
Research Article
The Generalization Complexity Measure for
Continuous Input Data

Iván Gómez,1 Sergio A. Cannas,2 Omar Osenda,2 José M. Jerez,1 and Leonardo Franco1

1 Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, 29071 Málaga, Spain
2 Facultad de Matemática, Astronomı́a y Fı́sica, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina

Correspondence should be addressed to Iván Gómez; ivan@lcc.uma.es

Received 18 December 2013; Accepted 5 March 2014; Published 10 April 2014

Academic Editors: B. Liu and T. Zhao

Copyright © 2014 Iván Gómez et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce in this work an extension for the generalization complexitymeasure to continuous input data.Themeasure, originally
defined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected when
using a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use with
continuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of having
a finite number of data points (inputs/outputs pairs), that is, usually the practical case. Using a set of trigonometric functions a
model that gives a relationship between the size of the hidden layer of a neural network and the complexity is constructed. Finally,
we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimating
an adequate neural network architecture for real-world data sets.

1. Introduction

Feed-forward neural networks trained by back-propagation
have become a standard technique for classification and
prediction tasks given their good generalization properties.
However, the process of selecting adequate neural network
architecture for a given problem is still a controversial issue.
Several important contributions regarding the number of
hidden neurons needed to implement a given function in a
neural architecture have been made using different methods.
Baum andHaussler [1] obtained some bounds on the number
of neurons in an architecture related to the number of training
examples that can be learnt using networks composed of
linear threshold networks. Barron [2] made an important
contribution about the approximation capabilities of feed-
forward networks, computing an estimation of the number
of hidden nodes necessary to optimize the approximation
error. Camargo and Yoneyama [3] obtained a result for
estimating the number of nodes needed to implement a
function using Chebyshev polynomials and previous results
from Scarselli and Chung Tsoi [4] about the number of nodes
needed for approximating a given function by polynomials.

Hunter et al. [5] focused on the importance of selecting the
learning algorithm to train closer to optimal architectures.
Methods based on the geometry of output classes [6–8],
single value decomposition [9], information entropy [10],
and the signal to noise ratio [11] have been used to obtain
an approximation to the size of hidden layer in a neural
architecture.

Some of the previous studies tried to determine the
adequate architecture depending on the complexity of the
data set available for a given problem, but as expected
measuring the complexity of data is a difficult task. Firstly,
it has to be clearly defined what exactly the measure tries to
quantify, as complexity can be related to several aspects of
the data. Even if different complexity measures related to the
size of the architectures needed to implement the data or to
the complexity of learning have been proposed in the past
[12–14], they have not been applied to the neural network
architecture selection problem, in principle because they have
not been proposed with this focus.

Moreover, several approaches have been proposed within
the learning theory area to analyze the relationship between
generalization and complexity. Ho et al. [15, 16] studied the

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 815156, 9 pages
http://dx.doi.org/10.1155/2014/815156

2 The Scientific World Journal

complexity that characterizes the difficulty of a classification
problem, and they suggest using this value to guide the se-
lection of classifier. Sánchez et al. [17] tried to characterize
the behavior of the k-NN rule when working under certain
situations. More specifically, their analysis focused on the
use of some data complexity measures to describe class
overlapping, feature space dimensionality, and class density
and discover their relation with the practical accuracy of this
classifier. Duch et al. [18] suggested that the identification
of datasets with high complexity is important to test new
methods in computational intelligence.

But most of these analyses focused on the complexity of
the architectures and on the error obtained at the end of the
training process rather than on the intrinsic complexity of the
data. Recently, Franco and colleagues [19, 20] have proposed
a complexity measure named “generalization complexity”
(GC) that aims to quantify the level of generalization ability
that can be expected when Boolean data are used in a
classification algorithm. The measure has been also used
in the process of architecture selection involved in the
implementation of a neural network, as it is expected that for
more complex data larger neural network architecturesmight
be more adequate [21]. Nevertheless, the proposed measure
can only be applied to Boolean input data so, in this work,
the Boolean generalization complexity is first extended to the
continuous input case, to then perform a series of tests to
validate the proposal using a set of continuous functions with
parametrized complexity. Also, by using the set of orthonor-
mal Walsh functions, we extend the proposal for its use with
patterns of data. Finally, a model is built from which it is pos-
sible to estimate the adequate feed-forward neural network
architecture for real-world benchmark data sets by choosing
the number of neurons to include in the hidden layer, as
the size of the input and output layers is determined by the
problem.

2. The Generalization Complexity Measure
and Its Extension to Real Input Values

Our main goal in this work is to extend the GC measure
defined in 𝑓 : {0, 1}𝐷 → {0, 1} for real input and real output
functions 𝑓 : [0, 1]𝐷 → [−1, 1]. The choice of the intervals
[0, 1] for the input and [−1, 1] for the output is arbitrary and
it is used for simplicity with no restrictions for the general
case. We will analyze the more general case of having a con-
tinuous output as this case can later be easily particularized
to the Boolean output case, more related to classification
problems.

