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A numerical solution of the modified Burgers’ equation (MBE) is obtained by using quartic B-spline subdomain finite element
method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM)
method. The accuracy and efficiency of the methods are discussed by computing 𝐿

2
and 𝐿

∞
error norms. Comparisons are made

with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve
the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of
convergence analysis is also given for the DQM.

1. Introduction

The one-dimensional Burgers’ equation first suggested by
Bateman [1] and later treated by Burgers’ [2] has the form

𝑈
𝑡
+ 𝑈𝑈
𝑥
− V𝑈
𝑥𝑥

= 0, (1)

where V is a positive parameter and the subscripts 𝑥 and
𝑡 denote space and time derivatives, respectively. Burgers’
model of turbulence is very important in fluid dynamics
model and study of this model and the theory of shock waves
has been considered by many authors for both conceptual
understanding of a class of physical flows and for testing
various numerical methods [3]. Relationship between (1) and
both turbulence theory and shock wave theory was presented
by Cole [4]. He also obtained an exact solution of the
equation. Analytical solutions of the equation were found for
restricted values of Vwhich represent the kinematics viscosity
of the fluid motion. So the numerical solution of Burgers’
equation has been subject of many papers. Various numerical
methods have been studied based on finite difference [5,
6], Runge-Kutta-Chebyshev method [7, 8], group-theoretic
methods [9], and finite element methods including Galerkin,
Petrov-Galerkin, least squares, and collocation [10–13].

The modified Burgers’ equation (MBE) which we discuss in
this paper is based upon Burgers’ equation (BE) of the form

𝑈
𝑡
+ 𝑈
2
𝑈
𝑥
− V𝑈
𝑥𝑥

= 0. (2)

The equation has the strong nonlinear aspects and has been
used in many practical transport problems, for instance,
nonlinear waves in a medium with low-frequency pumping
or absorption, turbulence transport, wave processes in ther-
moelastic medium, transport and dispersion of pollutants in
rivers and sediment transport, and ion reflection at quasi-
perpendicular shocks. Recently, some numerical studies of
the equation have been presented: Ramadan and El-Danaf
[14] obtained the numerical solutions of the MBE using
quintic B-spline collocation finite element method. A special
lattice Boltzmannmodel is developed by Duan et al. [15]. Daǧ
et al. [16] have developed a Galerkin finite element solution of
the equation using quintic B-splines and time-split technique.
A solution based on sextic B-spline collocation method is
proposed by Irk [17]. Roshan and Bhamra [18] applied a
Petrov-Galerkin method using a linear hat function as the
trial function and a cubic B-spline function as the test func-
tion.AdiscontinuousGalerkinmethod is presented byZhang
et al. [19]. Bratsos [20] has used a finite difference scheme
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based on fourth-order rational approximants to the matrix-
exponential term in a two-time level recurrence relation for
calculating the numerical solution of the equation.

Recently, DQM has become a very efficient and effective
method to obtain the numerical solutions of various types
of partial differential equations. In 1972, Bellman et al. [21]
first introduced differential quadrature method (DQM) for
solving partial differential equations. The main idea behind
the method is to find out the weighting coefficients of the
functional values at nodal points by using base functions of
which derivatives are already known at the same nodal points
over the entire region. Various researchers have developed
different types of DQMs by utilizing various test functions;
Bellman et al. [22] have used Legendre polynomials and
spline functions in order to get weighting coefficients. Quan
and Chang [23, 24] have presented an explicit formulation
for determining the weighting coefficients using Lagrange
interpolation polynomials. Zhong [25], Guo and Zhong
[26], and Zhong and Lan [27] have introduced another
efficient DQM as spline based DQM and applied it to
different problems. Shu and Wu [28] have considered some
of the implicit formulations of weighting coefficients with the
help of radial basis functions. Nonlinear Burgers’ equation
is solved using polynomial based differential quadrature
method by Korkmaz and Daǧ [29]. The DQM has many
advantages over the classical techniques; mainly, it prevents
linearization and perturbation in order to find better solu-
tions of given nonlinear equations. Since QBDQM do not
need transforming for solving the equation, the method has
been preferred.

In the present work, we have applied a subdomain
finite element method and a quartic B-spline differential
quadrature method to the MBE. To show the performance
and accuracy of the methods and make comparisons of
numerical solutions, we have taken different values of V.

2. Numerical Methods

To implement the numerical schemes, the interval [𝑎, 𝑏] is
splitted up into uniformly sized intervals by the nodes 𝑥

𝑚
,

𝑚 = 1, 2, . . . , 𝑁, such that 𝑎 = 𝑥
0
< 𝑥
1
⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝑏, where

ℎ = (𝑥
𝑚+1

− 𝑥
𝑚
).

2.1. Subdomain Finite Element Method (SFEM). We will
consider (2) with the boundary conditions chosen from

𝑈 (𝑎, 𝑡) = 𝛽
1
, 𝑈 (𝑏, 𝑡) = 𝛽

2
,

𝑈
𝑥
(𝑎, 𝑡) = 0, 𝑈

𝑥
(𝑏, 𝑡) = 0,

𝑈
𝑥𝑥

(𝑎, 𝑡) = 0, 𝑈
𝑥𝑥

(𝑏, 𝑡) = 0, 𝑡 > 0,

(3)

with the initial condition

𝑈 (𝑥, 0) = 𝑓 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, (4)

where 𝛽
1
and 𝛽

2
are constants. The quartic B-splines 𝜙

𝑚
(𝑥)

(𝑚 = −2(1) 𝑁 + 1) at the knots 𝑥
𝑚
which form a basis over

the interval [𝑎, 𝑏] are defined by the relationships [30]

𝜙
𝑚
(𝑥)

