
Research Article
Dynamic and Quantitative Method of Analyzing Service
Consistency Evolution Based on Extended Hierarchical Finite
State Automata

Linjun Fan,1 Jun Tang,2 Yunxiang Ling,1 and Benxian Li3

1 Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology,
Changsha 410073, China

2Department of Telecommunications and Systems Engineering, Universitat Autònoma de Barcelona, 08202 Barcelona, Spain
3 Department of Management Science and Engineering, Police Officer College of Chinese Armed Police Force, Chengdu 610213, China

Correspondence should be addressed to Jun Tang; jun.tang@e-campus.uab.cat

Received 9 September 2013; Accepted 19 November 2013; Published 8 January 2014

Academic Editors: B. Johansson and P. Liu

Copyright © 2014 Linjun Fan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service
inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and
empirical, and they do not consider the dynamic disturbances among factors in service’s evolution behaviors such as producing,
publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional,
pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a
novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state
automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency
evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results
show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is
the second biggest one, and the service version’s confusion (1.2%) is the smallest one. Compared with previous qualitative analysis,
SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward
obtaining a higher level of consistency in SODSA.

1. Introduction

In recent years, service-oriented distributed simulations
applications (SODSA) have become a major trend in mod-
eling and simulation (M&S) field [1] mainly because of the
enormous popularity of novel information technologies such
as service-oriented architecture (SOA) [2], compositional
simulation methods [3], cloud computing [4], internet of
things [5], gridding, and Web service applications [1, 6, 7].
Owing to the usage of such technologies, SODSA is increas-
ingly featured by service-oriented, composite, large-scale,
ubiquitous, and flexible characteristics [8, 9]. For this reason,
in order to ensure service consistency, traditional main-
tenance technologies which do not consider these novel
attributes of SODSA exhibit some new difficulties (e.g., bad

reusability, troubles of service composition, failures of service
encapsulation and messages exchanges). It should be noted,
however, that service consistencymaintenance plays a critical
role in the correctness and reliability of M&S. Therefore, it
is crucial for software developers to make use of feasible
technologies and methods to maintain service consistency.
But prior to this step, we should first analyze the various
influential factors that cause service inconsistencies, serving
as guidance for the design of service consistency technologies
with regard to a specific inconsistent factor. Traditionalmeth-
ods are mostly qualitative and experiential, and they do not
consider the dynamic disturbances among factors in service’s
evolution behaviors such as producing, publishing, calling,
and maintenance. Moreover, SODSA are rapidly evolving in
terms of large-scale, reusable, composite, pervasive, and

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 793271, 11 pages
http://dx.doi.org/10.1155/2014/793271



2 The Scientific World Journal

flexible features, which presents difficulties in the usage of
traditional analysis methods. To solve these problems, the
main contributions of this paper are summarized as follows.

(i) We present a new service consistency evolution
model, called extended hierarchical service-finite
state automata (EHS-FSA), which is based on FSA
theory and considers the dynamic disturbances
among main inconsistency factors and simulates all
transition behaviors and states of combined consis-
tency attributes sets for each simulation service.

(ii) On the basis of EHS-FSA, we also develop two ser-
vice consistency evolution algorithms (SCEAs) by
running EHS-FSA and then calculating the number
of factors occurrences affecting service inconsistency,
which provides the quantitative analysis means of
impact factors.

(iii) We carry out quantitative evaluation experiments to
validate the feasibility and effectiveness of the service
evolution model EHS-FSA and the statistical assess-
ment algorithms SCEAs.

As a brief outline of the rest of the paper, Section 2
introduces related work, Section 3 discusses the background
and mechanism of service consistency evolution; Section 4
introduces the service consistency evolution model, includ-
ing essential formal definitions and EHS-FSA; Section 5
proposes SCEAs and states their main principles; Section 6
gives the quantitative evaluation results and analysis of influ-
encing factors by simulation methods; conclusion and the
recommendations for future work are detailed in Section 7.

2. Related Work

Over the years, many maintenance techniques have been
proposed in prior related studies to maintain all kinds of
consistency states and ensure convenient utility of services
in service evolution processes from the different emphasis
points. Tian et al. [10] consider the software service reuse
issues in ubiquitous environments and present a novel reuse
approach in service consistency evolution processes, inwhich
the reusable parts of existing services are extracted and
directly utilized, and the missing functionalities-based index
is then further implemented and built to accelerate the service
reuse process. Sindhgatta and Sengupta [11] investigate the
model transformation processes and the associated chang-
ing service design method in model-based development of
SOA and introduce an extensible framework for tracing the
dynamic evolution of model and model-based service. Frank
andKarl [12] state consistency challenges of service discovery
inmobile ad hoc networks and discuss the influencing factors
on system efficiency that refers to transmission protocol,
correctness of the delivered messages, message overhead,
and even geographic distance between service providers and
subscribers. Greenfield et al. [13] study the consistency main-
tenance problems of Web services, ensuring that services
calls always be finished in consistent states despite failures
and other exceptional events. Reference [13] addresses the
relationship between internal service states, messages, and

application protocols which facilitate the transformation
from the problem of ensuring consistent outcomes into a
protocol problem that can be easily validated by established
service verification tools. There is also a great deal of other
research achievements of service consistency evolution such
as the studies in literatures [5, 14–18] that analyse the chal-
lenges and troubles and give some significative solutions.
However, these solutions are usually adopted in such simula-
tion environments where the number of simulation nodes is
fixed and service developments are centralized and inflexible.
With the emergence of SODSA, some new traits of software
service developments are emerging, leading to traditional
analysis methods being less applicable.

As for the above-mentioned former literatures [5, 14–18]
that investigate service consistency in traditional distributed
simulations compared with SODSA, there exhibit the fol-
lowing deficiencies in analyzing these influencing factors. (1)
Only one or some of these factors are discussed, rather than
most of enabled influential factors. (2) These studies only
explain why these factors lead to service inconsistency, but
do not specify the numerical extent which results in such
inconsistent phenomena. (3) Dynamic perturbation mech-
anism between inconsistent factors in service running and
their dynamically impact on all possible transitions of service
consistency states are disregarded. (4) Existing researches
focus mainly on inconsistency factors in special simulation
phases or processes and do not synthetically investigate the
issues that affect the overall software life cycle. Thanks to
some major features of emerging SODSA such as large-scale
attributes, dynamic assemblage, redundancy deployment,
plug-in procedures, and flexible composition, the simulation
nodes in SODSAare transformable, unpredictable, and there-
fore stochastic.These traits result in an increasingly unreliable
and large number of services. Thus, the dynamic evolution
mechanism of impact factors on service inconsistency should
be exhaustively investigated, and inconsistent details in each
simulation service should be carefullymonitored in thewhole
simulation course. By using this analysis way, we can provide
an actual and exact picture of the importance of such factors
and can enable the excellent design of technologies for main-
taining service consistency when it comes to the influencing
factors, which facilitate the avoidance of wrong simulation
results. When software engineers take into account all influ-
encing factors in such complicated and dynamic simulation
environments, they certainly encounter some difficulties
in actual analysis, design, and running of service. In this
paper, thus, we restrict the analysis to focus on some impor-
tant inconsistency factors and temporarily ignore secondary
ones.

