1. Introduction

A significant part of the natural technological processes
and phenomena are usually modelled by means of partial
differential equations. Thus it is very important to find
solutions of these equations. However, as in many cases the
computation of exact solutions is not possible; numerical or
approximate solutions must be computed.

In the present paper we present a new approximation
method named optimal homotopy perturbation method
(OHPM). As the name suggests, the method is based on
the homotopy perturbation method [1, 2] and its main
feature is an accelerated convergence compared to the regular
homotopy perturbation method.

The applications presented show that the approximate
solutions obtained by using OHPM requires less iterations
in comparison with other iterative methods for approximate
solutions of partial differential equations.

2. The Optimal Homotopy
Perturbation Method

We consider the following problem:

L (𝑢 (𝑥, 𝑡)) +N (𝑢 (𝑥, 𝑡)) − 𝑓 (𝑥, 𝑡) = 0, 𝐵 (𝑢) = 0.

(1)

Here L is a linear operator, 𝑢(𝑥, 𝑡) is the unknown function,
N is a nonlinear operator, 𝑓(𝑥, 𝑡) is a known, given function,
and 𝐵 is a boundary operator.

If 𝑢̃ is an approximate solution of (1), we evaluate the
error obtained by replacing the exact solution 𝑢 with the
approximate one 𝑢̃ as the remainder:

𝑅 (𝑥, 𝑡, 𝑢̃) = L (𝑢̃ (𝑥, 𝑡)) +N (𝑢̃ (𝑥, 𝑡)) − 𝑓 (𝑥, 𝑡) . (2)
The first step in applying OHPM is to attach to the

problem (1) the family of equations (see [1, 2]):
(1 − 𝑝) [L (Φ (𝑥, 𝑡, 𝑝)) − 𝑓 (𝑥, 𝑡)]

+ 𝑝 [L (Φ (𝑥, 𝑡, 𝑝)) +N (Φ (𝑥, 𝑡, 𝑝)) − 𝑓 (𝑥, 𝑡)] = 0,

(3)
where 𝑝 ∈ [0, 1] is an embedding parameter and Φ(𝑥, 𝑡, 𝑝) is
an unknown function.

When 𝑝 = 0, Φ(𝑥, 𝑡, 0) = 𝑢
0
(𝑥, 𝑡) and when 𝑝 = 1,

Φ(𝑥, 𝑡, 1) = 𝑢(𝑥, 𝑡). Thus, as 𝑝 increases from 0 to 1, the
solutionΦ(𝑥, 𝑡, 𝑝) varies from 𝑢

0
(𝑥, 𝑡) to the solution 𝑢(𝑥, 𝑡),

where 𝑢
0
(𝑥, 𝑡) is obtained from the following:
L (𝑢
0
(𝑥, 𝑡)) − 𝑓 (𝑥, 𝑡) = 0, 𝐵 (𝑢

0
) = 0. (4)

We consider the following expansion of Φ(𝑥, 𝑡, 𝑝):

Φ(𝑥, 𝑡, 𝑝) = 𝑢
0
(𝑥, 𝑡) + ∑

𝑚≥1

𝑢
𝑚
(𝑥, 𝑡) 𝑝

𝑚
. (5)

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 721865, 6 pages
http://dx.doi.org/10.1155/2014/721865



2 The Scientific World Journal

Substituting the relation (5) into (3), collecting the same
powers of 𝑝, and equating each coefficient of the powers of 𝑝
with zero we obtain

L (𝑢
𝑚
(𝑥, 𝑡)) = −N

𝑚−1
(𝑢
0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , . . . , 𝑢

𝑚−1
(𝑥, 𝑡))

𝑚 ≥ 1, . . . , 𝐵 (𝑢
𝑚
) = 0,

(6)

where N
𝑖
, 𝑖 ≥ 0 are the coefficients of 𝑝𝑖 in the nonlinear

operatorN:

N (𝑢 (𝑥, 𝑡))

= N
0
(𝑢
0 (𝑥, 𝑡)) + 𝑝N1 (𝑢0 (𝑥, 𝑡) , 𝑢1 (𝑥, 𝑡))

+ 𝑝
2
N
2
(𝑢
0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , 𝑢

2
(𝑥, 𝑡)) + ⋅ ⋅ ⋅ .