=
1

ℎ4

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

(𝑥 − 𝑥
𝑚−2

)
4

, 𝑥 ∈ [𝑥
𝑚−2

, 𝑥
𝑚−1

] ,

(𝑥 − 𝑥
𝑚−2

)
4

− 5(𝑥 − 𝑥
𝑚−1

)
4

, 𝑥 ∈ [𝑥
𝑚−1

, 𝑥
𝑚
] ,

(𝑥 − 𝑥
𝑚−2

)
4

− 5(𝑥 − 𝑥
𝑚−1

)
4

+10(𝑥 − 𝑥
𝑚
)
4

,
𝑥 ∈ [𝑥

𝑚
, 𝑥
𝑚+1

] ,

(𝑥
𝑚+3

− 𝑥)
4

− 5(𝑥
𝑚+2

− 𝑥)
4

, 𝑥 ∈ [𝑥
𝑚+1

, 𝑥
𝑚+2

] ,

(𝑥
𝑚+3

− 𝑥)
4

, 𝑥 ∈ [𝑥
𝑚+2

, 𝑥
𝑚+3

] ,

0, otherwise.
(5)

Our numerical treatment for solving the MBE using the
subdomain finite element method with quartic B-splines is
to find a global approximation 𝑈

𝑁
(𝑥, 𝑡) to the exact solution

𝑈(𝑥, 𝑡) that can be expressed in the following form:

𝑈
𝑁
(𝑥, 𝑡) =

𝑁+1

∑

𝑗=−2

𝛿
𝑗
(𝑡) 𝜙
𝑗
(𝑥) , (6)

where 𝛿
𝑗
are time-dependent parameters to be determined

from both boundary and weighted residual conditions. The
nodal values 𝑈

𝑚
, 𝑈
𝑚
, 𝑈
𝑚
, and 𝑈



𝑚
at the knots 𝑥

𝑚
can be

obtained from (5) and (6) in the following form:

𝑈
𝑚

= 𝑈 (𝑥
𝑚
) = 𝛿
𝑚−2

+ 11𝛿
𝑚−1

+ 11𝛿
𝑚
+ 𝛿
𝑚+1

,

𝑈


𝑚
= 𝑈

(𝑥
𝑚
) =

4

ℎ
(−𝛿
𝑚−2

− 3𝛿
𝑚−1

+ 3𝛿
𝑚
+ 𝛿
𝑚+1

) ,

𝑈


𝑚
= 𝑈

(𝑥
𝑚
) =

12

ℎ2
(𝛿
𝑚−2

− 𝛿
𝑚−1

− 𝛿
𝑚
+ 𝛿
𝑚+1

) ,

𝑈


𝑚
= 𝑈


(𝑥
𝑚
) =

24

ℎ3
(−𝛿
𝑚−2

+ 3𝛿
𝑚−1

− 3𝛿
𝑚
+ 𝛿
𝑚+1

) .

(7)

For each element, using the local coordinate transformation

ℎ𝜉 = 𝑥 − 𝑥
𝑚
, 0 ≤ 𝜉 ≤ 1, (8)

a typical finite interval [𝑥
𝑚
, 𝑥
𝑚+1

] is mapped into the interval
[0, 1].Therefore, the quartic B-spline shape functions over the
element [0, 1] can be defined as

𝜙
𝑒
=

{{{{{{{

{{{{{{{

{

𝜙
𝑚−2

= 1 − 4𝜉 + 6𝜉
2
− 4𝜉
3
+ 𝜉
4
,

𝜙
𝑚−1

= 11 − 12𝜉 − 6𝜉
2
+ 12𝜉
3
− 𝜉
4
,

𝜙
𝑚

= 11 + 12𝜉 − 6𝜉
2
− 12𝜉
3
+ 𝜉
4
,

𝜙
𝑚+1

= 1 + 4𝜉 + 6𝜉
2
+ 4𝜉
3
− 𝜉
4
,

𝜙
𝑚+2

= 𝜉
4
.

(9)

All other splines, apart from 𝜙
𝑚−2

(𝑥), 𝜙
𝑚−1

(𝑥), 𝜙
𝑚
(𝑥),

𝜙
𝑚+1

(𝑥), and 𝜙
𝑚+2

(𝑥), are zero over the element [0, 1]. So, the



The Scientific World Journal 3

approximation equation (6) over this element can be written
in terms of basis functions given in (9) as

𝑈
𝑁
(𝜉, 𝑡) =

𝑚+2

∑

𝑗=𝑚−2

𝛿
𝑗
(𝑡) 𝜙
𝑗
(𝜉) , (10)

where 𝛿
𝑚−2

, 𝛿
𝑚−1

, 𝛿
𝑚
, 𝛿
𝑚+1

, and 𝛿
𝑚+2

act as element param-
eters and B-splines 𝜙

𝑚−2
(𝑥), 𝜙

𝑚−1
, 𝜙
𝑚
, 𝜙
𝑚+1

, and 𝜙
𝑚+2

as
element shape functions. Applying the subdomain approach
to (33) with the weight function

𝑊
𝑚
(𝑥) = {

1, 𝑥 ∈ [𝑥
𝑚
, 𝑥
𝑚+1

] ,

0, otherwise
(11)

we obtain the weak form of (2)

∫

𝑥
𝑚+1

𝑥
𝑚

1. (𝑈
𝑡
+ 𝑈
2
𝑈
𝑥
− V𝑈
𝑥𝑥
) 𝑑𝑥 = 0. (12)

Using the transformation (8) into the weak form (12) and
then integrating (12) term by term with some manipulation
by parts result in

ℎ

5
( ̇𝛿
𝑚−2

+ 26 ̇𝛿
𝑚−1

+ 66 ̇𝛿
𝑚
+ 26 ̇𝛿

𝑚+1
+ ̇𝛿
𝑚+2

)

+ 𝑍
𝑚
(−𝛿
𝑚−2

− 10𝛿
𝑚−1

+ 10𝛿
𝑚+1

+ 𝛿
𝑚+2

)

−
4V
ℎ

(𝛿
𝑚−2

+ 2𝛿
𝑚−1

− 6𝛿
𝑚
+ 2𝛿
𝑚+1

+ 𝛿
𝑚+2

) = 0,

(13)

where the dot denotes differentiation with respect to 𝑡, and

𝑍
𝑚

= (𝛿
𝑚−2

+ 11𝛿
𝑚−1

+ 11𝛿
𝑚
+ 𝛿
𝑚+1

)
2

. (14)

In (13) using the Crank-Nicolson formula and its time deriva-
tive that is discretized by the forward difference approach,
respectively,