Emerging automata theories [19], graph-based
approaches [20], and formal methods [21] in software engi-
neering supply many valuable solutions for describing and
analyzing such complicated state changes and interactive
behaviors in distributed systems, which provide us with
constructive ideas. In particular, a finite state automaton
(FSA) [22] has been widely used in the analysis and behavior
modeling for various practical moderate-scale systems.
However, in large-scale complex distributed systems, as it
involves the complexity of sizes, behaviors, states, and



The Scientific World Journal 3

Ve
rt

ic
al

 ax
is Transition

Service v1.1

Service v1.0

Vertical
evolution

Horizontal axis

Horizontal axis

Horizontal evolution

Figure 1: Three-dimensional view of service evolution.

properties, a general FSA is not easy to be used to formally
describe such systems. The extended hierarchical FSA
(EHFSA) [23] that lets a state itself as an FSA and can depict
complex state transitions is deepening and an expansion of
FSA, avoiding the state space explosion and improving the
efficiency of state transition. Considering the multifarious
consistency evolution behaviors of atomic and composite
services in large-scale SODSA, as well as the layered
distribution of service grid, it is feasible that we use EHFSA to
describe the consistency state evolution of service behaviors
under compositional SODSA. In order to obtain quantitative
analysis results, we also design two statistical evaluation
algorithms to detect impact factors of service inconsistency.

3. Analysis of Service Consistency Evolution

3.1. Evolution Mechanism. Considering the actual situations
in current SODSA, it is rare that there always exists an
appropriate service exactly satisfying the user requirements.
Because the popular tendencies of SODSA are that service
evolution caters to continually changing requirements and
services are dynamically combinated and rapidly updated.
Hence, somemacrolevel factor refers to service inconsistency,
such as the diversity of service behaviors, the complex struc-
tures of the service itself, and the service’s function overlap,
can be observed in service-oriented simulations, which are
the focus of service evolution in this research. Based on
the above-mentioned factors, we mainly pay attention to the
global consistency state evolution of services, monitoring the
service state transition triggered by the impact factors, inves-
tigating the occurrence mechanism of inconsistent phenom-
ena, and counting the influence rates of these factors.

In this paper, according to the evolution direction of
services, the service consistency evolution can be divided into
two categories: horizontal and vertical. Horizontal evolution
refers to the internal consistency state changes for the same
version of services and vertical evolution refers to service
consistency problems between the same service’s different
versions. For each single service, we can describe its evolution
processes by a three-dimensional view as shown in Figure 1.
Additionally, the events of service evolution also can be
summarized into two types: essential (ES) and nonessential

Table 1: Inconsistency influencing events and their categorization.

Event Type Consistency meaning
SC ES Feasibility and integrity
ID ES Diversity of interface description

RS NES maintenance of several backups for the same
service

WE ES Encapsulation correctness of web service based on
models

VM ES Version control for the same service
MI NES Service communication without failure

SM NES Services’ matching degree between publishers and
subscribers

SR NES Whether the same service can be called by
multiple other services

(NES), on the basis of the product life cycle of service.TheES-
events include service composition (SC), interface descrip-
tion (ID),Web encapsulation (WE), and versionmanagement
(VM), referring to the processes of service’s production and
maintenance, whereas the NES-events such as redundant
storage (RS), message interaction (MI), search and matching
(SM), and share and reusage (SR) refer to the service’s
application processes. These events are the important ele-
ments of services’ consistency state evolution. Table 1 shows
the detailed events or factors of service consistency evolution.

3.2. Inconsistency Factors. In this section some formal
method-based concepts for modeling are first introduced.
A service consistency evolution model EHS-FSA is then
proposed based on FSA. The representation of Section 3.1
indicates that the consistency state of service evolution can
be analyzed from macroscopical factors based on structures,
behaviors, and functions of service, which consist of service
interface protocols (structure), storage deployment (struc-
ture), service production and maintenance (behavior), mes-
sage communication (behavior), share and reusage (function),
matching between service publishers and subscribers (func-
tion), and other ones. For example, the failures of message
interactions among different services can prevent service
running due to the network delay, package loss, hardware
or software troubles, different service may have a diversity
of description styles such as HTTP, SOAP, WSDL, and XML
[24], which makes services’ calls and compositions more
difficult.

In fact, service composition is very significant in SODSA.
It means that one single service can be composed of
different atomic services, in which the atomic service is
function-simple and relatively independent, but this combi-
native service has a larger granularity and more applications
[25]. The composition among different services can pro-
vide some value-added functions and meet the subscribers’
requirements [25]. However, owing to the heterogeneous,
distributed, and dynamic network environment, the ser-
vice composition is affected by changes in communication
mode, network block, denial attacks of service, infrastructure



4 The Scientific World Journal

failures, and other issues [24], making the compositional
behaviors of service not easy.

Note that the occurrence of any inconsistency factors in
software engineering must have certain statistical regular-
ity and these factors causing service inconsistency are no
exception. Exactly speaking, the factors’ importance degree
should have a certain ordinal and numerical relationship,
for instance, which factor is the least influential factor?,
which factor is the most influential?, and what are the impact
proportions of these factors?, respectively. Ourmain target in
this paper is solving these problems by using formal method
and FSA theory.

4. Consistency Evolution Model

In this section some formal method-based concepts for mod-
eling are first introduced. A service consistency evolution
model EHS-FSA is then proposed based on FSA.

4.1. Definitions and Notations. We first define related con-
cepts which are the background knowledge of proposed EHS-
FSA method and its algorithm for factors quantification
analysis.

Definition 1 (atomic service). We define AtS = {𝛼
𝑖
| 𝑖 ∈ 𝑁

∗
}

as the set of atomic services. 𝛼
𝑖
(abbreviated as 𝛼) is the

smallest service unit in SODSA, which encapsulates several
models into one kind of web service and can only complete a
simple task.

Definition 2 (composite service). Several atomic services can
be appropriately assembled into a larger granular service. Let
CoS = {𝛽

𝑖
| 𝑖 ∈ 𝑁

∗
, 𝛽
𝑖
= ⟨𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
⟩} denote the set

of compositional services where 𝛽
𝑖
(abbreviated as 𝛽) is a 𝑘-

tuplemeaning the composite array and 𝑘 denotes the number
of 𝛼.

We assume that a single 𝛼 that can be used to establish
many 𝛽 is the basic service unit and some service activities
such as publishing, accessing, and calling can be executed
only after the happen of 𝛼’s composition behavior.

Definition 3 (global service space). We define a logically
transparent space GSS = AtS ∪ CoS which consists of all
𝛼 and 𝛽 in SODSA system. For GSS, 𝛼 and 𝛽 in different
physical nodes logically belong to the same node. That is,
the service is transparent and seems to be deployed locally,
although actually saved at geographically dispersed regions.

