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The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular
metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype
contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.

1. Introduction

In 1906, the famous French mathematician Fréchet [1] intro-
duced the concept of a metric space. After this, several math-
ematicians generalize the concept of metric space in different
directions. Branciari [2] introduced a class of generalized
(rectangular)metric spaces by replacing triangular inequality
by similar one which involves four or more points instead
of three and improved Banach contraction principle. On the
other hand, Matthews [3] introduced the notion of partial
metric space as a part of the study of denotational semantics
of dataflownetwork. In this space, the usualmetric is replaced
by partial metric with an interesting property that the self-
distance of any point of space may not be zero. Further,
Matthews showed that the Banach contraction principle is
valid in partial metric space and can be applied in program
verification. Ćirić [4] introduced the quasicontractions in
metric spaces and generalized the Banach contraction prin-
ciple and several other fixed point theorems in metric spaces.

In this paper, we generalize the concept of rectangular
metric space and extend the concept of partial metric space
by introducing the partial rectangular metric space. A fixed
point theorem for quasitype contraction is also proved in
the partial rectangularmetric space which generalizes several
known results in metric, partial metric, and rectangular
metric spaces. Results are illustrated by some examples.

First, we recall some definitions from partial metric and
rectangular metric spaces (see [2, 3]).

Definition 1. A partial metric on a nonempty set 𝑋 is a
mapping 𝑝 : 𝑋 × 𝑋 → R such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(P1) 𝑝(𝑥, 𝑦) ≥ 0;
(P2) 𝑥 = 𝑦 if and only if 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦);
(P3) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);
(P4) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);
(P5) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A partial metric space is a pair (𝑋, 𝑝) such that 𝑋 is a
nonempty set and 𝑝 is a partial metric on𝑋.

Definition 2. Let𝑋 be a nonempty set and let 𝑑 : 𝑋×𝑋 → R

be a mapping such that

(R1) 0 ≤ 𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0, if and
only if 𝑥 = 𝑦;

(R2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋;
(R3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑤) + 𝑑(𝑤, 𝑧) + 𝑑(𝑧, 𝑦), for all 𝑥, 𝑦 ∈

𝑋 and for all distinct points 𝑤, 𝑧 ∈ 𝑋 − {𝑥, 𝑦}

(rectangular property).

Then, 𝑑 is called a rectangular metric on 𝑋, and (𝑋, 𝑑) is
called a rectangular metric space. A sequence {𝑥

𝑛
} in 𝑋 is

called convergent and converges to 𝑥 ∈ 𝑋, if, for every 𝜀 > 0,
there exists 𝑛

0
∈ N such that 𝑑(𝑥

𝑛
, 𝑥) < 𝜀 for all 𝑛 > 𝑛

0
.

Sequence {𝑥
𝑛
} is called a Cauchy sequence if, for every 𝜀 > 0,

there exists 𝑛
0
∈ N such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) < 𝜀, for all 𝑛,𝑚 > 𝑛

0
.
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A rectangular metric space (𝑋, 𝑑) is called complete, if every
Cauchy sequence in𝑋 converges in𝑋.

2. Partial Rectangular Metric Spaces

In this section, we define partial rectangular metric spaces
and prove some properties of partial rectangular metric
spaces.

Definition 3. Let𝑋 be a nonempty set and let 𝜌 : 𝑋×𝑋 → R

be a mapping such that

(𝜌1) 𝜌(𝑥, 𝑦) ≥ 0, for all 𝑥, 𝑦 ∈ 𝑋;
(𝜌2) 𝑥 = 𝑦 if and only if 𝜌(𝑥, 𝑦) = 𝜌(𝑥, 𝑥) = 𝜌(𝑦, 𝑦), for all

𝑥, 𝑦 ∈ 𝑋;
(𝜌3) 𝜌(𝑥, 𝑥) ≤ 𝜌(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋;
(𝜌4) 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋;
(𝜌5) 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑤)+𝜌(𝑤, 𝑧)+𝜌(𝑧, 𝑦)−𝜌(𝑤, 𝑤)−𝜌(𝑧, 𝑧),

for all 𝑥, 𝑦 ∈ 𝑋 and for all distinct points 𝑤, 𝑧 ∈ 𝑋 \

{𝑥, 𝑦}.

Then, 𝜌 is called a partial rectangular metric on 𝑋 and the
pair (𝑋, 𝜌) is called a partial rectangular metric space.

Remark 4. In a partial rectangular metric space (𝑋, 𝜌), if
𝑥, 𝑦 ∈ 𝑋 and 𝜌(𝑥, 𝑦) = 0, then 𝑥 = 𝑦 but the converse may
not be true.

Remark 5. It is clear that every rectangular metric space is
a partial rectangular metric space with zero self-distance.
However, the converse of this fact need not hold.

Example 6. Let 𝑋 = [0, 𝑎], 𝛼 ≥ 𝑎 ≥ 3 and define a mapping
𝜌 : 𝑋 × 𝑋 → R by

𝜌 (𝑥, 𝑦) =

{{{{{{{

{{{{{{{

{

𝑥, if 𝑥 = 𝑦;

3𝛼 + 𝑥 + 𝑦

2
, if 𝑥, 𝑦 ∈ {1, 2} , 𝑥 ̸= 𝑦;

𝛼 + 𝑥 + 𝑦

2
, otherwise.

(1)

Then, (𝑋, 𝑑) is a partial rectangular metric space, but it is not
a rectangular metric space, because 𝜌(𝑥, 𝑥) ̸= 0, for all 𝑥 > 0.
Also, (𝑋, 𝜌) is not a partial metric space because it lacks the
property (P5). Indeed,

𝜌 (1, 2) =
3

2
(𝛼 + 1) > 𝜌 (1, 3) + 𝜌 (3, 2) − 𝜌 (3, 3)

=
1

2
(𝛼 + 4) +

1

2
(𝛼 + 5) − 3 = 𝛼 +

3

2
.