(7)

We remark that 𝑢
𝑚
, 𝑚 ≥ 1 are obtained from the

linear equations (6), which are easily solved together with the
boundary conditions.

We denote 𝑓
𝑚
= 𝑢
0
+ 𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑚
.

We consider the set 𝑆
𝑚
(𝑚 = 0, 1, 2, . . .) containing the

functions 𝜑
𝑚0
, 𝜑
𝑚1
, 𝜑
𝑚2
, . . . , 𝜑

𝑚𝑛
𝑚

, chosen as linearly inde-
pendent functions in the vector space of the continuous
functions on the real domain Ω such that 𝑆

𝑚−1
⊆ 𝑆
𝑚
and

𝑢
0
+𝑢
1
+⋅ ⋅ ⋅+𝑢

𝑚
is a real linear combination of these functions.

We remark that such a construction is always possible. For
example we can choose 𝑆

𝑚
= {𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
},𝑚 = 0, 1, 2, . . ..

In this case 𝜑
𝑚0

= 𝑢
0
, 𝜑
𝑚1

= 𝑢
1
, 𝜑
𝑚2

= 𝑢
2
, . . . , 𝜑

𝑚𝑛
𝑚

= 𝑢
𝑚
.

Definition 1. We call an HP-sequence of the problem (1) a
sequence of functions {𝑠

𝑚
(𝑥, 𝑡)}

𝑚∈N of the form 𝑠
𝑚
(𝑥, 𝑡) =

∑
𝑛
𝑚

𝑘=0
𝛼
𝑘

𝑚
𝜑
𝑚𝑘
, where𝑚 ∈ N, 𝛼𝑘

𝑚
∈ R.

A function of the sequence is called anHP-function of the
problem (1).

We call the HP-sequence {𝑠
𝑚
(𝑥, 𝑡)}

𝑚∈N, convergent to the
solution of the problem (1) if lim

𝑚→∞
𝑅(𝑥, 𝑡, 𝑠

𝑚
(𝑥, 𝑡)) = 0.

Definition 2. We call an 𝜖-approximate HP-solution of the
problem (1) on the real domain Ω an HP-function 𝑢̃ which
satisfies the following condition:

|𝑅 (𝑥, 𝑡, 𝑢̃)| < 𝜖 (8)

together with the boundary conditions from (1).

Definition 3. We call a weak 𝛿-approximate HP-solution of
the problem (1) on the real domain Ω an HP-function 𝑢̃

satisfying the relation ∫
Ω
𝑅2(𝑥, 𝑡, 𝑢̃)𝑑𝑥 𝑑𝑡 ≤ 𝛿, together with

the boundary conditions from (1).

We will find a weak 𝜖-approximate HP-solution of the
type 𝑢̃ = ∑

𝑛
𝑚

𝑘=0
𝑐𝑘
𝑚
𝜑
𝑚𝑘

where 𝑚 ≥ 0 and the constants 𝑐𝑘
𝑚
are

calculated using the following steps.

(i) We substitute the approximate solution 𝑢̃ in (1) and
obtain the following expression:

R (𝑥, 𝑡, 𝑐
𝑘

𝑚
) = 𝑅 (𝑥, 𝑡, 𝑢̃) . (9)

(ii) We attach to the problem (1) the following real
functional:

𝐽 (𝑐
𝑘

𝑚
) = ∫
Ω

R
2
(𝑥, 𝑡, 𝑐

𝑘

𝑚
) 𝑑𝑥 𝑑𝑡, (10)

where, by imposing the boundary conditions we can
determine 𝑙 ∈ 𝑁, 𝑙 ≤ 𝑚 such that 𝑐𝑚

0
, 𝑐𝑚
1
, . . . , 𝑐𝑚

𝑙
are

computed as functions of 𝑐𝑚
𝑙+1
, 𝑐𝑚
𝑙+2
, . . . , 𝑐𝑚

𝑛
.