𝛿
𝑚

=
𝛿
𝑛

𝑚
+ 𝛿
𝑛+1

𝑚

2
, ̇𝛿

𝑚
=

𝛿
𝑛+1

𝑚
− 𝛿
𝑛

𝑚

Δ𝑡

(15)

we obtain a recurrence relationship between the two time
levels 𝑛 and 𝑛 + 1 relating two unknown parameters 𝛿𝑛+1

𝑖
and

𝛿
𝑛

𝑖
, for 𝑖 = 𝑚 − 2,𝑚 − 1, . . . , 𝑚 + 2,

𝛼
𝑚1

𝛿
𝑛+1

𝑚−2
+ 𝛼
𝑚2

𝛿
𝑛+1

𝑚−1
+ 𝛼
𝑚3

𝛿
𝑛+1

𝑚
+ 𝛼
𝑚4

𝛿
𝑛+1

𝑚+1

+ 𝛼
𝑚5

𝛿
𝑛+1

𝑚+2

= 𝛼
𝑚6

𝛿
𝑛

𝑚−2
+ 𝛼
𝑚7

𝛿
𝑛

𝑚−1
+ 𝛼
𝑚8

𝛿
𝑛

𝑚
+ 𝛼
𝑚9

𝛿
𝑛

𝑚+1

+ 𝛼
𝑚10

𝛿
𝑛

𝑚+2
,

𝑚 = 0, 1, . . . , 𝑁 − 1,

(16)

where

𝛼
𝑚1

= 1 − 𝐸𝑍
𝑚
− 𝑀, 𝛼

𝑚2
= 26 − 10𝐸𝑍

𝑚
− 2𝑀,

𝛼
𝑚3

= 66 + 6𝑀, 𝛼
𝑚4

= 26 + 10𝐸𝑍
𝑚
− 2𝑀,

𝛼
𝑚5

= 1 + 𝐸𝑍
𝑚
− 𝑀, 𝛼

𝑚6
= 1 + 𝐸𝑍

𝑚
+ 𝑀,

𝛼
𝑚7

= 26 + 10𝐸𝑍
𝑚
+ 2𝑀, 𝛼

𝑚8
= 66 − 6𝑀,

𝛼
𝑚9

= 26 − 10𝐸𝑍
𝑚
+ 2𝑀, 𝛼

𝑚10
= 1 − 𝐸𝑍

𝑚
+ 𝑀,

𝐸 =
5Δ𝑡

2ℎ
, 𝑀 =

20VΔ𝑡
2ℎ2

.

(17)

Obviously, the system (16) consists of 𝑁 equations in the
𝑁+4 unknowns (𝛿

−2
, 𝛿
−1
, . . . , 𝛿

𝑁+1
). To get a unique solution

of the system, we need four additional constraints. These are
obtained from the boundary conditions (3) and can be used to
eliminate 𝛿

−2
, 𝛿
−1
, 𝛿
𝑁
, and 𝛿

𝑁+1
from the system (16) which

then becomes a matrix equation for the 𝑁 unknowns 𝑑 =

(𝛿
0
, 𝛿
1
, . . . , 𝛿

𝑁−1
) of the form

𝐴𝑑
𝑛+1

= 𝐵𝑑
𝑛
. (18)

A lumped value of 𝑍
𝑚
is obtained from (𝑈

𝑚
+ 𝑈
𝑚+1

)
2
/4 as

𝑍
𝑚

=
1

4
(𝛿
𝑚−2

+ 12𝛿
𝑚−1

+ 22𝛿
𝑚
+ 12𝛿

𝑚+1
+ 𝛿
𝑚+2

)
2

. (19)

The resulting system can be solved with a variant of Thomas
algorithm and we need an inner iteration (𝛿

∗
)
𝑛+1

= 𝛿
𝑛
+

(1/2)(𝛿
𝑛+1

− 𝛿
𝑛
) at each time step to cope with the nonlinear

term 𝑍
𝑚
. A typical member of the matrix system (16) is

rewritten in terms of the nodal parameters 𝛿𝑛
𝑚
as

𝛾
1
𝛿
𝑛+1

𝑚−2
+ 𝛾
2
𝛿
𝑛+1

𝑚−1
+ 𝛾
3
𝛿
𝑛+1

𝑚
+ 𝛾
4
𝛿
𝑛+1

𝑚+1
+ 𝛾
5
𝛿
𝑛+1

𝑚+2

= 𝛾
6
𝛿
𝑛

𝑚−2
+ 𝛾
7
𝛿
𝑛

𝑚−1
+ 𝛾
8
𝛿
𝑛

𝑚
+ 𝛾
9
𝛿
𝑛

𝑚+1
+ 𝛾
10
𝛿
𝑛

𝑚+2
,

(20)

where

𝛾
1
= 𝛼 − 𝛽 − 𝜆, 𝛾

2
= 26𝛼 − 10𝛽 − 2𝜆,

𝛾
3
= 66𝛼 + 6𝜆, 𝛾

4
= 26𝛼 + 10𝛽 − 2𝜆,

𝛾
5
= 𝛼 + 𝛽 − 𝜆, 𝛾

6
= 𝛼 + 𝛽 + 𝜆,

𝛾
7
= 26𝛼 + 10𝛽 + 2𝜆, 𝛾

8
= 66𝛼 − 6𝜆,

𝛾
9
= 26𝛼 − 10𝛽 + 2𝜆, 𝛾

10
= 𝛼 − 𝛽 + 𝜆,

𝛼 = 1, 𝛽 = 𝐸𝑍
𝑚
, 𝜆 = 𝑀.