(2)

Next proposition shows that every partial rectangular
metric space induces a rectangular metric space.

Proposition 7. For each partial rectangular metric space
(𝑋, 𝜌), the pair (𝑋, 𝜌𝑟) is a rectangular metric space, where

𝜌
𝑟

(𝑥, 𝑦) = 2𝜌 (𝑥, 𝑦) − 𝜌 (𝑥, 𝑥) − 𝜌 (𝑦, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋. (3)

Proof. By definition of 𝜌 and 𝜌
𝑟, it is easy to verify that 𝜌𝑟

satisfies the properties (R1) and (R2). For (R3), let 𝑥, 𝑦, 𝑧, 𝑤 ∈

𝑋, where 𝑤 and 𝑧 are distinct and 𝑤, 𝑧 ∈ 𝑋 \ {𝑥, 𝑦}; then we
have

𝜌
𝑟

(𝑥, 𝑦) = 2𝜌 (𝑥, 𝑦) − 𝜌 (𝑥, 𝑥) − 𝜌 (𝑦, 𝑦)

≤ 2𝜌 (𝑥, 𝑤) + 2𝜌 (𝑤, 𝑧) + 2𝜌 (𝑧, 𝑦)

− 2𝜌 (𝑤, 𝑤) − 2𝜌 (𝑧, 𝑧) − 𝜌 (𝑥, 𝑥) − 𝜌 (𝑦, 𝑦)

= [2𝜌 (𝑥, 𝑤) − 𝜌 (𝑥, 𝑥) − 𝜌 (𝑤, 𝑤)]

+ [2𝜌 (𝑤, 𝑧) − 𝜌 (𝑤, 𝑤) − 𝜌 (𝑧, 𝑧)]

+ [2𝜌 (𝑧, 𝑦) − 𝜌 (𝑧, 𝑧) − 𝜌 (𝑦, 𝑦)]

= 𝜌
𝑟

(𝑥, 𝑤) + 𝜌
𝑟

(𝑤, 𝑧) + 𝜌
𝑟

(𝑧, 𝑦) .

(4)

Thus, (𝑋, 𝜌𝑟) is a rectangular metric space.

Here, (𝑋, 𝜌𝑟) is called the induced rectangular metric
space, and 𝜌

𝑟 is the induced rectangular metric. In further
discussion until specified, (𝑋, 𝜌𝑟) will represent induced
rectangular metric space.

Now, we show that a rectangular metric space with some
restriction on it always induces a partial rectangular metric
space.

Proposition 8. Let (𝑋, 𝑑) be a rectangular metric space and
there exists 𝑥

0
∈ 𝑋 such that 𝑑(𝑥, 𝑥

0
) ≤ 𝑑(𝑥, 𝑦), for all distinct

𝑥, 𝑦 ∈ 𝑋. Then, the pair (𝑋, 𝜌) is a partial rectangular metric
space, where

𝜌 (𝑥, 𝑦) =
1

2
[𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 𝑥

0
) + 𝑑 (𝑦, 𝑥

0
)] ∀𝑥, 𝑦 ∈ 𝑋.

(5)

Also, the rectangular metric induced by 𝜌 is the rectangular
metric 𝑑.

Proof. The properties (𝜌1) and (𝜌4) follow by the definition
of 𝜌. For (𝜌2), note that 𝜌(𝑥, 𝑥) = 𝑑(𝑥, 𝑥

0
), for all 𝑥 ∈ 𝑋;

therefore, if 𝑥, 𝑦 ∈ 𝑋 and 𝜌(𝑥, 𝑦) = 𝜌(𝑥, 𝑥) = 𝜌(𝑦, 𝑦), we have
(1/2)[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑥

0
) + 𝑑(𝑦, 𝑥

0
)] = 𝑑(𝑥, 𝑥

0
) = 𝑑(𝑦, 𝑥

0
),

which implies that 𝑑(𝑥, 𝑦) = 0; that is, 𝑥 = 𝑦.
By the choice of 𝑥

0
, the property (𝜌3) follows immedi-

ately. For (𝜌5), let 𝑥, 𝑦, 𝑤, 𝑧 ∈ 𝑋, 𝑥 ̸= 𝑦, 𝑤, 𝑧 ∈ 𝑋 \ {𝑥, 𝑦}.
Then, by definition of 𝜌, we have

𝜌 (𝑥, 𝑦)

=
1

2
[𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 𝑥

0
) + 𝑑 (𝑦, 𝑥

0
)]

≤
1

2
[𝑑 (𝑥, 𝑤) + 𝑑 (𝑤, 𝑧) + 𝑑 (𝑧, 𝑦) + 𝑑 (𝑥, 𝑥

0
) + 𝑑 (𝑦, 𝑥

0
)]
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=
1

2
[𝑑 (𝑥, 𝑤) + 𝑑 (𝑥, 𝑥

0
) + 𝑑 (𝑤, 𝑥

0
)]

+
1

2
[𝑑 (𝑤, 𝑧) + 𝑑 (𝑤, 𝑥

0
) + 𝑑 (𝑧, 𝑥

0
)]

+
1

2
[𝑑 (𝑧, 𝑦) + 𝑑 (𝑧, 𝑥

0
) + 𝑑 (𝑦, 𝑥

0
)]

− 𝑑 (𝑤, 𝑥
0
) − 𝑑 (𝑧, 𝑥

0
)

= 𝜌 (𝑥, 𝑤) + 𝜌 (𝑤, 𝑧) + 𝜌 (𝑧, 𝑦) − 𝜌 (𝑤, 𝑤) − 𝜌 (𝑧, 𝑧) .

(6)

Thus, (𝑋, 𝜌) is a partial rectangular metric space. Now, by the
definition, it is easy to verify that 𝑑 is the rectangular metric
induced by 𝜌.