The original definition of the GC measure [19, 20]
comprises two terms accounting for the first and second
nearest neighbor pairs of input data points ({𝑒

𝑖
}), where the

neighborhood is defined in terms of their Hamming distance.
Let 𝑁ex be the total number of examples (or equivalently
patterns) considered and 𝑁neigh the number of first nearest
neighbors that every example (𝑒

𝑖
, 𝑓(𝑒
𝑖
)) has; that is, examples

that are the closest Hamming distance. The first term of the

GCmeasure, 𝐶
1
, known to be the more influential, is defined

in Boolean space as

𝐶
1
[𝑓] =

1

𝑁ex𝑁neigh

𝑁ex

∑
𝑗=1

(∑
Hamming(𝑒𝑖 ,𝑒𝑗)=1

𝑓 (𝑒
𝑖
) − 𝑓 (𝑒

𝑗
)
) ,

(1)

where the first factor is a normalization one taking into
account the number of pairs considered. Essentially, (1)
measures the proportion of neighboring pairs that have
different output, that is, belong to different output classes.

In the previous equation, the distance between pairs
of inputs is measured by the Hamming distance, but this
measure is not applicable for real valued input data. Instead,
we will opt for a straightforward choice and use the Euclidean
distance. We consider first the 1-dimensional (1D) case
corresponding to a single continuous input variable, starting
the process by discretizing the input interval [0, 1] in 𝑁
subintervals of length ℎ = 1/𝑁. In this way a data point, 𝑒

𝑖
,

will be indicated by the subinterval in which its coordinates
are included (𝑥

𝑖−1
, 𝑥
𝑖
], where 𝑥

𝑖
= 𝑖ℎ (𝑖 = 1, 2, . . . , 𝑁), with

𝑥
0
= 0 and 𝑥

𝑁
= 1. The total number of examples in the 1D

case is equal to 𝑁, while, for an arbitrary dimension 𝐷, the
discretization of every variable in the same way leads to 𝑁𝐷

examples.
Let us define 𝑓

𝑖
for 1D as the value of the function at the

center of subinterval 𝑖: 𝑓
𝑖
≡ 𝑓((𝑥

𝑖−1
+ 𝑥
𝑖
)/2), and also we

assume that 𝑑(𝑒
𝑖
, 𝑒
𝑗
) ≡ |𝑥

𝑖
−𝑥
𝑗
| and 𝑑min = min{𝑑(𝑒

𝑖
, 𝑒
𝑗
)} = ℎ.

For fixed ℎ, we will say that two input data points are first
nearest neighbors if they are at distance 𝑑min (this would be
the equivalent of Hamming distance 1 in Boolean space).

In this way, (1) can be generalized as

C
1
[𝑓] =

1

𝑁ex𝑁neighΔ𝑓

𝑁ex

∑
𝑗=1

(∑
𝑑(𝑒𝑖 ,𝑒𝑗)=𝑑min

𝑓 (𝑒
𝑖
) − 𝑓 (𝑒

𝑗
)
) ,

(2)

where Δ𝑓 = 𝑓max − 𝑓min. For 𝐷 = 1 we can obtain the first
term of the complexity measure,C

1
[𝑓], for continuous input

data using a grid with𝑁 subintervals:

C
1
[𝑓] =

1

2𝑁

𝑁

∑
𝑖=1

𝑓𝑖 − 𝑓
𝑖−1

 , (3)

where we used Δ𝑓 = 2, 𝑁ex = 𝑁, and substituted the
sum over the two neighboring pairs by a forward sum over
the sites. Defining the complexity measure density C

1
[𝑓] ≡

C
1
[𝑓]/𝑑min, we can write

C

1
[𝑓] =

1

2

𝑁

∑
𝑖=1

𝑓
𝑖
− 𝑓
𝑖−1

ℎ

ℎ, (4)

which in the limit ℎ → 0 (𝑁 → ∞) converges to

C

1
[𝑓] →

1

2
∫
1

0

𝑑𝑓 (𝑥)

𝑑𝑥

𝑑𝑥. (5)

The Scientific World Journal 3

In terms of notation we will use𝐶
1
for the first term of the

original Boolean GC measure,C
1
for the discretized version

for continuous functions, and C
1
will denote continuous

generalization complexity density (CGC).
Equation (5) will be our proposal for the first term of

the GC for continuous value input data for 𝐷 = 1. Clearly,
this function will be larger for more fluctuating functions as
expected. For𝐷 = 2, we have

C
1
[𝑓] =

ℎ2

8

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

[
𝑓𝑖,𝑗 − 𝑓

𝑖−1,𝑗

 +
𝑓𝑖,𝑗 − 𝑓

𝑖+1,𝑗

+
𝑓𝑖,𝑗 − 𝑓

𝑖,𝑗+1

 +
𝑓𝑖,𝑗 − 𝑓

𝑖,𝑗−1

] ,

(6)

where 𝑓
𝑖,𝑗
is the value of the function within the square with

coordinates 𝑥 = 𝑖ℎ, 𝑦 = 𝑗ℎ. The previous expression can be
written more compactly as

C
1
[𝑓] =

ℎ2

4
(
𝑁

∑
𝑖=1

𝑁−1

∑
𝑗=1

𝑓𝑖,𝑗+1 − 𝑓
𝑖,𝑗

 +
𝑁

∑
𝑗=1

𝑁−1

∑
𝑖=1

𝑓𝑖+1,𝑗 − 𝑓
𝑖,𝑗

) .