(21)
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Before the solution process begins iteratively, the initial
vector 𝛿0 = (𝛿

0
, 𝛿
1
, . . . , 𝛿

𝑁−1
) must be determined by means

of the following requirements:

𝑈

(𝑎, 0) =

4

ℎ
(−𝛿
0

−2
− 3𝛿
0

−1
+ 3𝛿
0

0
+ 𝛿
0

1
) = 0,

𝑈

(𝑎, 0) =

12

ℎ2
(𝛿
0

−2
− 𝛿
0

−1
− 𝛿
0

0
+ 𝛿
0

1
) = 0,

𝑈 (𝑥
𝑚
, 0) = 𝛿

0

𝑚−2
+ 11𝛿

0

𝑚−1
+ 11𝛿

0

𝑚
+ 𝛿
0

𝑚+1
= 𝑓 (𝑥) ,

𝑚 = 0, 1, . . . , 𝑁 − 1,

𝑈

(𝑏, 0) =

4

ℎ
(−𝛿
0

𝑁−2
− 3𝛿
0

𝑁−1
+ 3𝛿
0

𝑁
+ 𝛿
0

𝑁+1
) = 0,

𝑈

(𝑏, 0) =

12

ℎ2
(𝛿
0

𝑁−2
− 𝛿
0

𝑁−1
− 𝛿
0

𝑁
+ 𝛿
0

𝑁+1
) = 0.

(22)

If we eliminate the parameters 𝛿
0

−2
, 𝛿0
−1
, 𝛿0
𝑁
, and 𝛿

0

𝑁+1

from the system (16), we obtain 𝑁 × 𝑁 matrix system of the
following form:

𝐴𝛿
0
= 𝐵, (23)

where 𝐴 is

𝐴 =

[
[
[
[
[

[

18 6

11.5 11.5 1

1 11 11 1

1 11 11 1

2 14 8

]
]
]
]
]

]

, (24)

𝛿
0

= [𝛿
0

0
, 𝛿
0

1
, . . . , 𝛿

0

𝑁−1
]
𝑇, and 𝐵 = [𝑈(𝑥

0
, 0), 𝑈(𝑥

1
, 0), . . . ,

𝑈(𝑥
𝑁−1

, 0)]
𝑇. This system is solved by using a variant of

Thomas algorithm.

2.2. Linear Stability Analysis. We have investigated stability
of the scheme by using the vonNeumannmethod. In order to
apply the stability analysis, theMBE needs to be linearized by
assuming that the quantity 𝑈 in the nonlinear term 𝑈

2
𝑈
𝑥
is

locally constant. The growth factor of a typical Fourier mode
is defined as

𝛿
𝑛

𝑗
= 𝜉
𝑛
𝑒
𝑖𝑗𝑘ℎ

, (25)

where 𝑘 is mode number and ℎ is the element size. Substitut-
ing (37) into the scheme (20), we have

𝑔 =
𝐴
1
+ 𝑖𝑏

𝐴
2
− 𝑖𝑏

, (26)

where
𝐴
1
= (𝛼 − 𝜆) cos (2𝑘ℎ) + (26𝛼 − 2𝜆) cos (𝑘ℎ) + 66 + 6𝜆,

𝐴
2
= (𝛼 + 𝜆) cos (2𝑘ℎ) + (26𝛼 + 2𝜆) cos (𝑘ℎ) + 66 − 6𝜆,

𝑏 = sin (2𝑘ℎ) + 10 sin (𝑘ℎ) .

(27)

We can see that𝐴2
1
< 𝐴
2

2
and taking themodulus of (38) gives

|𝑔| ≤ 1, so we find that the scheme (20) is unconditionally
stable.

2.3. Quartic B-Spline Differential Quadrature Method
(QBDQM). DQM can be defined as an approximation to a
derivative of a given function by using the linear summation
of its values at specific discrete nodal points over the solution
domain of a problem. Provided that any given function 𝑈(𝑥)

is enough smooth over the solution domain, its derivatives
with respect to 𝑥 at a nodal point 𝑥

𝑖
can be approximated

by a linear summation of all the functional values in the
solution domain, namely,

𝑈
(𝑟)

𝑥
(𝑥
𝑖
) =

𝑑𝑈
(𝑟)

𝑑𝑥(𝑟)
|
𝑥
𝑖

=

𝑁

∑

𝑗=1

𝑤
(𝑟)

𝑖𝑗
𝑈(𝑥
𝑗
) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑟 = 1, 2, . . . , 𝑁 − 1,

(28)

where 𝑟 denotes the order of the derivative, 𝑤
(𝑟)

𝑖𝑗
repre-

sent the weighting coefficients of the 𝑟th order derivative
approximation, and 𝑁 denotes the number of nodal points
in the solution domain. Here, the index 𝑗 represents the
fact that 𝑤(𝑟)

𝑖𝑗
is the corresponding weighting coefficient of

the functional value 𝑈(𝑥
𝑗
). We need first- and second-order

derivative of the function 𝑈(𝑥). So, we will find value of (28)
for the 𝑟 = 1, 2. If we consider (28), then it is seen that the
fundamental process for approximating the derivatives of any
given function throughDQM is to find out the corresponding
weighting coefficients 𝑤

(𝑟)

𝑖𝑗
. The main idea of the DQM

approximation is to find out the corresponding weighting
coefficients 𝑤(𝑟)

𝑖𝑗
by means of a set of base functions spanning

the problem domain. While determining the corresponding
weighting coefficients different basis may be used. Using the
quartic B-splines as test functions in the fundamental DQM
equation (28) leads to the equation

𝑑
(𝑟)
𝑄
𝑚
(𝑥
𝑖
)

𝑑𝑥(𝑟)
=

𝑚+2

∑

𝑗=𝑚−1

𝑤
(𝑟)

𝑖,𝑗
𝑄
𝑚
(𝑥
𝑗
) ,

𝑚 = −1, 0, . . . , 𝑁 + 2, 𝑖 = 1, 2, . . . , 𝑁.

(29)

2.4. First-Order Derivative Approximation. When DQM
methodology is applied, the fundamental equality for deter-
mining the corresponding weighting coefficients of the first-
order derivative approximation is obtained as Korkmaz used
[31]

𝑑𝑄
𝑚
(𝑥
𝑖
)

𝑑𝑥
=

𝑚+2

∑

𝑗=𝑚−1

𝑤
(1)

𝑖,𝑗
𝑄
𝑚
(𝑥
𝑗
) ,

𝑚 = −1, 0, . . . , 𝑁 + 1, 𝑖 = 1, 2, . . . , 𝑁.