Example 9. Let 𝑋 = {1/𝑛 : 𝑛 ∈ N} ∪ {0} and define 𝑑 : 𝑋 ×

𝑋 → R by

𝑑 (𝑥, 𝑦) =

{{{

{{{

{

0, if 𝑥 = 𝑦;

1

𝑛
, if {𝑥, 𝑦} = {0,

1

𝑛
} ;

1, if 𝑥 ̸= 𝑦, 𝑥, 𝑦 ∈ 𝑋 \ {0} .

(7)

Then, (𝑋, 𝑑) is a rectangular metric space. Note that 𝑑(𝑥, 0) ≤
𝑑(𝑥, 𝑦) for all distinct 𝑥, 𝑦 ∈ 𝑋 and so 𝜌 : 𝑋 × 𝑋 → R

defined by

𝜌 (𝑥, 𝑦) =
1

2
[𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 0) + 𝑑 (𝑦, 0)]

=

{{{{{{{

{{{{{{{

{

𝑥, if 𝑥 = 𝑦;

1

𝑛
, if {𝑥, 𝑦} = {0,

1

𝑛
} ;

1

2
[1 + 𝑥 + 𝑦] , if 𝑥 ̸= 𝑦, 𝑥, 𝑦 ∈ 𝑋 \ {0} ,

(8)

is a partial rectangular metric on 𝑋, (𝑋, 𝜌) is a partial
rectangular metric space, and 𝑑 is the rectangular metric
induced by 𝜌.

The proof of following proposition is straightforward and,
by using it, one can obtain some more examples of partial
rectangular metric space.

Proposition 10. For any rectangular metric space (𝑋, 𝑑) and
constant 𝛼 ≥ 0, the pair (𝑋, 𝜌) is a partial rectangular metric
space, where

𝜌 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝛼 ∀𝑥, 𝑦 ∈ 𝑋. (9)

Now, we define the convergence of a sequence and
Cauchy sequence in partial rectangular metric spaces.

Definition 11. Let (𝑋, 𝜌) be a partial rectangular metric space,
{𝑥
𝑛
} a sequence in𝑋, and 𝑥 ∈ 𝑋. Then,

(i) the sequence {𝑥
𝑛
} is said to be convergent and con-

verges to 𝑥 ∈ 𝑋, if lim
𝑛→∞

𝜌(𝑥
𝑛
, 𝑥) = 𝜌(𝑥, 𝑥);

(ii) the sequence {𝑥
𝑛
} is said to be Cauchy in (𝑋, 𝜌), if

lim
𝑛,𝑚→∞

𝜌(𝑥
𝑛
, 𝑥
𝑚
) exists and is finite;

(iii) (𝑋, 𝜌) is said to be a complete partial rectangular
metric space, if, for every Cauchy sequence {𝑥

𝑛
} in𝑋,

there exists 𝑥 ∈ 𝑋 such that

lim
𝑛,𝑚→∞

𝜌 (𝑥
𝑛
, 𝑥
𝑚
) = lim
𝑛→∞

𝜌 (𝑥
𝑛
, 𝑥) = 𝜌 (𝑥, 𝑥) . (10)

Note that in a partial rectangular metric space the limit of
convergent sequence may not be unique.

Example 12. Let 𝑋 = {1/𝑛 : 𝑛 ∈ N} ∪ {0, 2}, 𝛼 ≥ 0 be a
constant and define 𝜌 : 𝑋 × 𝑋 → R by

𝜌 (𝑥, 𝑦)

=

{{{

{{{

{

𝛼, if 𝑥 = 𝑦;

1

𝑛
+ 𝛼, if 𝑥 ∈ {0, 2} , 𝑦 =

1

𝑛
or 𝑦 ∈ {0, 2} , 𝑥 =

1

𝑛
;

1 + 𝛼, otherwise.
(11)

Then, (𝑋, 𝜌) is a partial rectangular metric space. Con-
sider the sequence {𝑥

𝑛
} in 𝑋, where 𝑥

𝑛
= 1/𝑛. Then,

lim
𝑛→∞

𝜌(𝑥
𝑛
, 0) = lim

𝑛→∞
[1/𝑛 + 𝛼] = 𝛼 = 𝜌(0, 0) and

lim
𝑛→∞

𝜌(𝑥
𝑛
, 2) = lim

𝑛→∞
[1/𝑛 + 𝛼] = 𝛼 = 𝜌(2, 2).

Therefore, {𝑥
𝑛
} has two limits, namely, 0 and 2.

Lemma 13. Let (𝑋, 𝜌) be a partial rectangular metric space
and let {𝑥

𝑛
} be a sequence in 𝑋. Then, the sequence {𝑥

𝑛
}

converges in (𝑋, 𝜌
𝑟

) and converges to 𝑥 ∈ 𝑋; that is,
lim
𝑛→∞

𝜌
𝑟

(𝑥
𝑛
, 𝑥) = 0, if and only if lim

𝑛→∞
𝜌(𝑥
𝑛
, 𝑥) =

lim
𝑛→∞

𝜌(𝑥
𝑛
, 𝑥
𝑛
) = 𝜌(𝑥, 𝑥).

Proof. Note that

lim
𝑛→∞

𝜌
𝑟

(𝑥
𝑛
, 𝑥) = 0

⇐⇒ lim
𝑛→∞

[2𝜌 (𝑥
𝑛
, 𝑥) − 𝜌 (𝑥

𝑛
, 𝑥
𝑛
) − 𝜌 (𝑥, 𝑥)] = 0

⇐⇒ lim
𝑛→∞

[𝜌 (𝑥
𝑛
, 𝑥) − 𝜌 (𝑥, 𝑥)] = 0,

lim
𝑛→∞

[𝜌 (𝑥
𝑛
, 𝑥) − 𝜌 (𝑥

𝑛
, 𝑥
𝑛
)] = 0

⇐⇒ lim
𝑛→∞

𝜌 (𝑥
𝑛
, 𝑥) = lim

𝑛→∞

𝜌 (𝑥
𝑛
, 𝑥
𝑛
) = 𝜌 (𝑥, 𝑥) ,

(12)

which proves the result.