According to Definition 3, GSS is like a container in
which each service interaction can be done locally and there
donot exist the remote accesses and calls, and all service-
related consistency state evolutions can be executed in GSS.

Assume that 𝛽 can no longer be integrated into a higher
level of service with other 𝛽 after several 𝛼 are assembled into
it.That is, there are only two types of service in SODSA: 𝛼 and
𝛽, indicating the number of service layer is 2.

Figure 2 shows a simple example of 𝛼’s behaviors of
composition and reusage and 𝛽’s message exchanges in GSS.
In Figure 2, symbol “A” denotes the combination of different

⟨𝛼1, 𝛼2, 𝛼3, 𝛼4⟩

𝛼1

𝛼2

𝛼2
𝛼3

𝛼3

𝛼4

𝛼4

𝛼5
𝛼6

𝛼6

1

1

1

1

1

1 1

1

2

2 2

2

3

3

3

3

3

𝛽1 = 𝛽2 =

𝛽3 =

Migrate

CoS

AtSAtS

AtS

⟨𝛼3, 𝛼5, 𝛼6⟩

⟨𝛼2, 𝛼4, 𝛼6⟩

Combination
Message exchange

Figure 2: Example of service composition, reusage, and messages
exchanges.

𝛼, symbol “B” denotes message interactions between two
business-related 𝛽, and symbol “C” denotes the migration of
𝛼, meaning the atomic services’ share and reusage.

To simplify the problems and easily achieve formal
descriptions, we consider only dominating influential events
(or factors) on consistency state of services. These events
include SC, WE, ID, SR, MI, and VM (as shown in Table 1).

Definition 4 (consistency attributes of AtS). Let a three-
tuple ATO

𝛼
= ⟨VM

𝛼
,WE
𝛼
, SR
𝛼
⟩ denote the consistency-

related properties set of 𝛼 in GSS. The elements in ATO
𝛼

correspond to the before-mentioned events VM, WE, and
SR, respectively, which should be carefully considered in
maintaining the consistency state of 𝛼.

Definition 5 (consistency attributes of CoS). In GSS, use a
four-tuple COM

𝛽
= ⟨ID

𝛽
,MI
𝛽
, SC
𝛽
,Aset⟩ to denote 𝛽’s con-

sistency attributes set, where Aset = ATO
𝛼
1

∪ ATO
𝛼
2

∪ ⋅ ⋅ ⋅ ∪

ATO
𝛼
𝑘

, 𝑘 is the number of current 𝛼 in corresponding 𝛽,
ID
𝛽
denotes the factor ID’s consistency state, MI

𝛽
represents

the factor MI’s correctness, SC
𝛽
denotes the composition

capability of the factor SC.
Seen as Definition 4, we can observe that all attributes of

𝛼 are included in relevant 𝛽 attributes but are just a subset
of COM

𝛽
. Therefore, the consistency attributes of 𝛽 can be

divided into two levels: atomic layer and compositional layer.
There are multiple 𝛼 and 𝛽 in GSS.

Definition 6 (consistency state array of AtS). For all 𝑡, use
the state array AtS𝑡

𝛼
= (vm

𝛼
,we
𝛼
, sr
𝛼
) (abbreviated as AtS𝑡

𝛼
)

to denote the monitoring values of atomic service 𝛼’s consis-
tency status where 𝑡 is the simulation time, the elements vm

𝛼
,

we
𝛼
, and sr

𝛼
whose range is {true, false}, respectively, mapped



The Scientific World Journal 5

the events VM, WE, and SR in ATO
𝛼
. The logic term “true”

denotes consistency, whereas “false” denotes inconsistency.

Definition 7 (consistency state array of CoS). Let the compos-
ited state array CoS𝑡

𝛽
= ⟨(id

𝛽
,mi
𝛽
, sc
𝛽
),AtS𝑡
𝛼
⟩ (abbreviated as

CoS𝑡
𝛽
) denote 𝛽’s monitor value of consistency states at any

𝑡 where (id
𝛽
,mi
𝛽
, sc
𝛽
) is called the root array, and AtS𝑡

𝛼
is

called the leaf array.Themonitor values in CoS𝑡
𝛽
whose range

is uniform to that in Definition 6 mapped the attributes in
COM

𝛽
, respectively.

According to Definitions 6 and 7, AtS𝑡
𝛼
and CoS𝑡

𝛽
can

quantitatively describe the consistency states of services. In
the running of SODSA, we can use them for each 𝛼 and 𝛽 to
monitor service state changes. Note that each 𝛼 and 𝛽 in GSS
have eight such state arrays (23 = 8).

Give an example of consistency state arrays: at 𝑡, assume
that the state arrays of 𝛼 are AtS𝑡

𝛼
1

= (0, 1, 1), AtS𝑡
𝛼
2

= (1, 1, 1),
AtS𝑡
𝛼
3

= (1, 1, 0) and AtS𝑡
𝛼
4

= (1, 0, 0). If 𝛼
1
is integrated with

𝛼
2
to produce 𝛽

1
and 𝛽

2
is composed of 𝛼

3
and 𝛼

4
, then we

have the state arrays of 𝛽CoS𝑡
𝛽
1

= ⟨(1, 0, 1), (0, 1, 1)∪(1, 1, 1)⟩

and CoS𝑡
𝛽
2

= ⟨(1, 1, 0), (1, 1, 0) ∪ (1, 0, 0)⟩.

Definition 8 (input events set of service states). Considering
several primary consistency factors of 𝛼 and 𝛽, we define the
input events set of service states 𝐼 = 𝐴𝐼 ∪ 𝐶𝐼, 𝐴𝐼 = {𝑎

𝑖
| 𝑖 =

1, 2, . . . , 6}, and 𝐶𝐼 = {𝑐
𝑖
| 𝑖 = 1, 2, . . . , 6} where 𝐴𝐼 and 𝐶𝐼

are, respectively, the input set of state transition of 𝛼 and 𝛽.
The element 𝑎

𝑖
in 𝐴𝐼 refers to the following factors: version

management confusion (𝑎
1
), encapsulation troubles (𝑎

2
),

hard reusability (𝑎
3
), versionmaintenance (𝑎

4
), encapsulation

repair (𝑎
5
), and reusability improvement (𝑎

6
). Similarly, 𝑐

𝑖

refers to these factors: different interface description (𝑐
1
),

message communication failure (𝑐
2
), 𝛼’s noncomposition

(𝑐
3
), standardization of interface definition (𝑐

4
), successful

message transmission (𝑐
5
), and 𝛼’s composability amendment

(𝑐
6
).