(7)

If 𝑓 takes alternatively the maximum and minimum
values (±1) on neighboring sites, C

1
[𝑓] = 1, taking care

of counting only once the difference between neighboring
sites. Defining the complexity measure density C

1
[𝑓] ≡

C
1
[𝑓]/𝑑min as before, and following the same steps, we get

C

1
[𝑓] =

1

4
∫
1

0

𝑑𝑥∫
1

0

𝑑𝑦[

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑥

+

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑦

] . (8)

The above procedure can be straightforwardly generalized to
arbitrary dimension𝐷 obtaining

C

1
[𝑓] =

1

2𝐷
∫
1

0

𝑑𝑥
1
∫
1

0

𝑑𝑥
2
⋅ ⋅ ⋅ ∫
1

0

𝑑𝑥
𝐷

𝐷

∑
𝑖=1

𝜕𝑓 (�⃗�)

𝜕𝑥
𝑖

. (9)

We observe that (9) is not bounded; that is, there is not
a function with maximum complexity. This seems to be
an intrinsic difficulty as for a real function the number of
maxima and minima can grow indefinitely. In any case, (8)
can be useful because it can measure complexities relative to
a given function.

Along similar lines, we can build the continuous version
of the second term of the complexity measure, 𝐶

2
. In its

original version for Boolean functions this term accounts
for the output difference of pair of data points located at
Hamming distance 2:

𝐶
2
[𝑓] =

1

𝑁ex𝑁neighΔ𝑓

𝑁ex

∑
𝑗=1

(∑
𝑑(𝑒𝑖 ,𝑒𝑗)=2

𝑓 (𝑒
𝑖
) − 𝑓 (𝑒

𝑗
)
) .

(10)

For the continuous case we can write, for𝐷 = 1,

𝐶
2
[𝑓] =

1

2

𝑁

∑
𝑖=1

𝑓
𝑖+2

− 𝑓
𝑖

ℎ

ℎ

=
1

2

𝑁

∑
𝑖=1

(
𝑓
𝑖+2

− 𝑓
𝑖+1

ℎ
) − (

𝑓
𝑖+𝑖

− 𝑓
𝑖

ℎ
)

+2(
𝑓
𝑖+1

− 𝑓
𝑖

ℎ
)

ℎ.

(11)

Defining the second-order complexity density as C
2
[𝑓] ≡

C
2
[𝑓]/𝑑min, we obtain in the ℎ → 0 limit

C

2
[𝑓] → ∫

1

0

𝑑𝑓 (𝑥)

𝑑𝑥

𝑑𝑥. (12)

Hence, for 𝐷 = 1, we have that C
2
[𝑓] = 2C

1
[𝑓]. For 𝐷 = 2,

we have

C
2
[𝑓] =

ℎ2

8

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

(
𝑓𝑖,𝑗 − 𝑓

𝑖−1,𝑗+1

 +
𝑓𝑖,𝑗 − 𝑓

𝑖−1,𝑗−1

+
𝑓𝑖,𝑗 − 𝑓

𝑖+1,𝑗−1

 +
𝑓𝑖,𝑗 − 𝑓

𝑖+1,𝑗+1

+
𝑓𝑖,𝑗 − 𝑓

𝑖,𝑗−2

 +
𝑓𝑖,𝑗 − 𝑓

𝑖,𝑗+2

+
𝑓𝑖,𝑗 − 𝑓

𝑖−2,𝑗

 +
𝑓𝑖,𝑗 − 𝑓

𝑖+2,𝑗

) ,

(13)

that in the𝑁 → ∞ limit leads to

C

2
[𝑓] →

1

4
∫
1

0

𝑑𝑥∫
1

0

𝑑𝑦(

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑥
+
𝜕𝑓 (𝑥, 𝑦)

𝜕𝑦

+

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑥
−
𝜕𝑓 (𝑥, 𝑦)

𝜕𝑦

+

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑥

+

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑦

) .

(14)

Equation (14) will be our proposal for the continuous version
of the second term of the GC measure.

2.1. Testing the Generalization Complexity on a Set of Con-
tinuous Functions. Having introduced an extension of the
complexity measure for a set of continuously distributed data
(9) and (14), we now would like to test the proposal, and
for that we will use a set of trigonometric functions with
parametrized complexity. The set in dimension 𝐷 is defined
by

𝑓𝐷
𝑛
(�⃗�) =

𝐷

∏
𝑗=1

sin (2𝜋𝑛𝑥
𝑗
) , (15)

with 𝑛 taking integer values 𝑛 = 1, 2, . . ., even if real values
can be also considered (e.g., 𝑛 = 1/𝜆). Dividing the 𝐷-
dimensional hypercube by using a grid of spacing 1/2𝑛 leads

4 The Scientific World Journal

to a function that cancels at the borders of the hypercubes of
side ℎ = 1/2𝑛, taking alternatively the values ±1 on nearest
neighbour cells. This function is precisely the well-known
parity Boolean function, having a very high complexity
among the set of Boolean functions [19]. Measured by the
first term of the GC measure, the parity function achieves
maximum complexity of 1, and thus, given a value of the
discretization spacing of ℎ = 1/𝑁, it makes sense to consider
only values of 𝑛 up to a maximum value 𝑛max = 1/2ℎ = 𝑁/2.