Lemma 14. Let (𝑋, 𝜌) be a partial rectangular metric space
and let {𝑥

𝑛
} be a sequence in 𝑋. Then, the sequence {𝑥

𝑛
} is a

Cauchy sequence in (𝑋, 𝜌) if and only if it is a Cauchy sequence
in (𝑋, 𝜌𝑟).

Proof. Let {𝑥
𝑛
} be a Cauchy sequence in (𝑋, 𝜌𝑟); that is,

lim
𝑛,𝑚→∞

𝜌
𝑟

(𝑥
𝑛
, 𝑥
𝑚
)

= lim
𝑛,𝑚→∞

[2𝜌 (𝑥
𝑛
, 𝑥
𝑚
) − 𝜌 (𝑥

𝑛
, 𝑥
𝑛
) − 𝜌 (𝑥

𝑚
, 𝑥
𝑚
)] = 0.

(13)
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Note that |𝜌(𝑥
𝑛
, 𝑥
𝑛
) − 𝜌(𝑥

𝑚
, 𝑥
𝑚
)| ≤ 𝜌

𝑟

(𝑥
𝑛
, 𝑥
𝑚
), for all 𝑛,𝑚 ∈

N; therefore, the sequence {𝜌(𝑥
𝑛
, 𝑥
𝑛
)} is a Cauchy sequence

in R+ and so we have lim
𝑛→∞

𝜌(𝑥
𝑛
, 𝑥
𝑛
) ∈ R+. Therefore, it

follows from (13) that lim
𝑛,𝑚→∞

𝜌(𝑥
𝑛
, 𝑥
𝑚
) ∈ R+.

Conversely, if {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝜌), that

is, lim
𝑛,𝑚→∞

𝜌(𝑥
𝑛
, 𝑥
𝑚
) ∈ R+, then again lim

𝑛→∞
𝜌(𝑥
𝑛
, 𝑥
𝑛
) ∈

R+ and by definition lim
𝑛,𝑚→∞

𝜌
𝑟

(𝑥
𝑛
, 𝑥
𝑚
) = 0.

The proof of the following lemma follows from Lemmas
13 and 14.

Lemma 15. A partial rectangular metric space is complete, if
and only if its induced rectangular metric space is complete.

3. Fixed Point Theorems

In this section, some fixed point theorems in partial rectan-
gular metric spaces are proved.

Let (𝑋, 𝜌) be a partial rectangular metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping. For 𝐴 ⊂ 𝑋, we denote the diameter
of 𝐴 by 𝛿[𝐴] and

𝛿 [𝐴] = sup {𝜌 (𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑋} . (14)

Note that, apart from rectangular metric space, if 𝐴 = {𝑥} ⊂

𝑋, then 𝛿[𝐴] need not be zero, but 𝛿[𝐴] = 𝜌(𝑥, 𝑥).
For each 𝑥 ∈ 𝑋, we define the orbit of 𝑇 by

𝑂 (𝑥, 𝑛) = {𝑥, 𝑇𝑥, 𝑇
2

𝑥, . . . , 𝑇
𝑛

𝑥} , 𝑛 ∈ N,

𝑂 (𝑥,∞) = {𝑥, 𝑇𝑥, 𝑇
2

𝑥, . . .} .

(15)

Definition 16. Let (𝑋, 𝜌) be a complete partial rectangular
metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping. Then, 𝑇 is
called a quasicontraction on 𝑋 with constant 𝜆, if it satisfies
the following property:

𝜌 (𝑇𝑥, 𝑇𝑦)

≤ 𝜆max {𝜌 (𝑥, 𝑦) , 𝜌 (𝑥, 𝑇𝑥) ,

𝜌 (𝑦, 𝑇𝑦) , 𝜌 (𝑥, 𝑇𝑦) , 𝜌 (𝑦, 𝑇𝑥)} ,

(16)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜆 ∈ [0, 1).

Lemma 17. Let (𝑋, 𝜌) be a partial rectangularmetric space, let
𝑇 : 𝑋 → 𝑋 be a quasicontraction on 𝑋 with constant 𝜆, and
let 𝑛 be a positive integer. Then, for each 𝑥 ∈ 𝑋 and all 𝑖, 𝑗 ∈
{1, 2, . . . , 𝑛}, one has 𝜌(𝑇𝑖𝑥, 𝑇𝑗𝑥) ≤ 𝜆𝛿[𝑂(𝑥, 𝑛)]. Furthermore
there exists a positive integer 𝑘 such that 𝑘 ∈ {1, 2, . . . , 𝑛} and
𝛿[𝑂(𝑥, 𝑛)] = 𝜌(𝑥, 𝑇

𝑘

𝑥).

Proof. Suppose 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} then 𝑇
𝑖−1

𝑥, 𝑇
𝑗−1

𝑥, 𝑇
𝑖

𝑥,

𝑇
𝑗

𝑥 ∈ 𝑂(𝑥, 𝑛) and so, by (16), we have

𝜌 (𝑇
𝑖

𝑥, 𝑇
𝑗

𝑥)

= 𝜌 (𝑇𝑇
𝑖−1

𝑥, 𝑇𝑇
𝑗−1

𝑥)

≤ 𝜆max {𝜌 (𝑇𝑖−1𝑥, 𝑇𝑗−1𝑥) , 𝜌 (𝑇𝑖−1𝑥, 𝑇𝑇𝑖−1𝑥) ,

𝜌 (𝑇
𝑗−1

𝑥, 𝑇𝑇
𝑗−1

𝑥) , 𝜌 (𝑇
𝑖−1

𝑥, 𝑇𝑇
𝑗−1

𝑥) ,

𝜌 (𝑇
𝑗−1

𝑥, 𝑇𝑇
𝑖−1

𝑥)}

= 𝜆max {𝜌 (𝑇𝑖−1𝑥, 𝑇𝑗−1𝑥) , 𝜌 (𝑇𝑖−1𝑥, 𝑇𝑖𝑥) , 𝜌 (𝑇𝑗−1𝑥, 𝑇𝑗𝑥) ,

𝜌 (𝑇
𝑖−1

𝑥, 𝑇
𝑗

𝑥) , 𝜌 (𝑇
𝑗−1

𝑥, 𝑇
𝑖

𝑥)}

≤ 𝜆𝛿 [𝑂 (𝑥, 𝑛)] .