Definition 9 (output events set of service states). The consis-
tency state transition of services can be triggered by input
events, resulting in the output events whose set is denoted by
𝑂 = 𝐴𝑂 ∪ 𝐶𝑂, 𝐴𝑂 = {𝑑

𝑖
| 𝑖 = 1, 2, . . . , 6}, 𝐶𝑂 = {ℎ

𝑖
| 𝑖 =

1, 2, . . . , 6}. 𝐴𝑂 and 𝐶𝑂 are the output set of state transition
of 𝛼 and 𝛽, respectively. For each 𝑑

𝑖
, we define the following

output events of 𝛼: version inconsistency (𝑑
1
), 𝛼’s internal

inconsistency (𝑑
2
), nonreusability (𝑑

3
), version consistency

(𝑑
4
), encapsulation correctness (𝑑

5
), good reusability (𝑑

6
).

For each ℎ
𝑖
, involving the following 𝛽’s output events: incon-

sistent interface (ℎ
1
), message exchanges inconsistency (ℎ

2
),

composition inconsistency (ℎ
3
), interface consistency (ℎ

4
),

message interaction consistency (ℎ
5
), and composition con-

sistency (ℎ
6
).

4.2. Extended Hierarchical Service-Finite State Automata. In
this section, we construct an extended and hierarchical FSA
to portray the dynamic evolution mechanism of service
consistency states in SODSA.

Table 2: Transition lists of 𝛼’s partial consistency states.

Current state 𝐼 𝛿 𝑂 Next state
(1, 1, 1) 𝑎

1
𝛿 ((1, 1, 1), 𝑎

1
) 𝑑

1
(0, 1, 1)

(1, 1, 1) 𝑎
3

𝛿 ((1, 1, 1), 𝑎
3
) 𝑑

3
(1, 1, 0)

(1, 1, 1) 𝑎
2

𝛿 ((1, 1, 1), 𝑎
2
) 𝑑

2
(1, 0, 1)

(1, 1, 0) 𝑎
1

𝛿 ((1, 1, 0), 𝑎
1
) 𝑑

1
(0, 1, 0)

(1, 1, 0) 𝑎
6

𝛿 ((1, 1, 0), 𝑎
6
) 𝑑

6
(1, 1, 1)

(1, 1, 0) 𝑎
2

𝛿 ((1, 1, 0), 𝑎
2
) 𝑑

2
(1, 0, 0)

(1, 0, 1) 𝑎
1

𝛿 ((1, 0, 1), 𝑎
1
) 𝑑

1
(0, 0, 1)

(1, 0, 1) 𝑎
3

𝛿 ((1, 0, 1), 𝑎
3
) 𝑑

3
(1, 0, 0)

(1, 0, 1) a5 𝛿 ((1, 0, 1), 𝑎
5
) 𝑑

5
(1, 1, 1)

(1, 0, 0) 𝑎
1

𝛿 ((1, 0, 0), 𝑎
1
) 𝑑

1
(0, 0, 0)

(1, 0, 0) 𝑎
5

𝛿 ((1, 0, 0), 𝑎
5
) 𝑑

5
(1, 1, 0)

(1, 0, 0) a6 𝛿 ((1, 0, 0), 𝑎
6
) 𝑑

6
(1, 0, 1)

Definition 10 (extended hierarchical service-finite state auto-
mata, EHS-FSA). We define service consistency evolution as
a set of extended FSA, which is formally denoted by 𝐴𝐶 =

{𝐴𝐶
1
, 𝐴𝐶
2
, . . . , 𝐴𝐶

𝑖
, . . . , 𝐴𝐶

𝑚
}. 𝐴𝐶
𝑖
is an extended FSA rep-

resented by the nine-tuple AC
𝑖
= ⟨𝐿, 𝐿

0
, 𝑄, 𝑄
0
, 𝐼, 𝑂, 𝑇𝑆, 𝛿, 𝜆⟩,

where:

(i) 𝐿 = {AtS𝑡
𝛼
| 𝑖 = 1, 2, . . . , 𝑘} and 𝑄 = {CoS𝑡

𝛽
| 𝑖 = 1, 2,

. . . , 𝑘} denote the finite and nonempty set of consis-
tency states of 𝛼 and 𝛽 in 𝐴𝐶

𝑖
, respectively,

(ii) 𝐿
0
⊂ 𝐿 and 𝑄

0
⊂ 𝑄 are the sets of all state arrays of

initial 𝛼 and 𝛽, respectively,
(iii) 𝐼 and 𝑂 denote the finite and nonempty set of

service state transition’s input events and output ones,
respectively,

(iv) TS = {ts | ts = (CoS𝑡
𝛽
𝑗

,AtS𝑡
𝛼
)

𝐼/𝑂

→ (CoS𝑡


𝛽
𝑗

,AtS𝑡


𝛼
)}

represents the rule set of state transition of service
consistency, that is the changes of state arrays CoS𝑡

𝛽
𝑗

and AtS𝑡
𝛼
triggered by 𝐼 from the interval 𝑡 to 𝑡

,
(v) 𝛿 : (𝑄, 𝐿)×𝐼 → (𝑄, 𝐿) is the state transition function

of service evolution,
(vi) 𝜆 : (𝑄, 𝐿) × 𝐼 → 𝑂 is the output event function.

In EHS-FSA, we have such transition functions 𝛿(AtS𝑡
𝛼
,

𝐴𝐼) = AtS𝑡


𝛼
, 𝛿(CoS𝑡

𝛽
,CI) = CoS𝑡



𝛽
, and so on. To simplify

the transition rule, we assume that there only exists one input
event in 𝐼 and one output event in𝑂 for each state transition.
According to Definition 10, there are partial state transition
details for each 𝛼 as shown in Table 2.

Figure 3 gives an illustrated way to portray 𝛼’s state
transition processes, in which the rule 𝑎

𝑖
/𝑑
𝑖
denotes the input

event and output event for each 𝛼’s state change, 𝑡
𝑖
is the

current system time, and the symbol “
𝑎
𝑖
/𝑑
𝑖

→” represents the
service state’s evolution behavior. For example, the state array
(0, 0, 0) evolves into (0, 0, 1) triggered by the rule 𝑎

6
/𝑑
6
.

Similarly, there are the similar state transition courses of root
arrays in 𝛽.



6 The Scientific World Journal

(0, 0, 1) (0, 1, 0)

(0, 0, 0)

(1, 1, 0) (1, 0, 1)

(1, 0, 0)

(0, 1, 1)

(1, 1, 1)t1

t2 t3

t4

t5
t6

t7

t8

a 1
/d 1 a 1

/d
1

a1/d1

a
1 /d

1

a
2 /d

2

a2
/d 2

a2/d2

a
2 /d

2

a3/d
3

a3/d3

a3/d3

a3/d3

a 3
/d 3

a 4
/d

4

a
4 /d

4

a4/d4

a5/d
5

a5/d5

a5/d5

a5
/d 5

a6/d6

a 6
/d 6

a 6
/d
6

a6/d6

Figure 3: State transition view of 𝛼.