From the definition of the first term (C
1
) of the contin-

uous GC measure (CGC) (9), the complexity of the set of
trigonometric functions defined by (15) can be obtained:

C

1
[𝑓𝐷
𝑛
] =

2𝐷𝑛

𝜋𝐷−1
. (16)

We observe that the complexity of the set of functions
grows linearly to 𝑛, which is proportional to the density of
points where the function cancels, a sensitive measure of the
variation of the function.

The family of functions (15) can be generalized to consider
different variation indexes according to the spatial direction;
namely,

𝑓𝐷n (�⃗�) =
𝐷

∏
𝑗=1

sin (2𝜋𝑛
𝑗
𝑥
𝑗
) , (17)

where n = (𝑛
1
, 𝑛
2
, . . . , 𝑛

𝐷
). The complexity C

1
can also be

easily computed and leads to

C

1
[𝑓𝐷n] =

2𝐷

𝜋𝐷−1
1

𝐷

𝐷

∑
𝑗=1

𝑛
𝑗
. (18)

We use the family of functions (15) to compare the behavior of
the discrete and continuous complexity measures introduced
in the previous section. To do that we computed numerically
the discrete complexities C

1
and C

2
as a function of 𝑛/𝑛max

for 𝐷 = 1 and 2, for a fixed value of the discretization
ℎ. Figure 1 shows the complexity values obtained for the
continuous and discrete first terms (C

1
ℎ and C

1
, resp.) for

one and two dimensions (Figures 1(a) and 1(b)), noting that
for relatively low values of 𝑛/𝑛max, that is, when ℎ ≪ 1/2𝑛,
the agreement is quite good, while for larger values, the dis-
crete version underestimates the true complexity. A similar
behaviour is observed for both plotted dimensions, noting
that as the dimension increases the maximum complexity
decreases by a factor 2𝐷/𝜋𝐷−1 (cf. (18)). The evaluation of
the second term of the continuous complexity measure (C

2
)

is more cumbersome but it can be obtained with the aid of
numerical integration software. In particular, for 𝐷 = 2, the
calculations lead to

C

2
[𝑓2
𝑛
] = 2 (1 +

2

𝜋
) 𝑛. (19)

Figure 2 shows the results for the second termof the complex-
ity measure for the 2D set of functions. In the figure ℎC

2
[𝑓
𝑛
]

andC
2
[𝑓
𝑛
] are shown as a function of 𝑛/𝑛max.The continuous

complexity C
2
grows linearly according to what has been

obtained in (19), showing a different behaviourwith respect to
the discrete version counterpart with a nonmonotonic curve.
The quadratic-like shape of C

2
(in Boolean space) has been

previously analyzed [19] and its behaviour independently of
C
1
does not hold for the continuous case. The fact that the

value of C
2
is proportional to C

1
(for the set of sinusoidal

benchmark functions, cf. (15)) implies that the second term
does not contain independent information from what is
provided by the first term.

3. Use of Walsh Functions for
Testing and Estimation of GC

Theset ofWalsh functions introduced byWalsh in 1923 [22] is
a set of orthonormal binary functions with continuous input.
Walsh functions have been widely applied in signal process-
ing [23, 24] and are alsowell knownbecause their relationship
to the Hadamard transform [25]. The approach developed in
the previous section cannot be applied to a set of patterns (the
standard case for practical problems) as it requires knowing
the analytic expression of the underlying function. In this
section, we first compute the complexity of the set of Walsh
functions showing that it leads to sensitive results for the
estimation of GC. After this test, we apply the set of Walsh
functions for carrying out the approximation of the GC for
a set of patterns. The choice of the set of Walsh functions is
motivated by the fact that the original GC defined in Boolean
space can be computed almost straightforwardly for this set
given its discrete output. Also, the intrinsic discretization
of the input space as the order of the Walsh functions
is increased favors their application to continuous input
problems.

3.1. The GC of the Set of Walsh Functions. The proposed
complexity measure (9) can be applied to the set of Walsh
functions by introducing an appropriated limit procedure.
Let us consider first the one-dimensional case, namely, the
set of Walsh functions 𝑊

𝑛
(𝑥) defined on the real interval

[0, 1], where the index 𝑛 = 0, 1, 2, . . . is chosen so that it
coincides with the number of nodes of the function. For
instance, 𝑊

0
(𝑥) = 1 for all 𝑥, 𝑊

1
(𝑥) = 1 if 0 ≤ 𝑥 < 1/2,

𝑊
1
(𝑥) = −1 if 1/2 ≤ 𝑥 < 1, and so forth.
We will introduce a set of continuous parametric func-

tions 𝐺
𝑛
(𝑥, 𝛽) to approach the Walsh functions. 𝐺

𝑛
(𝑥, 𝛽) can

be constructed in such a way that it has the same nodes
as 𝑊
𝑛
(𝑥); it is differentiable in the neighborhood of all the

nodes of𝑊
𝑛
(𝑥) and lim

𝛽→∞
𝐺
𝑛
(𝑥, 𝛽) = 𝑊

𝑛
(𝑥).The functions

𝐺
𝑛
(𝑥, 𝛽) can be constructed by combining sigmoidal func-

tions centered at the nodes of 𝑊
𝑛
(𝑥) and constant functions

taking values ±1 between them, joined smoothly by any inter-
polation procedure, such as a spline or polynomial method.
Figure 3 shows two Walsh functions approximated by
using hyperbolic tangent functions combined with constant
ones.