(17)

As 𝜆 ∈ [0, 1), we have 𝜌(𝑇𝑖𝑥, 𝑇𝑗𝑥) < 𝛿[𝑂(𝑥, 𝑛)] and so, by the
definition of orbit of 𝑇 and the diameter 𝛿 of a set, we must
have 𝛿[𝑂(𝑥, 𝑛)] = 𝜌(𝑥, 𝑇

𝑘

𝑥), where 𝑘 ∈ {1, 2, . . . , 𝑛}.

Thenext lemma shows that the orbit of a quasicontraction
is necessarily bounded.

Lemma 18. Suppose that all the conditions of Lemma 17 are
satisfied; then

𝛿 [𝑂 (𝑥,∞)] ≤
1

1 − 𝜆
max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇2𝑥)} (18)

holds, for all 𝑥 ∈ 𝑋.

Proof. Let 𝑥 ∈ 𝑋 be arbitrary. Note that {𝛿[𝑂(𝑥, 𝑛)]} is a
nondecreasing sequence of real numbers, so

𝛿 [𝑂 (𝑥,∞)] = sup {𝛿 [𝑂 (𝑥, 𝑛)] : 𝑛 ∈ N} . (19)

Therefore, it is sufficient to show that

𝛿 [𝑂 (𝑥, 𝑛)]

≤
1

1 − 𝜆
max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇2𝑥)} ∀𝑥 ∈ 𝑋, 𝑛 ∈ N.

(20)

Now, (20) holds trivially, if 𝑛 = 1. If 𝑛 = 2, then from (𝜌3) and
(16), we have

𝜌 (𝑇𝑥, 𝑇
2

𝑥)

= 𝜌 (𝑇𝑥, 𝑇𝑇𝑥)

≤ 𝜆max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇𝑥) ,

𝜌 (𝑇𝑥, 𝑇
2

𝑥) , 𝜌 (𝑥, 𝑇
2

𝑥) , 𝜌 (𝑇𝑥, 𝑇𝑥)}

= 𝜆max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑇𝑥, 𝑇2𝑥) , 𝜌 (𝑥, 𝑇2𝑥)} .

(21)

Since 𝜆 ∈ [0, 1), we must have 𝜌(𝑇𝑥, 𝑇
2

𝑥) ≤ max{𝜌(𝑥,
𝑇𝑥), 𝜌(𝑥, 𝑇

2

𝑥)}. Also, since 𝜌(𝑧, 𝑧) ≤ 𝜌(𝑧, 𝑦), for all 𝑦, 𝑧 ∈ 𝑋,
therefore (20) holds for 𝑛 = 2.

Suppose 𝑛 ≥ 3, then, by Lemma 17, we have 𝛿[𝑂(𝑥, 𝑛)] =
𝜌(𝑥, 𝑇

𝑘

𝑥), where 𝑘 ∈ {1, 2, . . . , 𝑛}. If 𝑘 = 1 or 𝑘 = 2, we have
finished. Suppose 𝑘 ≥ 3. If 𝑇𝑥 = 𝑥 or 𝑇2𝑥 = 𝑥 or 𝑇2𝑥 =

𝑇𝑥, then we have 𝑇𝑘𝑥 ∈ {𝑥, 𝑇𝑥} and (20) holds. Similarly, if
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𝑇
𝑘

𝑥 = 𝑇
2

𝑥, then (20) holds.Therefore, we can assume that 𝑥,
𝑇𝑥, 𝑇2𝑥, 𝑇𝑘𝑥 all are distinct elements of 𝑋. As 𝜌(𝑇𝑥, 𝑇2𝑥) ≤
max{𝜌(𝑥, 𝑇𝑥), 𝜌(𝑥, 𝑇2𝑥)}, therefore, from (𝜌5), (16), (21), and
Lemma 17, we obtain

𝜌 (𝑥, 𝑇
𝑘

𝑥) ≤ 𝜌 (𝑥, 𝑇𝑥) + 𝜌 (𝑇𝑥, 𝑇
2

𝑥)

+ 𝜌 (𝑇
2

𝑥, 𝑇
𝑘

𝑥) − 𝜌 (𝑇𝑥, 𝑇𝑥) − 𝜌 (𝑇
2

𝑥, 𝑇
2

𝑥)

≤ 𝜌 (𝑥, 𝑇𝑥) + 𝜆max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇2𝑥)}

+ 𝜌 (𝑇𝑇𝑥, 𝑇
𝑘−1

𝑇𝑥)

≤ (1 + 𝜆)max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇2𝑥)}

+ 𝜆𝛿 [𝑂 (𝑇𝑥, 𝑘 − 1)] .

(22)

Again, by Lemma 17, for some 𝑙 ∈ {1, 2, . . . , 𝑘 − 1}, we
have 𝛿[𝑂(𝑇𝑥, 𝑘 − 1)] = 𝜌(𝑇𝑥, 𝑇

𝑙

𝑇𝑥) ≤ 𝜆𝛿[𝑂(𝑥, 𝑙 + 1)] ≤

𝜆𝛿[𝑂(𝑥, 𝑛)] = 𝜆𝜌(𝑥, 𝑇
𝑘

𝑥); therefore, it follows from the above
inequality that

(1 − 𝜆
2

) 𝜌 (𝑥, 𝑇
𝑘

𝑥) ≤ (1 + 𝜆)max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇2𝑥)} ;
(23)

that is,

𝛿 [𝑂 (𝑥, 𝑛)] = 𝜌 (𝑥, 𝑇
𝑘

𝑥)

≤
1

1 − 𝜆
max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇2𝑥)} ,

(24)

and the result follows.