Definition 11 (states transition matrix of 𝛼). We define the
following transition matrix:

Π = [AtS𝑡
𝛼
]

𝑚×𝑛
, (1)

where AtS𝑡


𝛼
= 𝛿(AtS𝑡

𝛼
, 𝑎
𝑖
), 𝑎
𝑖
∈ 𝐴𝐼 (𝑖 = 1, 2, . . . , 𝑛), 𝑚 denotes

the number of all 𝛼 states, and 𝑛 denotes the amount of 𝛼’s
state input events that are listed by the sequence in 𝐴𝐼. If
the transition function 𝛿(AtS𝑡

𝛼
, 𝑎
𝑖
) does not exist, AtS𝑡

𝛼
inΠ is

represented by 0; contrarily, the state arrays (1, 1, 1), (1, 1, 0),
(1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1) and (0, 0, 0) are,
respectively, denoted by the values 1, 2, 3, 4, 5, 6, 7, and 8 inΠ.

We canfind that the number of𝛼’s actual states is 8 and the
number of𝐴𝐼 events is 6. Hence, the actualΠ can be obtained
as follows:

∏ =

[

[

[

[

[

[

[

[

[

[

[

5 3 2 0 0 0

6 4 0 0 0 1

7 0 4 0 1 0

8 0 0 0 2 3

1 7 6 0 0 0

0 8 0 2 0 5

0 0 8 3 5 0

0 0 0 4 6 7

]

]

]

]

]

]

]

]

]

]

]

. (2)

It can be observed that the contents of matrix Π are
consistent with those of 𝛼 in Table 2. Similarly, we can define
the state transitionmatrix of𝛽’s root arrays as𝑍 = [CoS𝑡

𝛽
]

𝑚×𝑛
.

Definition 12 (occurrence probability of event set 𝐼). We use
𝑃(𝑎
𝑖
) and 𝑃(𝑐

𝑖
) to denote the occurrence probability of events

𝑎
𝑖
and 𝑐
𝑖
in 𝐼 respectively. In ourmodel, assume that∑𝑃(𝑎

𝑖
) =

1, 𝑃(𝑎
1
) = 𝑃(𝑎

4
), 𝑃(𝑎
2
) = 𝑃(𝑎

5
) and 𝑃(𝑎

3
) = 𝑃(𝑎

6
); similarly,

∑𝑃(𝑐
𝑖
) = 1, 𝑃(𝑐

1
) = 𝑃(𝑐

4
), 𝑃(𝑐
2
) = 𝑃(𝑐

5
), and 𝑃(𝑐

3
) = 𝑃(𝑐

6
).

In general, the majority of 𝛼 and 𝛽 are difficult to be
reused and combined, due to the heterogeneity of distributed
systems and the diversity of modeling methods and tools

and the knowledge differences in different application fields
in SODSA. Therefore, the events 𝑎

3
and 𝑐
3
will become the

very frequent activities. In addition to developing some new
services, the events 𝑎

2
and 𝑐
1
also will occur usually when

fusing the functions and applications in previous and old
simulation systems into the new SODSA. From the statistical
point of view, the operation running of software systems is
basically stable, so the events 𝑎

1
and 𝑐
2
will occur occasionally.

On the basis of the above-mentioned actual situations, we
assume that the occurrence probabilities of 𝐼 will satisfy the
following constraints in the dynamic evolution processes of
EHS-FSA: 𝑃(𝑎

3
) > 𝑃(𝑎

2
) > 𝑃(𝑎

1
), 𝑃(𝑐
3
) > 𝑃(𝑐

2
) > 𝑃(𝑐

1
),

𝑃(𝑎
6
) > 𝑃(𝑎

5
) > 𝑃(𝑎

4
), and 𝑃(𝑐

6
) > 𝑃(𝑐

5
) > 𝑃(𝑐

4
).

5. Service Consistency Evolution Algorithms

In this section, two algorithms SCEA-𝛼 and SCEA-𝛽 to mon-
itor service consistency transition activities are constructed,
which focus on the occurrence of impact factors in SODSAon
the foundation of executing EHS-FSA. Both SCEAs achieve
a dynamic analysis of the influencing factors that lead to
inconsistency of𝛼 and𝛽. By statistically counting the number
of effects of each factor in the operation running of EHS-FSA,
ultimately, the importance of factors can be calculated to get
a quantitative analysis results.

At the theoretical level, both SCEAs are dynamic running
of EHS-FSA.That is, the dynamic transition processes of ser-
vice consistency states are modeled by them in software sim-
ulation environment with time advancement, in which the
continually changing behaviors and their consistency states
referring to the elements of EHS-FSA can be monitored. At
the application level, SCEAs can identify the factors’ dynamic
behaviors that cause 𝛼 and 𝛽’s inconsistency phenomena in
SODSA and statistically draw the amount of each factor’s
occurrence to quantitatively analyze the evolution essence of
service inconsistency.



The Scientific World Journal 7

(1) Initialize 𝑁, 𝐾;
(2) NumVM, NumSE, NumSR←0; /∗ Counts of 𝛼’s input events are initialized ∗/
(3) for 𝑖 = 1 to𝑁 do
(4) 𝐴𝑡𝑆

𝑡

𝛼𝑖
∈ 𝐿
0
←(1, 1, 1); /∗ Initialize the state array of 𝛼 ∗/

(5) endfor
(6) for (𝑘 = 1; 𝑘++; 𝑘 ≤ 𝐾) do
(7) for each 𝛼i ∈ AtS do
(8) Get current state 𝐴𝑡𝑆

𝑡

𝛼𝑖
;

(9) Find the rules ts ∈ TS at 𝐴𝑡𝑆

𝑡

𝛼𝑖
;

(10) Select 𝑎
𝑠
∈ AI according to its event probability;

(11) Execute operation 𝐴𝑡𝑆

𝑡

𝛼𝑖
← 𝛿(𝐴𝑡𝑆

𝑡

𝛼𝑖
, 𝑎
𝑠
); /∗ Trigger a state transition ∗/

(12) if 𝑎
𝑠
== 𝑎
1
then

(13) NumVM++; /∗ Count the number of event 𝑎
1
∗/

(14) else 𝑎
𝑠
== 𝑎
2

(15) NumSE++; /∗ Add the number of event 𝑎
2
∗/

(16) else 𝑎
𝑠
== 𝑎
3

(17) NumSR++; /∗ Add the number of event 𝑎
3
∗/

(18) endif
(19) endfor
(20) endfor

Algorithm 1: Pseudocode of SCEA-𝛼 algorithm.

The inputs of SCEA-𝛼 involve the following: (1) 𝛼’s
amount 𝑁 and the cycle number 𝐾 are initialized. (2)
The counting values of inconsistent factors are initialized:
NumVM,NumSE,NumSR ← 0 (refer to the events 𝑎

1
, 𝑎
2
,

and 𝑎
3
, resp.). (3) Initialize 𝛼’s state arrays: AtS𝑡

𝛼
𝑖

∈ 𝐿
0

←

(1, 1, 1). The outputs of SCEA-𝛼 include: the final numbers
of factors occurrence that results in service inconsistency is
determined: NumVM, NumSE, NumSR and (i.e., the ultimate
amounts of state transition events VM, SE, and SR). The
detailed processes of SECA-𝛼 is described as the pseudocode
in Algorithm 1.