(30)

In this process, the initial step for finding out the correspond-
ing weighting coefficients 𝑤(1)

𝑖,𝑗
, 𝑗 = −2, −1, . . . , 𝑁 + 3, of the

first nodal point 𝑥
1
is to apply the test functions 𝑄

𝑚
, 𝑚 =

−1, 0, . . . , 𝑁 + 1, at the nodal point 𝑥
1
. After all the 𝑄

𝑚
test
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functions are applied, we get the following system of algebraic
equation system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 11 11 1

1 11 11 1

d d d d

1 11 11 1

1 11 11 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

1,−2

𝑤
(1)

1,−1

𝑤
(1)

1,0

𝑤
(1)

1,1

𝑤
(1)

1,2

...
𝑤
(1)

1,𝑁+2

𝑤
(1)

1,𝑁+3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
4

ℎ

−
12

ℎ

12

ℎ

4

ℎ

0

...
0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(31)

The weighting coefficients 𝑤
(1)

1,𝑗
related to the first grid

point are determined by solving the system (31). This system
consists of 𝑁 + 6 unknowns and 𝑁 + 3 equations. To have
a unique solution, it is required to add three additional
equations to the system. These are

𝑑
(2)

𝑄
−1

(𝑥
1
)

𝑑𝑥(2)
=

1

∑

𝑗=−2

𝑤
(1)

1,𝑗
𝑄


−1
(𝑥
𝑗
) ,

𝑑
(2)

𝑄
𝑁+1

(𝑥
1
)

𝑑𝑥(2)
=

𝑁+3

∑

𝑗=𝑁

𝑤
(1)

1,𝑗
𝑄


𝑁+1
(𝑥
𝑗
) ,

𝑑
(3)

𝑄
𝑁+1

(𝑥
1
)

𝜕𝑥(3)
=

𝑁+3

∑

𝑗=𝑁

𝑤
(1)

1,𝑗
𝑄


𝑁+1
(𝑥
𝑗
) .

(32)

By using these equations which we obtained by derivations,
three unknown terms will be eliminated from the system.
Consider

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2

1 11 11 1

d d d d

1 11 11 1

2 23 23

6 18

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

1,−1

𝑤
(1)

1,0

𝑤
(1)

1,1

𝑤
(1)

1,2

𝑤
(1)

1,3

...
𝑤
(1)

1,𝑁

𝑤
(1)

1,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
7

ℎ

−
12

ℎ

12

ℎ

4

ℎ
0

...
0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(33)

To determine the weighting coefficients, 𝑤
(1)

𝑘,𝑗
, 𝑗 =

−1, 0, . . . , 𝑁 + 1, at grid points 𝑥
𝑘
, 2 ≤ 𝑘 ≤ 𝑁 − 1, we got

the following algebraic equation system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2

1 11 11 1

d d d d

1 11 11 1

2 23 23

6 18

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

𝑘,−1

...
𝑤
(1)

𝑘,𝑘−3

𝑤
(1)

𝑘,𝑘−2

𝑤
(1)

𝑘,𝑘−1

𝑤
(1)

𝑘,𝑘

𝑤
(1)

𝑘,𝑘+1

𝑤
(1)

𝑘,𝑘+2

...
𝑤
(1)

𝑘,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]



6 The Scientific World Journal

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

...
0

−4

ℎ

−12

ℎ

12

ℎ

4

ℎ
0

...
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(34)

For the last grid point of the domain 𝑥
𝑁
, determine

weighting coefficients, 𝑤(1)
𝑁,𝑗

, 𝑗 = −1, 0, . . . , 𝑁 + 1, we got the
following algebraic equation system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2

1 11 11 1

d d d d

1 11 11 1

2 23 23

6 18

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

𝑁,−1

𝑤
(1)

𝑁,0

...
𝑤
(1)

𝑁,𝑁−3

𝑤
(1)

𝑁,𝑁−2

𝑤
(1)

𝑁,𝑁−1

𝑤
(1)

𝑁,𝑁

𝑤
(1)

𝑁,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

0

...
0

−4

ℎ

−12

ℎ

53

2ℎ

17

ℎ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(35)

2.5. Second-Order Derivative Approximation. The general
form of DQM approximation to the problem on the solution
domain is

𝑑
2
𝑄
𝑚

𝑑𝑥2
(𝑥
𝑖
) =

𝑚+2

∑

𝑗=𝑚−1

𝑤
(2)

𝑖,𝑗
𝑄
𝑚
(𝑥
𝑗
) ,

𝑚 = −1, 0, . . . , 𝑁 + 1, 𝑖 = 1, 2, . . . , 𝑁,

(36)

Table 1: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.005, Δ𝑡 = 0.01, and

V = 0.001 (SFEM).

Time 𝐿
2
× 10
3

𝐿
∞

× 10
3

2 0.0054945 0.0282049
3 0.0082404 0.0422421
4 0.0109858 0.0562280
5 0.0137296 0.0701566
6 0.0164729 0.0840427
7 0.0192154 0.0978975
8 0.0219573 0.1116934
9 0.0246985 0.1254466
10 0.0274379 0.1391304

where 𝑤
(2)

𝑖,𝑗
represents the corresponding weighting coeffi-

cients of the second-order derivative approximations. Simi-
larly, for finding out the weighting coefficients of the first grid
point 𝑥

1
all test functions 𝑄

𝑚
,𝑚 = −1, 0, . . . , 𝑁 + 1, are used

and the following algebraic equations system is obtained:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 11 11 1

1 11 11 1

d d d d

1 11 11 1

1 11 11 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

1,−2

𝑤
(2)

1,−1

𝑤
(2)

1,0

𝑤
(2)

1,1

𝑤
(2)

1,2

...
𝑤
(2)

1,𝑁+2

𝑤
(2)

1,𝑁+3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

12

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2

0

...
0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(37)

Here, the system (37) consists of 𝑁 + 6 unknowns and
𝑁 + 3 equations. To have a unique solution, it is required to
add new equations to the system. These are

𝑑
3
𝑄
−1

(𝑥
1
)

𝑑𝑥3
=

1

∑

𝑗=−2

𝑤
(1)