In the next theorem, existence and uniqueness of fixed
point of quasicontraction in complete partial rectangular
metric spaces are proved.

Theorem 19. Let (𝑋, 𝜌) be a complete partial rectangular
metric space and let 𝑇 : 𝑋 → 𝑋 be a quasicontraction on
𝑋with constant 𝜆. Then, 𝑇 has a unique fixed point 𝑢 ∈ 𝑋 and
𝜌(𝑢, 𝑢) = 0.

Proof. Let us first show that, if fixed point of 𝑇 exists, then it
is unique. Let 𝑢, V ∈ 𝑋 be two distinct fixed points of 𝑇; that
is, 𝑇𝑢 = 𝑢, 𝑇V = V and 𝜌(𝑢, V) > 0. Then, from (16), we have

𝜌 (𝑢, V) = 𝜌 (𝑇𝑢, 𝑇V)

≤ 𝜆max {𝜌 (𝑢, V) , 𝜌 (𝑢, 𝑇𝑢) ,

𝜌 (V, 𝑇V) , 𝜌 (𝑢, 𝑇V) , 𝜌 (V, 𝑇𝑢)}

= 𝜆max {𝜌 (𝑢, V) , 𝜌 (𝑢, 𝑢) , 𝜌 (V, V) , 𝜌 (𝑢, V) , 𝜌 (V, 𝑢)}

= 𝜆𝜌 (𝑢, V) < 𝜌 (𝑢, V) .
(25)

This contradiction shows that 𝜌(𝑢, V) = 0; that is, 𝑢 = V.Thus,
if fixed point of 𝑇 exists, then it is unique. Further, if 𝑢 ∈ 𝑋 is
a fixed point of 𝑇 and 𝜌(𝑢, 𝑢) > 0, then, from (16), we have

𝜌 (𝑢, 𝑢) = 𝜌 (𝑇𝑢, 𝑇V)

≤ 𝜆max {𝜌 (𝑢, 𝑢) , 𝜌 (𝑢, 𝑇𝑢) ,

𝜌 (𝑢, 𝑇𝑢) , 𝜌 (𝑢, 𝑇𝑢) , 𝜌 (𝑢, 𝑇𝑢)}

= 𝜆𝜌 (𝑢, 𝑢) < 𝜌 (𝑢, 𝑢) .

(26)

Again, this contradiction shows that 𝜌(𝑢, 𝑢) = 0. So, if 𝑢 is a
fixed point of 𝑇, then 𝜌(𝑢, 𝑢) = 0.

Now, we prove existence of fixed point of 𝑇. For arbitrary
𝑥 ∈ 𝑋, we will show that the iterative sequence {𝑇𝑛𝑥} is a
Cauchy sequence. Let 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛. Then, using
Lemma 17, we have

𝜌 (𝑇
𝑛

𝑥, 𝑇
𝑚

𝑥) = 𝜌 (𝑇𝑇
𝑛−1

𝑥, 𝑇
𝑚−𝑛+1

𝑇
𝑛−1

𝑥)

≤ 𝜆𝛿 [𝑂 (𝑇
𝑛−1

𝑥,𝑚 − 𝑛 + 1)] .

(27)

Again, by Lemma 17, there exists 𝑘 ∈ {1, 2, . . . , 𝑚−𝑛+1} such
that 𝛿[𝑂(𝑇𝑛−1𝑥,𝑚 − 𝑛 + 1)] = 𝜌(𝑇

𝑛−1

𝑥, 𝑇
𝑘

𝑇
𝑛−1

𝑥); therefore,
using Lemma 17, it follows from the above inequality that

𝜌 (𝑇
𝑛

𝑥, 𝑇
𝑚

𝑥)

≤ 𝜆𝜌 (𝑇
𝑛−1

𝑥, 𝑇
𝑘

𝑇
𝑛−1

𝑥)

= 𝜆𝜌 (𝑇𝑇
𝑛−2

𝑥, 𝑇
𝑘+1

𝑇
𝑛−2

𝑥)

≤ 𝜆
2

𝛿 [𝑂 (𝑇
𝑛−2

𝑥,𝑚 − 𝑛 + 2)]

(as 𝑘 ∈ {1, 2, . . . , 𝑚 − 𝑛 + 1}) .

(28)

By repetition of this process, we obtain

𝜌 (𝑇
𝑛

𝑥, 𝑇
𝑚

𝑥) ≤ 𝜆
𝑛

𝛿 [𝑂 (𝑥,𝑚)] , (29)

which together with Lemma 18 yields

𝜌 (𝑇
𝑛

𝑥, 𝑇
𝑚

𝑥)

≤
𝜆
𝑛

1 − 𝜆
max {𝜌 (𝑥, 𝑇𝑥) , 𝜌 (𝑥, 𝑇2𝑥)} ∀𝑛 ∈ N.

(30)

As 𝜆 ∈ [0, 1), it follows from (30) that

lim
𝑛→∞

𝜌 (𝑇
𝑛

𝑥, 𝑇
𝑚

𝑥) = 0. (31)

Therefore, {𝑇𝑛𝑥} is a Cauchy sequence. By completeness of
space (𝑋, 𝜌), there exists 𝑢 ∈ 𝑋 such that

lim
𝑛,𝑚→∞

𝜌 (𝑇
𝑛

𝑥, 𝑇
𝑚

𝑥) = lim
𝑛→∞

𝜌 (𝑇
𝑛

𝑥, 𝑢) = 𝜌 (𝑢, 𝑢) = 0. (32)

Wewill show that 𝑢 is the fixed point of𝑇. Suppose 𝜌(𝑇𝑢, 𝑢) >
0.Without loss of generality, we can assume that𝑇𝑛𝑥 ̸= 𝑇

𝑛+1

𝑥,
for all 𝑛 ∈ N, also, there exists 𝑛

0
∈ N such that𝑇𝑛𝑥 ∉ {𝑢, 𝑇𝑢},

for all 𝑛 > 𝑛
0
. Therefore, it follows from (𝜌5) that

𝜌 (𝑇𝑢, 𝑢) ≤ 𝜌 (𝑇𝑢, 𝑇
𝑛+1

𝑥) + 𝜌 (𝑇
𝑛+1

𝑥, 𝑇
𝑛

𝑥)

+ 𝜌 (𝑇
𝑛

𝑥, 𝑢) ∀𝑛 > 𝑛
0
.