The inputs of SCEA-𝛽 are as follows. (1) Initialize 𝛽

and 𝛼’s counts 𝑀, 𝑁, and the cycle number 𝐾. (2) The
original values of inconsistent factors’ counting are assigned:
NumID,NumMI,NumSC ← 0 (refers to the events 𝑐

1
, 𝑐
2
, and

𝑐
3
, resp.). (3) 𝛼’s state arrays are initialized: AtS𝑡

𝛼
𝑖

∈ 𝐿
0

←

(1, 1, 1). (4) The initial composition schema of 𝛼: select sev-
eral 𝛼 randomly. (5) Initialize 𝛽’s state arrays: CoS𝑡

𝛽
𝑗

∈ 𝑄
0
←

((1, 1, 1),AtS𝑡
𝛼
𝑖

∪ AtS𝑡
𝛼
𝑙

⋅ ⋅ ⋅ ). The outputs of SCEA-𝛽 are: the
ultimate amounts of 𝛽 inconsistency states’ factors: NumID,
NumMI, and NumSC. Algorithm 2 gives the pseudocode
description of SECA-𝛽’s detailed courses.

For the sake of the initial quantitative and dynamic
exploration into service inconsistency factors and their evo-
lution mechanism, therefore, ill-considered facets in SECAs
design will inevitably appear, but the idea of using such novel
analysis is an innovational and significative approach.

6. Quantitative Evaluation Experiment

6.1. Simulation Initialization. We implement the experimen-
tal evaluation using MATLAB R2009a on a PC with a
Genuine Intel CPU T2400 (1.83GHz) and 3.0GB RAM,
operated in Windows XP. We set the original number of 𝛼 as

Table 3: The number of factors occurrences affecting service
inconsistency.

𝐾 𝑎
1

𝑎
2

𝑎
3

𝑐
1

𝑐
2

𝑐
3

100 1 5 18 3 10 13
200 2 11 37 5 17 28
300 4 14 50 11 31 40
400 6 18 74 15 38 49
Average (250) 3.25 12 44.75 8.5 24 32.5

2–4 stochastically. Actually, owing to the small difference in
the total number of 𝛼 that minimally affects the algorithms’
outputs when its count exceeds 50, the number of initial 𝛼
could have been 5, 6, or 7 too. For example, if the total number
of 𝛼 is 156 or 157, the proportions of inconsistency factors
(or events) remain at the same level when 𝛼’s count is 155 in
simulation experiments.

At the initial evolution moment, several atomic services
(𝛼) are randomly composited into one 𝛽. The importance
of each inconsistency factor (i.e., NumVM, NumSE, NumSR,
NumID, NumMI, and NumSC) can then be determined. To
get the trustier results, we deploy four groups of experiments
to execute the algorithms SECA-𝛼 and SECA-𝛽 where the
total cycle numbers of them are 100, 200, 300, and 400.
In addition, the selection of the input events in evolving
EHS-FSA depends on the probability and constraints of the
events occurrence defined in Section 4.2. For the exactly and
credibly statistical analysis, all the results of the four experi-
ments are averaged.

6.2. Results andAnalysis. Table 3 shows that the experimental
counting results on the effects of factors on service con-
sistency which were derived by taking a different 𝐾 and



8 The Scientific World Journal

(1) Initialize 𝑀,𝑁, 𝐾;
(2) NumID, NumMI, NumSC←0; /∗ Counts of 𝛽’s input events are initialized ∗/
(3) for 𝑖 = 1 to 𝑁 do
(4) 𝐴𝑡𝑆

𝑡

𝛼𝑖
∈ 𝐿
0
←(1, 1, 1); /∗ Initialize the state array of 𝛼 ∗/

(5) endfor
(6) Select 2–4 𝛼

𝑖
stochastically which are assembled into 𝛽

𝑗
;

(7) for 𝑗 = 1 to𝑀 do
(8) 𝐶𝑜𝑆

𝑡

𝛽𝑗
∈ 𝑄
0
← ((1, 1, 1) , 𝐴𝑡𝑆

𝑡

𝛼𝑖
∪ 𝐴𝑡𝑆

𝑡

𝛼𝑖
⋅ ⋅ ⋅ ); // Initialize the 𝛽’s state array

(9) endfor
(10) for (𝑘 = 1; 𝑘++; 𝑘 ≤ 𝐾) do
(11) update 𝐴𝑡𝑆

𝑘+1

𝛼𝑖
← 𝐴𝑡𝑆

𝑘

𝛼𝑖
by Algorithm 1;

(12) for each 𝛽
𝑗
∈ 𝐶𝑜𝑆 do

(13) Get current state 𝐶𝑜𝑆

𝑘

𝛽𝑗
;

(14) Find the rules 𝑡𝑠 ∈ 𝑇𝑆 at 𝐶𝑜𝑆

𝑘

𝛽𝑗
;

(15) Select 𝑐
𝑠
∈ 𝐶𝐼 according to its event probability;

(16) Execute operation 𝐶𝑜𝑆

𝑘+1

𝛽𝑖
← 𝛿(𝐶𝑜𝑆

𝑘

𝛽𝑖
, 𝑐
𝑠
); /∗ Transition happens ∗/

(17) if 𝑐
𝑠
== 𝑐
1
then

(18) NumID++; /∗ Add the number of event 𝑐
1
∗/

(19) else 𝑐
𝑠
== 𝑐
2

(20) NumMI++; /∗ Count the number of event 𝑐
2
∗/

(21) else 𝑐
𝑠
== 𝑐
3

(22) NumSC++; /∗ Add the number of event 𝑐
3
∗/

(23) endif
(24) endfor
(25) endfor

Algorithm 2: Pseudocode of SCEA-𝛽 algorithm.

running the programs of SECA-𝛼 and SECA-𝛽. According
to the collected data in Table 3, the impact ratios of service
inconsistency events can be manually calculated, as shown in
Table 4, whose data are a more accurate revelation.

To facilitate our experimental analysis in a more obvi-
ous manner, the statistical results in Table 3 are exhibited
using the bar charts in Figures 4 and 5(b). Figures 4(a)–
4(d) illustrate the continually rising times of each influence
factor’s occurrence while the algorithms’ cycle number 𝐾,
respectively equals 100, 200, 300, and 400, which imply the
importance degree for service inconsistency, as shown in
Table 4. It can be observed from Figure 4 and Table 4 that the
order of these factors’ importance degree is listed as follows.

(1) 𝐾 = 100: 𝑎
3
(18%) > 𝑐

3
(13%) > 𝑐

2
(10%) > 𝑎

2
(5%) >

𝑐
1
(3%) > 𝑎

1
(1%).

(2) 𝐾 = 200: 𝑎
3
(18.5%) > 𝑐

3
(14%) > 𝑐

2
(8.5%) >

𝑎
2
(5.5%) > 𝑐

1
(2.5%) > 𝑎

1
(1%).