Let us consider for simplicity a finite set of Walsh
functions up to order 𝑁 = 2𝑚 (for some fixed integer

The Scientific World Journal 5

0 0.25 0.5 0.75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

pl
ex

ity

n/nmax

D = 1

1

h𝒞1
𝒞1

(a)

0 0.25 0.5 0.75 1
n/nmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

pl
ex

ity

D = 2

h𝒞1
𝒞1

(b)

Figure 1: A comparison of the continuous and discrete versions of the first-order term generalization complexities for the 𝐷 = 1 and 𝐷 = 2
set of functions from (15) using𝑁 = 100. The discrete GC 𝐶

1
is computed over a grid with spacing ℎ and so the continuous input complexity

𝐶
1
is plotted multiplied by ℎ.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
om

pl
ex

ity

n/nmax

h𝒞2

𝒞2

Figure 2: Comparison of the second terms of the complexities in
their continuous and discrete versions, ℎC

2
and C

2
, for the two-

dimensional set of trigonometric functions from (15) as a function
of 𝑛/𝑛max.

value of 𝑚). Then, the location of the nodes of every one of
these functions belong to the set of values 𝑥∗

𝑖
= 𝑖/𝑁, 𝑖 =

1, 2 . . . , 𝑁 − 1. Let [𝑎, 𝑏] be an arbitrary interval enclosing

only one particular node 𝑥∗
𝑖
. Then the following properties

hold:

lim
𝛽→∞

∫
𝑏

𝑎

𝜕𝐺
𝑛
(𝑥, 𝛽)

𝜕𝑥
𝑑𝑥 = lim

𝛽→∞

(𝐺
𝑛
(𝑏, 𝛽) − 𝐺

𝑛
(𝑎, 𝛽)) = ±2,

lim
𝛽→∞

𝐺
𝑛
(𝑥, 𝛽) = 0 if 𝑥 ̸= 𝑥∗

𝑖
.

(20)

Hence, we can write

𝜕𝐺
𝑛
(𝑥, 𝛽)

𝜕𝑥
= 2
𝑁−1

∑
𝑖=1

𝑔𝑛
𝑖
𝜙 (𝑥 − 𝑥∗

𝑖
, 𝛽) , (21)

where the coefficients 𝑔𝑛
𝑖
can take the values 0 (if 𝑊

𝑛
has no

node at 𝑥∗
𝑖
) and 𝑔𝑛

𝑖
= ±1; otherwise 𝜙(𝑥, 𝛽) is a real function

sharp peaked around 𝑥 = 0 which satisfies lim
𝛽→∞

𝜙(𝑥, 𝛽) =
𝛿(𝑥), 𝛿(𝑥) being a Dirac delta function [26]. Then, we can
define the complexity of the Walsh functions as

C

1
[𝑊
𝑛 (𝑥)] ≡ lim

𝛽→∞

C

1
[𝐺
𝑛
(𝑥, 𝛽)] . (22)

From (5), (21), and (22), it follows that C
1
[𝑊
𝑛
(𝑥)] =

𝑛. The extension to higher dimension is straightforward.
Let 𝑊n(�⃗�) = ∏

𝐷

𝑗=1
𝑊
𝑛𝑗
(𝑥
𝑗
) be a D-dimensional Walsh

function,where n = (𝑛
1
, . . . , 𝑛

𝐷
) is a set of one-dimensional

6 The Scientific World Journal

X

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

G1(x)

W1(x)

(a)

X

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

G2(x)

W2(x)

(b)

Figure 3: Approximation of twoWalsh functions (𝑊
1
(𝑥) and𝑊

2
(𝑥)) using hyperbolic tangent functions combined with constant ones (𝐺

1
(𝑥)

and 𝐺
2
(𝑥)).