(33)
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Using (16), we have

𝜌 (𝑇𝑢, 𝑇
𝑛+1

𝑥)

≤ 𝜆max {𝜌 (𝑢, 𝑇𝑛𝑥) , 𝜌 (𝑢, 𝑇𝑢) ,

𝜌 (𝑇
𝑛

𝑥, 𝑇𝑇
𝑛

𝑥) , 𝜌 (𝑢, 𝑇𝑇
𝑛

𝑥) , 𝜌 (𝑇
𝑛

𝑥, 𝑇𝑢)}

= 𝜆max {𝜌 (𝑢, 𝑇𝑛𝑥) , 𝜌 (𝑢, 𝑇𝑢) , 𝜌 (𝑇𝑛𝑥, 𝑇𝑛+1𝑥) ,

𝜌 (𝑢, 𝑇
𝑛+1

𝑥) , 𝜌 (𝑇
𝑛

𝑥, 𝑇𝑢)} .

(34)

For sufficiently large 𝑛, from (32) and the above inequality, we
have

𝜌 (𝑇𝑢, 𝑇
𝑛+1

𝑥) ≤ 𝜆max {𝜌 (𝑢, 𝑇𝑢) , 𝜌 (𝑇𝑛𝑥, 𝑇𝑢)} . (35)

If 𝜌(𝑇𝑛𝑥, 𝑇𝑢) ≤ 𝜌(𝑢, 𝑇𝑢), then, from (32), (33), and (35),
we obtain 𝜌(𝑇𝑢, 𝑢) = 0. If 𝜌(𝑢, 𝑇𝑢) ≤ 𝜌(𝑇

𝑛

𝑥, 𝑇𝑢), then, for
sufficiently large 𝑛, we have

𝜌 (𝑇𝑢, 𝑇
𝑛+1

𝑥)

≤ 𝜆𝜌 (𝑇
𝑛

𝑥, 𝑇𝑢)

≤ 𝜆 [𝜌 (𝑇
𝑛

𝑥, 𝑢) + 𝜌 (𝑢, 𝑇
𝑛+1

𝑥) + 𝜌 (𝑇
𝑛+1

𝑥, 𝑇𝑢)] .

(36)

Again from (32), (33), (35), and (36), we obtain 𝜌(𝑇𝑢, 𝑢) = 0.
Therefore, we must have 𝑇𝑢 = 𝑢. Thus, 𝑢 is the unique fixed
point of 𝑇.

We illustrate the above result by the following example,
which additionally shows that a quasicontraction in a partial
rectangularmetric spacemay not be a quasicontraction in the
induced rectangularmetric space and, therefore, it shows that
our generalization is proper.

Example 20. Let𝑋 = {0, 1, 2, 3, 4, 5} and define 𝜌 : 𝑋 ×𝑋 →

R by

𝜌 (𝑥, 𝑦) =

{{{{{{{

{{{{{{{

{

𝑥, if 𝑥 = 𝑦;

15 + 𝑥 + 𝑦

2
, if 𝑥, 𝑦 ∈ {1, 2} , 𝑥 ̸= 𝑦;

5 + 𝑥 + 𝑦

2
, otherwise.

(37)

Then, (𝑋, 𝜌) is a complete partial rectangular metric space.
Since, for all 𝑥 ∈ 𝑋, 𝑥 > 0, 𝜌(𝑥, 𝑥) = 𝑥 > 0, therefore (𝑋, 𝜌)
is not a rectangular metric space. Also, (𝑋, 𝜌) is not a partial
metric space because it lacks the property (P5). Indeed,

𝜌 (1, 2) = 9 > 𝜌 (1, 3) + 𝜌 (3, 2) − 𝜌 (3, 3) =
9

2
+ 5 − 3 =

13

2
.

(38)

Define a mapping 𝑇 : 𝑋 → 𝑋 by

𝑇0 = 𝑇1 = 𝑇2 = 0, 𝑇3 = 2,

𝑇4 = 0, 𝑇5 = 4.

(39)

Then, by a careful calculation, one can see that 𝑇 is a quas-
icontraction with constant 𝜆 ∈ [11/14, 1). All the conditions
ofTheorem 19 are satisfied and𝑇 has a unique fixed point 𝑢 =
0. Note that the rectangular metric induced by 𝜌 is given by

𝜌
𝑟

(𝑥, 𝑦) =

{{

{{

{

0, if 𝑥 = 𝑦;

15, if 𝑥, 𝑦 ∈ {1, 2} , 𝑥 ̸= 𝑦;

5, otherwise.
(40)

Now, it is easy to see that 𝑇 is not a quasicontraction with
respect to 𝜌𝑟. Indeed, for 𝑥 = 4,𝑦 = 5, we have 𝜌𝑟(𝑇𝑥, 𝑇𝑦) = 5

and 𝜌𝑟(𝑥, 𝑦) = 5, 𝜌𝑟(𝑥, 𝑇𝑥) = 5, 𝜌𝑟(𝑦, 𝑇𝑦) = 5, 𝜌𝑟(𝑥, 𝑇𝑦) = 0,
and 𝜌

𝑟

(𝑦, 𝑇𝑥) = 5. Therefore, there exists no 𝜆 ∈ [0, 1) such
that

𝜌
𝑟

(𝑇𝑥, 𝑇𝑦)

≤ 𝜆max {𝜌𝑟 (𝑥, 𝑦) , 𝜌𝑟 (𝑥, 𝑇𝑥) , 𝜌𝑟 (𝑦, 𝑇𝑦) ,

𝜌
𝑟

(𝑥, 𝑇𝑦) , 𝜌
𝑟

(𝑦, 𝑇𝑥)} ,

(41)

for all 𝑥, 𝑦 ∈ 𝑋. Thus, 𝑇 is not a quasicontraction in the
induced rectangular metric space.