(iii) We compute the values of 𝑐𝑚
𝑙+1
, 𝑐𝑚
𝑙+2
, . . . , 𝑐𝑚

𝑛
as the

values which give the minimum of the functional (10)
and the values of 𝑐𝑚

0
, 𝑐
𝑚

1
, . . . , 𝑐

𝑚

𝑙
again as functions of

𝑐𝑚
𝑙+1
, 𝑐𝑚
𝑙+2
, . . . , 𝑐𝑚

𝑛
by using the boundary conditions.

(iv) Using the constants 𝑐𝑚
0
, . . . , 𝑐𝑚

𝑛
thus determined, we

consider the HP-sequence

𝑠
𝑚
(𝑥, 𝑡) =

𝑛
𝑚

∑
𝑘=0

𝑐
𝑘

𝑚
𝜑
𝑚𝑘
. (11)

The following convergence theorem holds.

Theorem 4. The HP-sequence 𝑠
𝑚
(𝑥, 𝑡) from (11) satisfies the

following property:

lim
𝑚→∞

∫
Ω

𝑅
2
(𝑥, 𝑡, 𝑠

𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 0. (12)

Moreover, ∀𝜖 > 0, ∃𝑚
0
∈ N such that ∀𝑚 ∈ N, 𝑚 > 𝑚

0
it

follows that 𝑠
𝑚
(𝑡) is a weak 𝜖-approximate HP-solution of the

problem (1).

Proof. Based on the way the HP-function 𝑠
𝑚
(𝑥, 𝑡) is com-

puted, the following inequality holds:

0 ≤ ∫
Ω

𝑅
2
(𝑥, 𝑡, 𝑠

𝑚 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

≤ ∫
Ω

𝑅
2
(𝑡, 𝑓
𝑚 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡, ∀𝑚 ∈ N.

(13)

It follows that

0 ≤ lim
𝑚→∞

∫
Ω

𝑅
2
(𝑥, 𝑡, 𝑠

𝑚 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

≤ lim
𝑚→∞

∫
Ω

𝑅
2
(𝑥, 𝑡, 𝑓

𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 0, ∀𝑚 ∈ N.

(14)

We obtain

lim
𝑚→∞

∫
Ω

𝑅
2
(𝑥, 𝑡, 𝑠

𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 0. (15)

From this limit we obtain that ∀𝜖 > 0, ∃𝑚
0
∈ N such

that ∀𝑚 ∈ N, 𝑚 > 𝑚
0
it follows that 𝑠

𝑚
(𝑥, 𝑡) is a weak 𝜖-

approximate HP-solution of the problem (1).
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Remark 5. Any 𝜖-approximateHP-solution of the problem (1)
is also a weak approximate HP-solution, but the opposite is
not always true. It follows that the set of weak approximate
HP-solutions of the problem (1) also contains the approxi-
mate HP-solutions of the problem.

Taking into account the above remark, in order to find 𝜖-
approximate HP-solutions of the problem (1) by the OHPM
method we will first determine weak approximate HP-
solutions, 𝑢̃. If |𝑅(𝑥, 𝑡, 𝑢̃)| < 𝜖 then 𝑢̃ is also an 𝜖-approximate
HP-solution of the problem.

3. Applications

In this sectionwe applyOHPM to find approximate analytical
solutions for the regularized long wave (RLW) equation.

The RLW equation is a nonlinear evolution equation.
These kind of equations are frequently used tomodel a variety
of physical phenomena such as ion-acoustic waves in plasma,
magnetohydrodynamics waves in plasma, longitudinal dis-
persive waves in elastic rods, pressure waves in liquid gas
bubble mixtures, and rotating flow down a tube.

The RLW equation was introduced in [3] where it was
used to describe the behaviour of the undular bore.

For some restricted initial and boundary conditions,
exact analytical solutions for the RLW equation were com-
puted (see, e.g., [4]). However, in most cases it is not
possible to find such exact analytical solutions and usually
numerical methods are used. Among the numerical methods
recently employed for RLW-type equations we mention finite
difference methods [5–8], multistep mixed finite element
methods [9], the method of lines [10], and meshless finite-
point methods [11].