Walsh indexes, defined as before. From (9) we obtain

C

1
[𝑊n (�⃗�)] =

1

𝐷

𝐷

∑
𝑗=1

𝑛
𝑗
. (23)

3.2. GC Estimation for a Set of Data Points Using the Base
of Walsh Functions. Suppose that we want to compute the
coefficients, 𝐶

𝑛
, for a given function 𝐹 using a set of Walsh

functions𝑊
𝑛
(�⃗�) defined in the [0, 1]𝐷

𝐹 (�⃗�) ≃
𝑁−1

∑
𝑛=0

𝐶
𝑛
𝑊
𝑛 (�⃗�) (24)

given a limited set of sampling data points (𝑓
𝑗
, �⃗�
𝑗
, 𝑗 =

1, . . . ,𝑀). We will solve the estimation of the coefficients
solving a minimization problem of the square error (𝑆):

𝑆 (�⃗�) =
𝑀

∑
𝑗=1

[𝑓
𝑗
− 𝐹 (�⃗�

𝑗
)]
2

=
𝑀

∑
𝑗=1

[𝑓
𝑗
−
𝑁−1

∑
𝑛

=0

𝐶
𝑛
𝑊
𝑛
 (�⃗�
𝑗
)]

2

,

(25)

where �⃗� ≡ (𝐶
0
, 𝐶
1
, . . . , 𝐶

𝑁−1
).

To find theminimumof the error function, 𝑆, we compute
the first derivative and make it equal to 0:

𝜕𝑆

𝜕𝐶
𝑛

= −2
𝑀

∑
𝑗=1

[𝑓
𝑗
−
𝑁−1

∑
𝑛

=0

𝐶
𝑛
𝑊
𝑛
 (�⃗�
𝑗
)]𝑊
𝑛
(�⃗�
𝑗
) = 0

(26)

from which

𝑀

∑
𝑗=1

𝑓
𝑗
𝑊
𝑛
(�⃗�
𝑗
) =
𝑁−1

∑
𝑛

=0

𝐶
𝑛

𝑀

∑
𝑗=1

𝑊
𝑛
 (�⃗�
𝑗
)𝑊
𝑛
(�⃗�
𝑗
) . (27)

Define the vector �⃗� ≡ (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁−1
) as

𝑎
𝑛
≡
𝑀

∑
𝑗=1

𝑓
𝑗
𝑊
𝑛
(�⃗�
𝑗
) (28)

and matrix 𝐵 = {𝑏
𝑛,𝑛
} with

𝑏
𝑛,𝑛
 ≡
𝑀

∑
𝑗=1

𝑊
𝑛
 (�⃗�
𝑗
)𝑊
𝑛
(�⃗�
𝑗
) . (29)

Equation (27) takes the lineal form �⃗� = 𝐵�⃗�, whose solution
is given by

�⃗� = 𝐵−1�⃗�. (30)

A practical issue of the previous procedure is the com-
putational cost involved; as for D-dimensional input data
a matrix of size 𝑁𝐷

ℎ
× 𝑁𝐷
ℎ

has to be inverted (cf. (30)),
where 𝑁

ℎ
= 1/ℎ is the maximum spacing used for the

construction of the 1D set of Walsh functions. Nevertheless,
such computation has to be done only once for given values
of𝐷 and ℎ, being independent of the data.

Once the Walsh coefficients of a function (or data) have
been obtained, the CGC can be approximated by the same

The Scientific World Journal 7

limiting procedure of the previous section. For instance, in
one dimension we have

CGC
𝑤 [𝐹] = lim

𝛽→∞

C

1
[
𝑁−1

∑
𝑛=0

𝐶
𝑛
𝐺
𝑛
(𝑥, 𝛽)]

= lim
𝛽→∞

∫
1

0

𝑁−1

∑
𝑛=0

𝐶
𝑛

𝑁−1

∑
𝑖=1

𝑔𝑛
𝑖
𝜙 (𝑥 − 𝑥∗

𝑖
, 𝛽)

𝑑𝑥

=
𝑁−1

∑
𝑖=1

𝑁−1

∑
𝑛=0

𝐶
𝑛
𝑔𝑛
𝑖

,

(31)

where we have used (21). For an expansion of a D-
dimensional function on a finite set of𝑁Walsh functions𝑊n
with 𝑛

𝑗
= 0, 1, . . . , 𝑁 (𝑗 = 1, . . . , 𝐷, 𝑁 = 𝑁

𝐷

), we obtain
similarly

CGC
𝑤 [𝐹] =

1

𝐷

𝑁

−1

∑
𝑖=1

𝐷

∑
𝑗=1

∑
n
𝐶n𝑔
𝑛𝑗

𝑖

, (32)

where CGC
𝑤
indicates the approximation of the CGC using

the set of Walsh basis functions. We carried out an exper-
iment where we analyzed the accuracy of the proposed
approximation to obtain a similar graph to the one shown
in Figure 1(a), indicating that the approximation is working
correctly. The fact that the graph obtained is almost exact
to the one obtained in Figure 1(a) is consistent with what
can be expected, as both are discrete approximations of the
continuous value of the complexity.

4. Application to Real-World Input Data

In order to test practically the developed procedures, we first
construct a model based on the extension of the complexity
measure proposed previously, to then apply thismodel for the
estimation of adequate neural network architecture to real-
world problems. The model was estimated using the set of
trigonometric functions defined by (15) for 𝐷 = 4. For each
of the analyzed data set we calculated the complexity with
the above method and we found values in the range between
0 and 0.5, and the generalization ability was computed for a
set of single hidden layer neural architectures with a number
of neurons in the hidden layer between 2 and 50, choosing
the one that leads to the lowest validation error computed
in a cross-validation procedure to avoid overfitting (early
stopping), where the training is performed by the standard
back-propagation algorithm. From the obtained number of
neurons for each of the analyzed cases, a quadratic fitting was
applied to obtain the final model, shown in Figure 4 by the
solid line.