Remark 21. Note that, in the above example, themapping𝑇 is
a Banach contraction in the partial rectangular metric space
(𝑋, 𝜌); that is, 𝜌(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝜌(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 with
𝜆 ∈ [9/10, 1), while it is not even a quasicontraction in the
induced rectangular metric space (𝑋, 𝜌𝑟). Also (𝑋, 𝜌) is not
a partial metric space; therefore, the results of Branciari [2]
and Matthews [3] are not applicable. Thus, this example also
shows that the class of Banach contractions in a partial rect-
angular metric space is more wider than that in rectangular
metric spaces.

The following corollaries generalize the Banach, Kannan,
Reich, Chatterjea, and Hardy-Rogers fixed point results (for
details, see [5]) in partial rectangular metric spaces.

Corollary 22 (Banach type). Let (𝑋, 𝜌) be a complete partial
rectangular metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping.
Suppose that the following condition is satisfied:

𝜌 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝜌 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋, (42)

where 𝜆 ∈ [0, 1). Then, 𝑇 has a unique fixed point 𝑢 ∈ 𝑋 and
𝜌(𝑢, 𝑢) = 0.

Corollary 23 (Kannan type). Let (𝑋, 𝜌) be a complete partial
rectangular metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping.
Suppose that the following condition is satisfied:

𝜌 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 [𝜌 (𝑥, 𝑇𝑥) + 𝜌 (𝑦, 𝑇𝑦)] , (43)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼 ∈ [0, 1/2). Then, 𝑇 has a unique fixed
point 𝑢 ∈ 𝑋 and 𝜌(𝑢, 𝑢) = 0.

Corollary 24 (Reich type). Let (𝑋, 𝜌) be a complete partial
rectangular metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping.
Suppose that the following condition is satisfied:

𝜌 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝜌 (𝑥, 𝑦) + 𝛽𝜌 (𝑥, 𝑇𝑥) + 𝛾𝜌 (𝑦, 𝑇𝑦) , (44)
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for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, and 𝛾 are nonnegative constants
such that 𝛼+𝛽+𝛾 < 1. Then, 𝑇 has a unique fixed point 𝑢 ∈ 𝑋
and 𝜌(𝑢, 𝑢) = 0.

Corollary 25 (Chatterjea type). Let (𝑋, 𝜌) be a complete
partial rectangular metric space and let 𝑇 : 𝑋 → 𝑋 be a
mapping. Suppose that the following condition is satisfied:

𝜌 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 [𝜌 (𝑥, 𝑇𝑦) + 𝜌 (𝑦, 𝑇𝑥)] , (45)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼 ∈ [0, 1/2). Then, 𝑇 has a unique fixed
point 𝑢 ∈ 𝑋 and 𝜌(𝑢, 𝑢) = 0.

Corollary 26 (Hardy-Rogers type). Let (𝑋, 𝜌) be a complete
partial rectangular metric space and let 𝑇 : 𝑋 → 𝑋 be a
mapping. Suppose that the following condition is satisfied:

𝜌 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝜌 (𝑥, 𝑦) + 𝛽𝜌 (𝑥, 𝑇𝑥)

+ 𝛾𝜌 (𝑦, 𝑇𝑦) + 𝜇𝜌 (𝑥, 𝑇𝑦) + 𝜆𝜌 (𝑦, 𝑇𝑥) ,

(46)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, 𝛾, 𝜇, and 𝜆 are nonnegative
constants such that 𝛼 + 𝛽 + 𝛾 + 𝜇 + 𝜆 < 1. Then, 𝑇 has a
unique fixed point 𝑢 ∈ 𝑋 and 𝜌(𝑢, 𝑢) = 0.

Corollary 27. Let (𝑋, 𝜌) be a complete partial rectangular
metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping. Suppose that
for some positive integer 𝑛, the following condition is satisfied:

𝜌 (𝑇
𝑛

𝑥, 𝑇
𝑛

𝑦)

≤ 𝜆max {𝜌 (𝑥, 𝑦) , 𝜌 (𝑥, 𝑇𝑛𝑥) , 𝜌 (𝑦, 𝑇𝑛𝑦) ,

𝜌 (𝑥, 𝑇
𝑛

𝑦) , 𝜌 (𝑦, 𝑇
𝑛

𝑥)} ,

(47)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜆 ∈ [0, 1). Then, 𝑇 has a unique fixed
point 𝑢 ∈ 𝑋 and 𝜌(𝑢, 𝑢) = 0.

Proof. We note that 𝑇
𝑛 satisfies the condition (16) of

Theorem 19; therefore, 𝑇𝑛 has a unique fixed point 𝑢 ∈ 𝑋

and 𝜌(𝑢, 𝑢) = 0. Now, 𝑇𝑛𝑇𝑢 = 𝑇𝑇
𝑛

𝑢 = 𝑇𝑢; therefore, 𝑇𝑢 is
another fixed point of𝑇𝑛 and, by uniqueness, we have𝑇𝑢 = 𝑢.
Thus, 𝑢 is a fixed point of𝑇. Since every fixed point of𝑇 is also
a fixed point of 𝑇𝑛, the fixed point of 𝑇 is unique.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Author is thankful to Professor Stojan Radenović for his
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[4] L. B. Ćirić, “A generalization of Banach’s contraction principle,”
Proceedings of the AmericanMathematical Society, vol. 45, no. 2,
pp. 267–273, 1974.

[5] B. E. Rhoades, “A comparison of various definitions of contrac-
tive mappings,” American Mathematical Society—Transactions
of the AMS, vol. 224, pp. 257–290, 1977.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