1,𝑗
𝑄


−1
(𝑥
𝑗
) , (38)
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𝑑
3
𝑄
𝑁+1

(𝑥
1
)

𝑑𝑥3
=

𝑁+3

∑

𝑗=𝑁

𝑤
(1)

1,𝑗
𝑄


𝑁+1
(𝑥
𝑗
) . (39)

If we used (38) and (39) we obtain the following equations
system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2

1 11 11 1

d d d d

1 11 11 1

2 14 8

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

1,−1

𝑤
(2)

1,0

𝑤
(2)

1,1

𝑤
(2)

1,2

𝑤
(2)

1,3

...
𝑤
(2)

1,𝑁+1

𝑤
(2)

1,𝑁+2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

18

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2

0

...
0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(40)

Quartic B-splines have not got fourth-order derivations at
the grid points so we cannot eliminate the unknown term
𝑤
(2)

1,𝑁+2
by the one more derivation of (39). We will use

first-order weighting coefficients instead of second-order
weighting coefficients which are introduced by Shu [32]

𝑤
(2)

𝑖,𝑗
= 2𝑤
(1)

𝑖,𝑗
(𝑤
(1)

𝑖,𝑖
−

1

𝑥
𝑖
− 𝑥
𝑗

) , 𝑖 ̸= 𝑗. (41)

After we use (41),

𝐴
1
= 𝑤
(2)

1,𝑁+2
= 2𝑤
(1)

1,𝑁+2
(𝑤
(1)

1,1
−

1

𝑥
1
− 𝑥
𝑁+2

) ,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2

1 11 11 1

d d d d

1 11 11

2 14

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

1,−1

𝑤
(2)

1,0

𝑤
(2)

1,1

𝑤
(2)

1,2

𝑤
(2)

1,3

...
𝑤
(2)

1,𝑁

𝑤
(2)

1,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

18

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2

0

...
−𝐴
1

−8𝐴
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(42)

system (42) is obtained. To determine the weighting coeffi-
cients 𝑤(2)

𝑘,𝑗
, 𝑗 = −1, 0, . . . , 𝑁 + 1, at grid points 𝑥

𝑘
, 2 ≤ 𝑘 ≤

𝑁 − 1, we got the following algebraic system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2

1 11 11 1

d d d d

1 11 11

2 14

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

𝑘,−1

...
𝑤
(2)

𝑘,𝑘−3

𝑤
(2)

𝑘,𝑘−2

𝑤
(2)

𝑘,𝑘−1

𝑤
(2)

𝑘,𝑘

𝑤
(2)

𝑘,𝑘+1

𝑤
(2)

𝑘,𝑘+2

...
𝑤
(2)

𝑘,𝑁−1

𝑤
(2)

𝑘,𝑁

𝑤
(2)

𝑘,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]
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Table 2: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.005, Δ𝑡 = 0.001, and

V = 0.005 (SFEM).

Time 𝐿
2
× 10
3

𝐿
∞

× 10
3

2 0.0246966 0.0845689
3 0.0370384 0.1266222
4 0.0493707 0.1684362
5 0.0616997 0.2101319
6 0.0740253 0.2516392
7 0.0863444 0.2930178
8 0.0986573 0.3341922
9 0.1109636 0.3752457
10 0.1232629 0.4160477

Table 3: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.005, Δ𝑡 = 0.01, and

V = 0.01 (SFEM).

Time 𝐿
2
× 10
3

𝐿
∞

× 10
3

2 0.0978574 0.2806243
3 0.1467089 0.4185981
4 0.1955072 0.5550286
5 0.2442506 0.6898713
6 0.2929396 0.8238629
7 0.3415703 0.9566688
8 0.3901436 1.0881289
9 0.4386580 1.2182231
10 0.4871136 1.3469237

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

...
12

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2

0

...
0

−𝐴
𝑘
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(43)

where𝐴
𝑘
equals𝐴

𝑘
= 𝑤
(2)

𝑘,𝑁+2
= 2𝑤
(1)

𝑘,𝑁+2
(𝑤
(1)

𝑘,𝑘
−1/(𝑥

𝑘
−𝑥
𝑁+2

)).
For the last grid point of the domain 𝑥

𝑁
with the

same idea, determine weighting coefficients 𝑤
(2)

𝑁,𝑗
, 𝑗 =

Table 4: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.02, Δ𝑡 = 0.01, and V =

0.01 (SFEM).

Time 𝐿
2
× 10
3

𝐿
∞

× 10
3

2 0.0973818 0.2802526
3 0.1460008 0.4184872
4 0.1945704 0.5554121
5 0.2430873 0.6910062
6 0.2915506 0.8252312
7 0.3399602 0.9580433
8 0.3883156 1.0894413
9 0.4366131 1.2194111
10 0.4848547 1.3479880

−1, 0, . . . , 𝑁 + 1, we got the following algebraic equation
system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2

1 11 11 1

d d d d
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=
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(44)

where 𝐴
𝑁
equals 𝐴

𝑁
= 𝑤
(2)

𝑁,𝑁+2
= 2𝑤
(1)

𝑁,𝑁+2
(𝑤
(1)

𝑁,𝑁
− 1/(𝑥

𝑁
−

𝑥
𝑁+2

)).

3. Test Problem and Experimental Results

In this section, we obtained numerical solutions of the MBE
by the subdomain finite element method and differential
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Table 5: 𝐿
2
and 𝐿

∞
error norms for V = 0.01, Δ𝑡 = 0.01, and ℎ = 0.02.

Time QBDQM [ℎ = 0.02] Ramadan et al. [13] [ℎ = 0.02]

𝐿
2
× 10
3

𝐿
∞

× 10
3

𝐿
2
× 10
3

𝐿
∞

× 10
3

2 0.7955855586 1.3795978925 0.7904296620 1.7030921188

3 0.6690533313 1.1943543646 0.6551928290 1.1832698216

4 0.5250528343 0.9764154381 0.5576794264 0.9964523368

5 0.4048512821 0.7849457015 0.5105617536 0.8561342445

6 0.3452210304 0.6374950443 0.5167229575 0.7610530060

7 0.3638648688 0.6705419608 0.5677438614 1.0654548090

8 0.4337013450 0.9863405006 0.6427542266 1.3581113635

9 0.5197862999 1.2551335234 0.7236430257 1.6048306653

10 0.6042925888 1.4747885309 0.8002564201 1.8023938553

Table 6: 𝐿
2
and 𝐿

∞
error norms for V = 0.01,Δ𝑡 = 0.01, and𝑁 = 81

at 0 ≤ 𝑥 ≤ 1.3.