Taking into account the usefulness of analytical solutions
versus numerical ones, various approximation methods were
also employed to find approximate analytical solutions for
various RLW-type equations, such as the homotopy pertur-
bation method [12], the variational iteration method [12],
the homotopy asymptotic method [13, 14], and the Riccati
expansion method [15].

In the following, for two test problems presented in [12],
we compare solutions obtained by using OHPM with pre-
vious results obtained by using the homotopy perturbation
method and the variational iteration method.

3.1. Application 1. Our first application is the following RLW
problem [12]:

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ (
𝑢2

2
)
𝑥

= 0,

𝑢 (𝑥, 0) = 𝑥.

(16)

In [12] approximate solutions of (16) are computed
using the homotopy perturbation method (HPM) and the
variational iteration method (VIM).

The exact solution of this problem is 𝑢
𝑒
(𝑥, 𝑡) = 𝑥/(𝑡 + 1).

The fifth order solution computed in [12] by using the
variational iteration method is

𝑢VIM (𝑥, 𝑡)

= 𝑥 ⋅ (−
𝑡31

109876902975
+

𝑡
30

3544416225
−

𝑡
29

236294415

+
13𝑡28

315059220
−

2𝑡
27

6751269
+

𝑡
26

595350
−

5309𝑡
25

675126900

+
16927𝑡

24

540101520
−

2447𝑡
23

22504230
+

557𝑡
22

1666980

−
207509𝑡

21

225042300
+
16511𝑡

20

7144200
−
162179𝑡

19

30541455
+
2588𝑡

18

229635

−
1080013𝑡

17

48580560
+
43363𝑡

16

1058400
−
63283𝑡

15

893025
+
1019𝑡

14

8820

−
13141𝑡

13

73710
+
17779𝑡

12

68040
−
1477𝑡

11

4050
+
27523𝑡

10

56700

−
3497𝑡

9

5670
+
943𝑡
8

1260
−
13𝑡
7

15
+
43𝑡
6

45

− 𝑡
5
+ 𝑡
4
− 𝑡
3
+ 𝑡
2
− 𝑡 + 1) .

(17)

The fifth order solution computed in [12] by using the
homotopy perturbation method is of the form (5)

𝑢HPM (𝑥, 𝑡)

= 𝑥 ⋅ (−
1382𝑡11

155925
−
1382𝑡

10

14175
−
326𝑡
9

567

−
626𝑡8

315
−
1303𝑡

7

315
−
199𝑡
6

45

− 𝑡
5
+ 𝑡
4
− 𝑡
3
+ 𝑡
2
− 𝑡 + 1) .

(18)

Using OHPM, the following steps are performed.

(i) Choosing the same homotopy (3) as used in [12] we
obtain the same solutions:

𝑢
0
(𝑥, 𝑡) = 𝑥 ⋅ (𝑡 + 1)

𝑢
1
(𝑥, 𝑡) = −𝑥 ⋅ 𝑡 ⋅ (2 + 𝑡 + 𝑡2/3)

𝑢
2
(𝑥, 𝑡) = 2 ⋅ 𝑥 ⋅ 𝑡2 ⋅ (15 + 15 ⋅ 𝑡 + 5 ⋅ 𝑡2 + 𝑡3)/15.

It follows that we obtain the sets 𝑆
0
= {𝑥, 𝑥 ⋅ 𝑡}, 𝑆

1
=

{𝑥 ⋅ 𝑡, 𝑥 ⋅ 𝑡2, 𝑥 ⋅ 𝑡3}, 𝑆
2
= {𝑥 ⋅ 𝑡2, 𝑥 ⋅ 𝑡3, 𝑥 ⋅ 𝑡4, 𝑥 ⋅ 𝑡5}.