(3) 𝐾 = 300: 𝑎
3
(16.7%) > 𝑐

3
(13.3%) > 𝑐

2
(10.3%) >

𝑎
2
(4.7%) > 𝑐

1
(3.7%) > 𝑎

1
(1.3%).

(4) 𝐾 = 400: 𝑎
3
(18.5%) > 𝑐

3
(12.25%) > 𝑐

2
(9.5%) >

𝑎
2
(4.5%) > 𝑐

1
(3.75%) > 𝑎

1
(1.5%).

From the listed-above sequences, we can observe that
factor 𝑎

3
is the biggest influential one leading to inconsistent

states of atomic service 𝛼 and factor 𝑎
1
exerts minimal effect

on 𝛼’s consistency states. These sequences also indicate that
the order of influencing proportion at different cycle times

Table 4: The impact rates of service inconsistency factors.

𝐾 𝑎
1

𝑎
2

𝑎
3

𝑐
1

𝑐
2

𝑐
3

100 1% 5% 18% 3% 10% 13%
200 1% 5.5% 18.5% 2.5% 8.5% 14%
300 1.3% 4.7% 16.7% 3.7% 10.3% 13.3%
400 1.5% 4.5% 18.5 3.75% 9.5% 12.25%
Average (250) 1.2% 4.93% 17.93% 3.24% 9.58% 13.12%

of SECA-𝛼 and SECA-𝛽 is the same despite the ratios’ tiny
differences.

In the following parts, we discussed what and why are
the actual situations of the influencing rates of factors on
service consistency evolution, as indicated by the experiment
outcomes in Tables 3 and 4 and Figure 4. We combined some
actual software development examples related to distributed
service deployment in local area network (LAN) or wide
area network (WAN) and evaluations results in this paper
to discover some regular behaviors and give significative
guidance for actual service consistency maintenance.

(1)The factors with very high impact (ranked 1 and 2) are
𝛼’s bad reusability (𝑎

3
) and 𝛼’s noncomposition (i.e., several

atomic services are not composited into one larger service 𝛽)
(𝑐
3
). This is mainly for the reasons: firstly, there is a great deal

of incompatibilities in interfaces and deployment styles as
fusing the old distributed simulation systems into the current
SODSA; secondly, there exist many different development



The Scientific World Journal 9

40

30

20

10

0

C
ou

nt

Impact event

k = 100

VM
SE
SR

ID
MI
SC

(a)

Impact event

k = 200

40

30

20

10

0

C
ou

nt

VM
SE
SR

ID
MI
SC

(b)

80

60

40

20

0

C
ou

nt

Impact event

k = 300

VM
SE
SR

ID
MI
SC

(c)

80

60

40

20

0

C
ou

nt

Impact event

k = 400

VM
SE
SR

ID
MI
SC

(d)

Figure 4: Comparison of the importance of different impact events.

tools such as C++, JAVA, MATLAB, Simulink, LABVIEW,
and so forth; thirdly, the produced services are from different
modeling domains such as electrics, communication system,
machine design, hardware, and software. Such heterogeneity
and diversity are prevalent, increasing the difficulty of service
combination and reusability. These situations are based on
objective facts in SODSA deployment and are not easy to be
changed nowadays.

(2) The third important factor (ranked 3) is 𝛽’s mes-
sage communication failure (𝑐

2
). From the perspective of

service application layer, we can say that 𝑐
2
is actually the

most important influential factor on services inconsistency
because in current or future SODSA, message is the most
popular medium for service communication, and the mes-
sage interactions between services are frequent and also can

be easily blocked, due to the services’ enormous amount, the
continually entry and exit of simulation nodes, the instability
of distributed network, and so on.

(3) The fourth and fifth factors with moderate impact
(ranked 4 and 5) are 𝛼’s encapsulation failure (𝑎

2
) and

𝛽’s interface description difference (𝑐
1
), respectively. This is

mainly because 𝛼’s encapsulation and 𝛽’s interface descrip-
tion are the basis of service calls, which occupy an important
position in simulation service developments and directly
affect such services behaviors like composition, reusage,
interaction, and so on.

(4) The confusion of version management (𝑎
1
) is the

smallest influential factor (ranked 6). In general, the man-
agementmechanismof simulation services is usually effective
and stable once it has been established.



10 The Scientific World Journal

100 200 300 400

Cycle number

C
ou

nt
80

70

60

50

40

30

20

10

0

VM
SE
SR

ID
MI
SC

(a)

Impact event

50

40

30

20

10

0

C
ou

nt

Average 250

VM
SE
SR

ID
MI
SC

(b)

Figure 5: (a) Changing trends of factorial effects. (b) Average importance of factors at four cycle times.

Figure 5(a) indicates that the impact of each factor on ser-
vice inconsistency states is continuously strengthened with
the increasing cycle number𝐾 in SECA.We can also observe
from Figure 5(a) that event 𝑎

3
has the greatest increasing

effect on𝛼, events 𝑐
3
and 𝑐
2
exert a greater increasing influence

on 𝛽, whereas events 𝑎
2
and 𝑐
1
have a very small changing

extent to affect 𝛼 and 𝛽’s consistency states, respectively, and
𝑎
1
has the smoothest changeswhose effect on𝛼 is the smallest.

On the basis of the average statistics at four cycle times,
Figure 5(b) depicts the influencing factors’ bar comparison
by which the sorting of these factors and their impact rate
is 𝑎
3
(17.93%) > 𝑐

3
(13.12%) > 𝑐

2
(9.58%) > 𝑎

2
(4.93%) >

𝑐
1
(3.24%) > 𝑎

1
(1.2%). Obviously, this order is consistent

with the results in Figure 4 and each factor’s impact rates
at different cycle times only have a tiny difference, which
improve the reliability of our experiment.

The above analysis results can provide an important
concern on overcoming the service inconsistency risks in the
design, development, publishing and subscription, operation
running and maintenance of services in SODSA. To say the
least, our experimental results may not completely reflect
the actual influencing mechanism of service inconsistency
factors, but most of them are in line with the actual situation.
After all, in service evolution processes, the behaviors are
complex, the attributes are various, and the system size
is unpredictable, and so on. Hence, we must make some
reasonable assumptions and self-defined rules by which the
simulation evaluation can be finished effectively.

7. Conclusion

In this paper we propose an extended hierarchical finite state
automata EHS-FSA and its two subalgorithms (SCEA-𝛼 and

SCEA-𝛽) to monitor the consistency states changes of 𝛼 and
𝛽 in SODSA. Based on theoretical and macroscopic per-
spective, EHS-FSA can formally portray the dynamic impact
mechanism of service inconsistency behaviors and attributes
in terms of reusability, composition, message exchange,
service encapsulation, and so on.Thepresented SCEAaims to
achieve a quantitative analysis of the inconsistency factors in
service evolution for compositional SODSA, by running the
EHS-FSA automata.