Time QBDQM
𝐿
2
× 10
3

𝐿
∞

× 10
3

2 0.7607107169 1.3704182195
3 0.6480181273 1.1854984190
4 0.5604986926 1.0052476452
5 0.4927784148 0.8654032419
6 0.4359075842 0.7531551023
7 0.3885737191 0.6601326512
8 0.3520185942 0.5833334970
9 0.3282544303 0.5201323663
10 0.3187570280 0.4691560472

quadrature method. The accuracy of the numerical method
is checked using the error norms 𝐿

2
and 𝐿

∞
, respectively,

𝐿
2
=

𝑈

exact
− 𝑈
𝑁

2
≃ √ℎ

𝑁

∑

𝐽=1


𝑈

exact
𝑗

− (𝑈
𝑁
)
𝑗



2

,

𝐿
∞

=

𝑈

exact
− 𝑈
𝑁

∞
≃ max
𝑗


𝑈

exact
𝑗

− (𝑈
𝑁
)
𝑗


,

𝑗 = 1, 2, . . . , 𝑁 − 1.

(45)

All numerical calculations were computed in double pre-
cision arithmetic on a Pentium4PCusing a Fortran compiler.
The analytical solution of modified Burgers’ equation is given
in [33] as

𝑈 (𝑥, 𝑡) =
(𝑥/𝑡)

1 + (√𝑡/𝑐
0
) exp (𝑥2/4V𝑡)

, (46)

where 𝑐
0
is a constant and 0 < 𝑐

0
< 1. For our numerical

calculation, we take 𝑐
0
= 0.5. We use the initial condition for

(46), evaluating at 𝑡 = 1, and the boundary conditions are
taken as 𝑈(0, 𝑡) = 𝑈

𝑥
(0, 𝑡) = 0 and 𝑈(1, 𝑡) = 𝑈

𝑥
(1, 𝑡) = 0.

3.1. Experimental Results for FEM. For the numerical sim-
ulation, we have chosen the various viscosity parameters
V = 0.01, 0.001, 0.005, space steps ℎ = 0.02, 0.005, and
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,
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Figure 1: Solution behavior of the equation with ℎ = 0.005, 𝑡 = 0.01,
and V = 0.01.

time steps Δ𝑡 = 0.01, 0.001 over the interval 0 ≤ 𝑥 ≤ 1.
The computed values of the error norms 𝐿

2
and 𝐿

∞
are

presented at some selected times up to 𝑡 = 10. The obtained
results are tabulated in Tables 1, 2, 3, and 4. It is clearly seen
that the results obtained by the SFEM are found to be more
acceptable. Also, we observe from these tables that if the
value of viscosity decreases, the value of the error norms will
decrease.When the value of viscosity parameter is smaller we
get better results.The behaviors of the numerical solutions for
viscosity V = 0.01, 0.005, 0.001, space steps ℎ = 0.02, 0.005,
and time steps Δ𝑡 = 0.01, 0.001 at times 𝑡 = 1, 2, 4, 6, and 8

are shown in Figures 1, 2, and 3. As seen in the figures, the top
curve is at 𝑡 = 1 and the bottom curve is at 𝑡 = 8. Also, we
have observed from the figures that as the time increases the
curve of the numerical solution decays.With smaller viscosity
value, numerical solution decay gets faster.

3.2. Experimental Results for QBDQM. We calculate the
numerical rates of convergence (ROC) with the help of the
following formula:

ROC ≈
ln (𝐸 (𝑁

2
) /𝐸 (𝑁

1
))

ln (𝑁
1
/𝑁
2
)

. (47)
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Table 7: 𝐿
2
and 𝐿

∞
error norms for V = 0.001, Δ𝑡 = 0.01, and ℎ = 0.005.

Time QBDQM Ramadan et al. [13]
𝐿
2
× 10
3

𝐿
∞

× 10
3

𝐿
2
× 10
3

𝐿
∞

× 10
3

2 0.1370706949 0.4453892504 0.1835491190 0.8185211112
3 0.1168507335 0.3842839811 0.1441424335 0.5234833346
4 0.1019761971 0.3258391192 0.1144110783 0.3563537207
5 0.0920706001 0.2816616769 0.0947865272 0.2549790058
6 0.0849484881 0.2484289381 0.0814174677 0.2134847835
7 0.0794570772 0.2225471690 0.0718977757 0.1880048432
8 0.0750035859 0.2019577762 0.0648368942 0.1682601770
9 0.0712618898 0.1851510002 0.0594114970 0.1524074966
10 0.0680382860 0.1711033543 0.0551151456 0.1394312127

Table 8: Error norms and rate of convergence for various numbers
of grid points at 𝑡 = 10.

𝑁 𝐿
2
× 10
3 ROC(𝐿

2
) 𝐿

∞
× 10
3 ROC(𝐿

∞
)

11 0.43 — 0.98 —
21 0.35 0.31 0.88 0.16
31 0.22 1.19 0.52 1.35
41 0.17 0.92 0.39 1.02
51 0.14 0.88 0.30 1.20
81 0.10 0.72 0.19 0.98
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Figure 2: Solution behavior of the equation with ℎ = 0, 005, 𝑡 =

0, 01, and V = 0.001.

Here 𝐸(𝑁
𝑗
) denotes either the 𝐿

2
error norm or the 𝐿

∞

error norm in case of using 𝑁
𝑗
grid points. Therefore, some

further numerical runs for different numbers of space steps
have been performed. Ultimately, some computations have
been made about the ROC by assuming that these methods
are algebraically convergent in space. Namely, we suppose
that 𝐸(𝑁) ∼ 𝑁

𝑝 for some 𝑝 < 0 when 𝐸(𝑁) denotes the
𝐿
2
or the 𝐿

∞
error norms by using𝑁 subintervals.