Figure 4 shows the application of the developed method,
described in Section 3.2, to obtain the value of CGC for a
given data set. Using the constructed model (the solid line
in the Figure 4), it is then possible to use the obtained CGC
value to get an estimate of an adequate neural architecture
to implement the function. The figure also shows the best

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

Complexity

Dimension 4

CGC
Best

f5

f6

f9

N
um

be
r o

f n
eu

ro
ns

 (
N
h
)

Figure 4: The model constructed for 𝑁 = 4 input dimensions
and its application to estimate an adequate size neural network for
three test benchmark functions. The continuous line represents the
model estimated from a set of trigonometric functions of variable
complexity and the blue dashed line indicates the size estimated by
the model (using the 𝑌-axis values), while the red dashed line is the
best size obtained from exhaustive numerical simulations.

Table 1: Results of the application of the model constructed by
approximating the CGC of 10 benchmark data sets from the UCI
repository.

ID Data set CGC
𝑤

𝑁
ℎest

𝑁
ℎBest

𝑓
1

Balance Scale2,3,4,5 0.001 6.08 4
𝑓
2

Ecoli2,4,6,7 0.03 7.1 10
𝑓
3

Blood1,2,3,4 0.06 8.47 4
𝑓
4

TicTacToe1,2,5,8 0.1 9.84 4
𝑓
5

Liver Disorders1,2,5,6 0.11 10.8 4
𝑓
6

Mammografic2,3,4,5 0.18 14.5 13
𝑓
7

Hayes-Roth2,3,4,5 0.22 16.9 4
𝑓
8

Spectf2,3,5,7 0.26 17.8 23
𝑓
9

Vertebral Column1,2,3,4 0.36 26.6 24
𝑓
10

Haberman1,2,3,4 0.43 31.8 26
The table shows the identifier of the function, the name of the data set with
superscripts indicating the 4 input used variables, the estimated CGC𝑤, the
estimated size of an adequate neural network according to the model (𝑁ℎest),
and the best architecture found from intensive simulations (𝑁ℎBest).

architecture found by intensive numerical simulations (see
Table 1 for the numerical values).

Table 1 shows the results obtained by applying the devel-
oped method to 10 four-dimensional benchmark data sets.
The data set problems are taken from the UCI repository
and for each problem 4 input variables were selected. The
columns show the identifier of the function, the name of
the benchmark dataset with the 4 input variables used
(indicated as a superscript), the estimated Generalization
complexity obtained from (22), the number of neurons in

8 The Scientific World Journal

the hidden layer estimated by the model (𝑁
ℎest

), and the
best number of neurons found from exhaustive simulations
(𝑁
ℎBest

). The results obtained shown a quite good correlation
between the estimated and best found values (𝜌 = 0.84, 𝑃
value = 0.002), suggesting the validity of the approach, even
if there are some cases, like the function indicated in the
table by𝑓

7
for which the estimation is not extremely accurate.

Nevertheless, some discrepancies are always expected as the
problem of choosing an adequate neural architecture is a
complex problemwith no exact solution, as it depends on the
particular set of patterns presented and the training process
used, and thus it is an intrinsically noisy process.

5. Discussion and Conclusions

We have introduced in this work an extension for the gen-
eralization complexity (GC) measure for continuous input
data. The analysis of the new measure on a parametrized
complexity set of trigonometric functions shows that the new
proposal is consistent with the expected results and with the
spirit of the original measure, as the GC essentially measures
for a set of data the output variations as the inputs are
modified. Nevertheless, a difference between the continuous
and discrete cases exists in relationship to the role of the
second term of the GC, as in the continuous case this term
is no longer independent from the first term (at least for
the set of trigonometric functions), and thus it does not
add extra information about the complexity of the data. We
have also introduced an approach based on the use of the
set of Walsh functions for computing the CGC measure
for data expressed as a set of patterns, the typical case in
most practical applications. By fitting a model that relates
architecture size to function complexity, a model is built and
then it is applied to the problem of selecting an adequate
neural network architecture in ten real-world benchmark
problems. The application of the method to the benchmark
data shows that the estimated neural architectures are quite
close to the optimal values, indicating the suitability of the
developed approach to the architecture selection problem.
The method is clearly more efficient than the trial-and-error
alternative for choosing a proper neural network architecture,
as the computationally heavy part of the procedure is related
to amatrix inversion that has to be done only once for a given
dimension and thus, once computed, it can be reused with
different data sets. The GC measure provides an estimate of
the complexity of the data, and as such can possibly be used
not only for the case of choosing the adequate architecture for
neural networks, but also when using other predictivemodels
(like SVM, decision trees, etc.), for example, for choosing the
magnitude of the penalization term of the model complexity
(regularization).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors acknowledge support from CICYT (Spain)
through Grants TIN2008-04985 and TIN2010-16556 (includ-
ing FEDER funds), from Junta de Andalućıa through Grants
P08-TIC-04026 and P10-TIC-5770, and from CONICET
(Argentina) and SECyT Universidad Nacional de Córdoba
(Argentina).