We will compute a second order approximate solu-
tion, by taking into account the terms from 𝑆

0
, 𝑆
1
,

and 𝑆
2
andwewill compare this solutionwith the fifth

order solutions from [12]. Our second order approxi-
mate solution will have the expression 𝑢OHPM(𝑥, 𝑡) =
𝑐
0
⋅ 𝑥+ 𝑐
1
⋅ 𝑥 ⋅ 𝑡 + 𝑐

2
⋅ 𝑥 ⋅ 𝑡2 +𝑐

3
⋅ 𝑥 ⋅ 𝑡3 +𝑐

4
⋅ 𝑥 ⋅ 𝑡4 +𝑐

5
⋅ 𝑥 ⋅ 𝑡5.
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Figure 1: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (16).

(ii) Imposing the boundary condition 𝑢OHPM(𝑥, 0) = 𝑥

we obtain 𝑐
0
= 1.

Replacing this expression of 𝑐
0
in the expression of

𝑢OHPM we obtain the following:

𝑢OHPM(𝑥, 𝑡) = 𝑥 + 𝑐1 ⋅ 𝑥 ⋅ 𝑡 + 𝑐2 ⋅ 𝑥 ⋅ 𝑡
2 + 𝑐
3
⋅ 𝑥 ⋅ 𝑡3 + 𝑐

4
⋅

𝑥 ⋅ 𝑡4 + 𝑐
5
⋅ 𝑥 ⋅ 𝑡5.

We introduce 𝑢OHPM in the remainder R given
by (2) and (9) and we compute the functional
𝐽(𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
) of (10).

We remark that while the expression of the functional
is too long to be included here, the computation is
simple and straightforward using a dedicated mathe-
matical software (we used the Wolfram Mathematica
9 software).

(iii) We compute theminimum of the functional 𝐽 and, by
replacing the corresponding values of the parameters
𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
, we obtain the following second order

approximation:
𝑢̃OHPM(𝑥, 𝑡) = −0.109895𝑡5𝑥 + 0.434798𝑡4𝑥 −

0.789112𝑡3𝑥 + 0.961938𝑡2𝑥 − 0.997729𝑡𝑥 + 𝑥.

Figure 1 presents the comparison of the absolute errors
(computed as the absolute values of the differences between
the exact solutions and the approximate solutions) cor-
responding to the fifth order approximation obtained by
using HPM (red surface), to the fifth order approximation
obtained by usingVIM (blue surface) and to the second order
approximation obtained by OHPM (green surface).

Table 1 presents the same comparison for several values of
𝑥 and 𝑡.

It is easy to see that, overall, the approximations obtained
by using OHPM are much more accurate than the ones
previously computed by using HPM andVIM.Moreover, our
approximate solutions are not only more accurate but also, at
the same time, present a much simpler expression since they
are second order approximate solutions while the previous
ones are fifth order approximate solutions.

Table 1: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (16).

HPM VIM OHPM
𝑥 = 𝑡 = 0 0 0 0
𝑥 = 𝑡 = 0.2 7.894 10−5 3.256 10−7 1.081 10−5

𝑥 = 𝑡 = 0.4 1.171 10−2 2.555 10−5 1.398 10−5

𝑥 = 𝑡 = 0.6 2.346 10−1 2.819 10−4 9.787 10−6

𝑥 = 𝑡 = 0.8 2.075 1.420 10−3 3.280 10−5

𝑥 = 𝑡 = 1 1.172 101 4.700 10−3 2.408 10−7

3.2. Application 2. Our second application is the RLW prob-
lem (also from [12]):

𝑢
𝑡
− 𝑢
𝑥𝑥𝑥𝑥

= 0,

𝑢 (𝑥, 0) = sin (𝑥) .
(19)

Again in [12] approximate solutions of (16) are computed
using the homotopy perturbation method (HPM) and the
variational iteration method (VIM).

The exact solution of this problem is 𝑢
𝑒
(𝑥, 𝑡) = 𝑒−𝑡 sin(𝑥).

The fourth order solution computed in [12] by using the
variational iteration method is 𝑢VIM(𝑥, 𝑡) = (1/24)(𝑡

4 − 4𝑡3 +

12𝑡2 − 24𝑡 + 24) sin(𝑥).
The third order solution computed in [12] by using

the homotopy perturbation method is of the form (5)
𝑢HPM(𝑥, 𝑡) = −(1/24)(𝑡

4 + 4𝑡3 − 12𝑡2 + 24𝑡 − 24) sin(𝑥).
Using OHPM, the following steps are performed.