This study represents our preliminary attempt to intro-
duce a novel analysis method of inconsistency factors which
is completely different from previous ones. Our quantitative
evaluation experiments show that EHS-FSA and SCEA are
feasible, effective, advanced, and superior to traditional ones.
The research achievements can offer theoretical and techni-
cal guidance for reducing service inconsistency states and
improving the correctness of simulation services. In addition,
our methods also can be applied to other domains such
as the analysis and design of distributed-cooperative com-
mand posts that are deployed in future battlefields, complex
distributed information systems based on network-centric
warfare, embedded real-time systems.

Some future researches are as follows: (1) more inconsis-
tency factors should be focused. (2) Some in-depth analysis
of the disturbancemechanism among factors should be done.
(3) The probability of event set 𝐼 should be considered more
carefully. (4) Related maintenance technologies of service
consistency can be developed based on our experiment
results.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this article.



The Scientific World Journal 11

Authors’ Contribution

Linjun Fan and Jun Tang contributed equally to this work.

Acknowledgment

This research is partially supported by the National Natural
Science Foundation of China (no. 61272336).

References

[1] W. Wang, W. Wang, Y. Zhu, and Q. Li, “Service-oriented sim-
ulation framework: an overview and unifying methodology,”
Simulation, vol. 87, no. 3, pp. 221–252, 2011.

[2] L. P. Chen, W. T. Ha, and G. J. Zhang, “Reliable execution based
on CPN and skyline optimization for web service composition,”
The Scientific World Journal, vol. 2013, Article ID 729769, 10
pages, 2013.

[3] E. W. Weisel,Models, Composability, and Validity, Old Domin-
ion University, Norfolk, Va, USA, 2004.

[4] Y. B. Yoon, J. Oh, and B. G. Lee, “The establishment of security
strategies for introducing cloud computing,” KSII Transactions
on Internet and Information Systems, vol. 7, no. 4, pp. 860–877,
2013.

[5] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, “The
internet of things: the next technological revolution,”Computer,
vol. 46, no. 2, pp. 24–25, 2013.

[6] H. D. Kim, “Sharing e-learning object metadata using ebXML
registries for semantic grid computing,” KSII Transactions on
Internet and Information Systems, vol. 2, no. 5, pp. 239–252,
2008.

[7] M.Malaimalavathani and R. Gowri, “A survey on semantic web
service discovery,” in Proceedings of the International Conference
on Information Communication and Embedded Systems (ICICES
’13), pp. 222–225, Chennai, India, February 2013.

[8] S. Strassburger, T. Schulze, and R. Fujimoto, “Future trends in
distributed simulation and distributed virtual environments:
results of a peer study,” in Proceedings of the Winter Simulation
Conference (WSC ’08), pp. 777–785, Austin, Tex, USA, Decem-
ber 2008.

[9] L. Fan, Y. Ling, T. Wang, X. Zhu, and X. Tan, “Novel clock syn-
chronization algorithm of parametric difference for parallel and
distributed simulations,” Computer Networks, vol. 57, no. 6, pp.
1474–1487, 2013.

[10] P.-W. Tian, Y.-X. Zhang, Y.-Z. Zhou et al., “A novel service evo-
lution approach for active services in ubiquitous computing,”
International Journal of Communication Systems, vol. 22, no. 9,
pp. 1123–1151, 2009.

[11] R. Sindhgatta and B. Sengupta, “An extensible framework for
tracingmodel evolution in SOA solution design,” in Proceedings
of the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications
(OOPSLA ’09), pp. 647–658, Orlando, Fla, USA, October 2009.

[12] C. Frank and H. Karl, “Consistency challenges of service
discovery in mobile ad hoc networks,” in Proceedings of the
7th ACM International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’04), pp.
105–114, Venice, Italy, October 2004.

[13] P. Greenfield, D. Kuo, S. Nepal, and A. Fekete, “Consistency
for web services applications,” in Proceedings of the 31st Inter-
national Conference on Very Large Data Bases (VLDB ’05), pp.
1199–1203, Trondheim, Norway, September 2005.

[14] C. Dabrowski, K. Mills, and J. Elder, “Understanding consis-
tency maintenance in service discovery architectures during
communication failure,” in Proceedings of the 3rd International
Workshop on Software and Performance (WOSP ’02), pp. 168–
178, Rome, Italy, July 2002.

[15] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. S. Paul,
“Supporting the dynamic evolution of web service protocols in
service-oriented architectures,” ACM Transactions on the Web,
vol. 2, no. 2, article 13, pp. 1–39, 2008.

[16] M. P. Papazoglou, “The challenges of service evolution,” in
Advanced Information Systems Engineering, Lecture Notes in
Computer Science, pp. 1–15, Springer, Berlin, Germany, 2008.

[17] J. Zou, X. Liu,H. Sun, and J. Zeng, “Live instancemigrationwith
data consistency in composite service evolution,” in Proceedings
of the 6th World Congress on Services, pp. 653–656, Miami, Fla,
USA, July 2010.

[18] T. Weishäupl and E. Schikuta, “Dynamic service evolution for
open languages in the grid and service oriented architecture,”
in Proceedings of the 5th IEEE/ACM International Workshop on
Grid Computing, pp. 444–448, Pittsburgh, Pa, USA, November
2004.

[19] Z. Y. Dai, X. G. Mao, Y. Lei, Y. H. Qi, R. Wang, and B. Gu,
“Compositional mining of multiple object API protocols
through state abstraction,” The Scientific World Journal, vol.
2013, Article ID 171647, 13 pages, 2013.

[20] H. Liu, Z. Zheng, W. Zhang, and K. Ren, “A global graph-based
approach for transaction and QoS-aware service composition,”
KSII Transactions on Internet and Information Systems, vol. 5,
no. 7, pp. 1252–1273, 2011.

[21] S. Bernardi, J.Merseguer, andD.C. Petriu, “Dependabilitymod-
eling and assessment inUML-based software development,”The
Scientific World Journal, vol. 2012, Article ID 614635, 11 pages,
2012.

[22] L. Riano and T. M. McGinnity, “Automatically composing and
parameterizing skills by evolving Finite State Automata,”
Robotics and Autonomous Systems, vol. 60, no. 4, pp. 639–650,
2012.

[23] R. Malik, M. Fabian, and K. Akesson, “Modelling large-scale
discrete-event systems using modules, aliases, and extended
finite-state automata,” in Proceedings of the 18th World Congress
of the International Federation of Automatic Control (IFAC ’11),
pp. 7000–7005, Milano, Italy, August 2011.

[24] M. P. Papazoglou and W.-J. Van Den Heuvel, “Service oriented
architectures: approaches, technologies and research issues,”
The VLDB Journal, vol. 16, no. 3, pp. 389–415, 2007.

[25] Q. Li, A. Liu, H. Liu, B. Lin, L. Huang, and N. Gu, “Web services
provision: solutions, challenges and opportunities,” in Pro-
ceedings of the 3rd International Conference on Ubiquitous
Information Management and Communication (ICUIMC ’09),
pp. 80–87, Suwon, Republic of Korea, January 2009.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