References

[1] E. B. Baum and D. Haussler, “What size net gives valid
generalization?” Neural Computation, vol. 1, no. 1, pp. 151–160,
1990.

[2] A. R. Barron, “Approximation and estimation bounds for
artificial neural networks,” Machine Learning, vol. 14, no. 1, pp.
115–133, 1994.

[3] L. S. Camargo and T. Yoneyama, “Specification of training sets
and the number of hidden neurons for multilayer perceptrons,”
Neural Computation, vol. 13, no. 12, pp. 2673–2680, 2001.

[4] F. Scarselli and A. Chung Tsoi, “Universal approximation
using feedforward neural networks: a survey of some existing
methods, and some new results,” Neural Networks, vol. 11, no. 1,
pp. 15–37, 1998.

[5] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M.
Wilamowski, “Selection of proper neural network sizes and
architectures—a comparative study,” IEEE Transactions on
Industrial Informatics, vol. 8, no. 2, pp. 228–240, 2012.

[6] G.Mirchandani andW. Cao, “On hidden nodes for neural nets,”
IEEE Transactions on Circuits and Systems, vol. 36, no. 5, pp.
661–664, 1989.

[7] M. Arai, “Bounds on the number of hidden units in binary-
valued three-layer neural networks,”Neural Networks, vol. 6, no.
6, pp. 855–860, 1993.

[8] Z. Zhang, X. Ma, and Y. Yang, “Bounds on the number of
hidden neurons in three-layer binary neural networks,” Neural
Networks, vol. 16, no. 7, pp. 995–1002, 2003.

[9] M. Bacauskiene, V. Cibulskis, and A. Verikas, “Selecting vari-
ables for neural network committees,” in Advances in Neural
Networks—ISNN, J. Wang, Z. Yi, J. M. Zurada, B.-L. Lu, and
H. Yin, Eds., vol. 3971 of Lecture Notes in Computer Science, pp.
837–842, Springer, 2006.

[10] H.C. Yuan, F. L. Xiong, andX.Y.Huai, “Amethod for estimating
the number of hidden neurons in feed-forward neural networks
based on information entropy,” Computers and Electronics in
Agriculture, vol. 40, no. 1–3, pp. 57–64, 2003.

[11] Y. Liu, J. A. Starzyk, and Z. Zhu, “Optimizing number of
hidden neurons in neural networks,” in Proceedings of the
IASTED International Conference on Artificial Intelligence and
Applications (AIA ’07), pp. 121–126, ACTA Press, Anaheim,
Calif, USA, February 2007.

[12] I. Wegener,The Complexity of Boolean Functions, JohnWiley &
Sons, 1987.

[13] J. Hastad, “Almost optimal lower bounds for small depth
circuits,”Advanced Computer Research, vol. 5, pp. 143–170, 1989.

[14] I. Parberry,Circuit Complexity andNeural Networks, MIT Press,
1994.

[15] T. K. Ho and M. Basu, “Complexity measures of supervised
classification problems,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 3, pp. 289–300, 2002.

The Scientific World Journal 9

[16] M. Basu and T. K. Ho, Data Complexity in Pattern Recognition
(Advanced Information and Knowledge Processing), Springer,
New York, NY, USA, 2006.

[17] J. S. Sánchez, R. A. Mollineda, and J. M. Sotoca, “An analysis
of how training data complexity affects the nearest neighbor
classifiers,” Pattern Analysis and Applications, vol. 10, no. 3, pp.
189–201, 2007.

[18] W.Duch, N. Jankowski, and T.Maszczyk, “Make it cheap: learn-
ing with o(nd) complexity,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN ’12), pp. 1–4, 2012.

[19] L. Franco, “Generalization ability of Boolean functions imple-
mented in feedforward neural networks,” Neurocomputing, vol.
70, no. 1–3, pp. 351–361, 2006.

[20] L. Franco and M. Anthony, “The influence of oppositely
classified examples on the generalization complexity of Boolean
functions,” IEEE Transactions on Neural Networks, vol. 17, no. 3,
pp. 578–590, 2006.

[21] I. Gómez, L. Franco, and J. M. Jerez, “Neural network architec-
ture selection: can function complexity help?”Neural Processing
Letters, vol. 30, no. 2, pp. 71–87, 2009.

[22] J. L. Walsh, “A closed set of normal orthogonal functions,” The
American Journal of Mathematics, vol. 45, pp. 5–24, 1923.

[23] K. G. Beauchamp, Walsh Functions and Their Applications,
Academic Press, 1975.

[24] W. A. Evans, “Sine-wave synthesis using walsh functions,” IEE
Proceedings G, vol. 134, no. 1, pp. 1–6, 1987.

[25] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform
image coding,” Proceedings of the IEEE, vol. 57, pp. 58–68, 1969.

[26] R. E. Mickens,Mathematical Methods for the Natural and Engi-
neering Sciences, vol. 65 of Series on Advances in Mathematics
for Applied Sciences, World Scientific, 2004.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