(i) Choosing the same homotopy (3) as used in [12] we
obtain the same solutions:

𝑢
0
(𝑥, 𝑡) = (𝑡 + 1) ⋅ sin(𝑥)

𝑢
1
(𝑥, 𝑡) = (1/2) ⋅ 𝑡 ⋅ (𝑡 + 4) ⋅ (− sin(𝑥))

𝑢
2
(𝑥, 𝑡) = (1/6) ⋅ 𝑡

2
⋅ (𝑡 + 6) ⋅ sin(𝑥).

It follows that we obtain the sets 𝑆
0
= {sin(𝑥), sin(𝑥) ⋅

𝑡}, 𝑆
1
= {sin(𝑥)⋅𝑡, sin(𝑥)⋅𝑡2}, 𝑆

2
= {sin(𝑥)⋅𝑡2, sin(𝑥)⋅𝑡3}.

Hence we will compute a second order approximate
solution of the following form:
𝑢OHPM(𝑥, 𝑡) = 𝑐

0
⋅ sin(𝑥) + 𝑐

1
⋅ sin(𝑥) ⋅ 𝑡 + 𝑐

2
⋅ sin(𝑥) ⋅

𝑡2 + 𝑐
3
⋅ sin(𝑥) ⋅ 𝑡3.

(ii) Imposing the boundary condition 𝑢OHPM(𝑥, 0) = 𝑥

we obtain 𝑐
0
= 1.

Replacing this expression of 𝑐
0
in the expression of

𝑢OHPM we obtain the following:

𝑢OHPM(𝑥, 𝑡) = sin(𝑥) + 𝑐
1
⋅ sin(𝑥) ⋅ 𝑡 + 𝑐

2
⋅ sin(𝑥) ⋅ 𝑡2 +

𝑐
3
⋅ sin(𝑥) ⋅ 𝑡3.

We introduce 𝑢OHPM in the remainderR given by (2)
and (9) and we compute the functional 𝐽(𝑐

1
, 𝑐
2
, 𝑐
3
) of

(10).
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Figure 2: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (19).

Table 2: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (19).

HPM VIM OHPM
𝑥 = 𝑡 = 0 0 0 0
𝑥 = 𝑡 = 0.2 2.598 10−5 5.126 10−7 3.268 10−5

𝑥 = 𝑡 = 0.4 7.996 10−4 3.113 10−5 9.737 10−5

𝑥 = 𝑡 = 0.6 5.766 10−3 3.322 10−4 1.279 10−4

𝑥 = 𝑡 = 0.8 2.276 10−2 1.725 10−3 1.233 10−4

𝑥 = 𝑡 = 1 6.413 102 5.992 10−3 9.511 10−7

(iii) We compute theminimum of the functional 𝐽 and, by
replacing the corresponding values of the parameters
𝑐
1
, 𝑐
2
, 𝑐
3
, we obtain the following second order

approximation:
𝑢̃OHPM(𝑥, 𝑡)=−0.102902𝑡

3 sin(𝑥)+0.465235𝑡2 sin(𝑥)−
0.994455𝑡 sin(𝑥) + sin(𝑥).

Figure 2 presents the comparison of the absolute errors
corresponding to the third order approximation obtained by
using HPM (red surface), to the fourth order approximation
obtained by using VIM (blue surface), and to the second
order approximation obtained by OHPM (green surface).

Table 2 presents the same comparison for several values
of 𝑥 and 𝑡.

Again, overall, the approximations obtained by using
OHPM aremore accurate than the ones previously computed
by using HPM and VIMwhile, at the same time, they present
a much simpler expression.

4. Conclusions

In the present paper the new optimal homotopy perturbation
method is introduced as a straightforward and efficient
method to compute approximate solutions for nonlinear
partial differential equations.

The optimal homotopy perturbation method has an
accelerated convergence compared to the regular homotopy

perturbation method, fact proved by the included applica-
tions. The method is a powerful one since not only were we
capable to find more accurate approximations, but also the
approximations computed consist of fewer terms than the
previous solutions.
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