For the numerical treatment, we have taken the different
viscosity parameters V = 0.01, 0.001 and time step Δ𝑡 = 0.01

over the intervals 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑥 ≤ 1.3. As it
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Figure 3: Solution behavior of the equation with ℎ = 0, 02, 𝑡 = 0, 01,
and V = 0.01.

is seen from Figure 4 when we select the solution domain
0 ≤ 𝑥 ≤ 1 the right part of the shock wave cannot be seen
clearly. By using the larger domain like 0 ≤ 𝑥 ≤ 1.3 as
seen in Figure 5 solution is got better than narrow domain
0 ≤ 𝑥 ≤ 1 shown in Figure 4. The computed values of the
error norms 𝐿

2
and 𝐿

∞
are presented at some selected times

up to 𝑡 = 10. The obtained results are recorded in Tables
5 and 6. As it is seen from the tables, the error norms 𝐿

2

and 𝐿
∞

are sufficiently small and satisfactorily acceptable.
We obtain better results if the value of viscosity parameter is
smaller, as shown in Table 7. The behaviors of the numerical
solutions for viscosity V = 0.01 and 0.001 and time step
Δ𝑡 = 0.01 at times 𝑡 = 1, 3, 5, 7, and 9 are shown in Figures
4–6. It is observed from the figures that the top curve is at
𝑡 = 1 and the bottom curve is at 𝑡 = 9. It is obviously
seen that smaller viscosity value V in shock wave with smaller
amplitude and propagation front becomes smoother. Also,
we have seen from the figures that, as the time increases, the
curve of the numerical solution decays.With smaller viscosity
value, numerical solution decay gets faster. These numerical
solutions graphs also agree with published earlier work [13].
Distributions of the error at time 𝑡 = 10 are drawn for solitary
waves, Figures 7 and 8, from which maximum error happens
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Table 9: Comparison of our results with earlier studies.

Values and methods 𝐿
2
× 10
3

𝐿
∞

× 10
3

𝐿
2
× 10
3

𝐿
∞

× 10
3

𝑡 = 2 𝑡 = 2 𝑡 = 10 𝑡 = 10

V = 0.005, Δ𝑡 = 0.001, ℎ = 0.005

SFEM 0.02469 0.08456 0.12326 0.41604
[14] 0.25786 0.72264 0.18735 0.30006
[17] SBCM1 0.22890 0.58623 0.14042 0.23019
[17] SBCM2 0.23397 0.58424 0.13747 0.22626

V = 0.001, Δ𝑡 = 0.01, ℎ = 0.005

SFEM 0.00549 0.02820 0.02743 0.13913
QBDQM 0.13707 0.44538 0.06803 0.17110
[13] 0.18354 0.81852 0.05511 0.13943
[14] 0.06703 0.27967 0.05010 0.12129
[17] SBCM1 0.06843 0.26233 0.04080 0.10295
[17] SBCM2 0.07220 0.25975 0.03871 0.09882
[18] 0.06607 0.26186 0.04160 0.10470

V = 0.01, Δ𝑡 = 0.01, and ℎ = 0.005

SFEM 0.09785 0.28062 0.48711 1.34692
[14] 0.52308 1.21698 0.64007 1.28124
[17] SBCM1 0.38489 0.82934 0.54826 1.28127
[17] SBCM2 0.39078 0.82734 0.54612 1.28127
[18] 0.37552 0.81766 0.19391 0.23074

V = 0.01, Δ𝑡 = 0.01, and ℎ = 0.02

SFEM 0.09738 0.28025 0.48485 1.34798
QBDQM 0.79558 1.37959 0.60429 1.47478
[13] 0.79042 1.70309 0.80025 1.80239
[17] SBCM1 0.38474 0.82611 0.55985 1.28127
[17] SBCM2 0.41321 0.81502 0.55095 1.28127

at the right hand boundary when greater value of viscosity
V = 0.01 is used, andwith smaller value of viscosity V = 0.001,
maximum error is recorded around the location where shock
wave has the highest amplitude. The 𝐿

2
and 𝐿

∞
error norms

and numerical rate of convergence analysis for V = 0.001 and
Δ𝑡 = 0.01 and different numbers of grid points are tabulated
in Table 8.

Table 9 presents a comparison of the values of the error
norms obtained by the present methods with those obtained
by other methods [13, 14, 17, 18]. It is clearly seen from the
table that the error norm 𝐿

2
obtained by the SFEM is smaller

than those given in [13, 14, 17, 18] whereas the error norm 𝐿
∞

is very close to those given in [14, 17, 18]. The error norm 𝐿
∞

is better than the paper [13]. For the QBDQM both 𝐿
2
and

𝐿
∞

are almost the same as these papers.

4. Conclusion

In this paper, SFEM and DQM based on quartic B-splines
have been set up to find the numerical solution of the MBE
(2). The performance of the schemes has been considered
by studying the propagation of a single solitary wave. The
efficiency and accuracy of the methods were shown by
calculating the error norms 𝐿

2
and 𝐿

∞
. Stability analysis of

the approximation obtained by the schemes shows that the
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Figure 4: Solutions for V = 0.01, ℎ = 0.02, Δ𝑡 = 0.01, and 0 ≤ 𝑥 ≤ 1.

methods are unconditionally stable. An obvious conclusion
can be drawn from the numerical results that for the SFEM
𝐿
2
error norm is found to be better than the methods cited in
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Figure 5: Solutions for V = 0.01, ℎ = 0.02, Δ𝑡 = 0.01, and 0 ≤ 𝑥 ≤

1.3.
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Figure 6: Solutions for V = 0.001, Δ𝑡 = 0.01,𝑁 = 166, and 0 ≤ 𝑥 ≤

1.

[13, 14, 17, 18] whereas𝐿
∞
error norm is found to be very close

to values given in [13, 14, 17, 18]. The obtained results show
that our methods can be used to produce reasonable accurate
numerical solutions of modified Burgers’ equation. So these
methods are reliable for getting the numerical solutions of the
physically important nonlinear problems.
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