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A novel coupled-line structure is proposed to design dual-band and high-power Gysel power dividers with inherent impedance-
transforming functions. Based on traditional even- and odd-mode technique, the analytical designmethods in closed-form formula
are obtained and the accurate electrical parameters analysis is presented. Due to the usage of coupled-line sections, more design-
parameter freedom and a wider frequency-ratio operation range for this kind of dual-band Gysel powder divider are obtained.
Several numerical examples are designed and calculated to demonstrate flexible dual-band applications with different impedance-
transforming functions. A practicalmicrostrip power divider operating at 2 GHz and 3.2 GHz is designed, fabricated, andmeasured.
The good agreement between the calculated and measured results verifies our proposed circuit structure and analytical design
approach.

1. Introduction

Power dividers can be used to design high-power parallel
power amplifiers and high-gain antenna arrays [1]. In order
to satisfy excellent heat sinking requirement in high-power
applications, Gysel power dividers [2] are preferred in prac-
tical implementations, compared with Wilkinson power
dividers [3]. In the past years, with the rapid development of
several wireless communication standards, more and more
applications require dual- or multi-band microwave com-
ponents which results in new modified schemes proposed
for dual-band power dividers [4–14].These dual-band power
dividers include Wilkinson types [4–10] and Gysel types
[11–14]. Recently, other new kinds of Gysel power dividers
are proposed in [15–18]; however, these new power dividers
in [15–18] cannot satisfy flexible dual-band applications.
Although the flexible dual-band design can be obtained from
the proposed Gysel power dividers in [11–13], the inherent
impedance-transforming functions cannot be achieved eas-
ily. Note that the dual-band Gysel power divider in [14] has

narrow operating bandwidth. In addition, the coupled-line
circuits are not used in [14].

Coupled lines have many advantages, such as compact
structure and flexible design parameters, which have been
widely used in impedance transformers [19] and couplers
[20]. In this paper, a novel dual-band coupled-line Gysel
power divider with inherent impedance-transforming func-
tions is proposed. Because of using coupled-line sections,
additional design parameters make the proposed structure
have more design freedom and the corresponding circuit
becomes more simple and compact. Based on the traditional
even- and odd-mode analysis, rigorous closed-form design
equations and available constraint condition are derived.
Different from the previous coupled-line Gysel power divider
in [13], this paper gives exact closed-form analytical design
equations and inherent impedance-transforming functions.
This novel Gysel power divider which has arbitrary different
terminated impedances of the source and the load ports
presents a wider frequency-ratio range compared to [11,
12]. The available design parameters of typical examples are
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Figure 1: The circuit configuration of the proposed impedance-
transforming dual-band coupled-line Gysel power divider.

presented for convenient applications. Finally, numerical
examples are presented to demonstrate the flexible dual-
band applications and impedance-transforming functions. A
practical microstrip power divider operating at both 2GHz
and 3.2GHz is designed, fabricated, and measured. The
calculated and measured results verify our proposed idea.

2. The Proposed Circuit and Analytical
Design Approach

The circuit configuration of the proposed impedance-
transforming dual-band coupled-line Gysel power divider is
shown in Figure 1. The structure consists of three sections of
coupled lines, an extension line 𝑍

1
at the input port, a single

open-circuit stub line 𝑍
𝑆
at the right side, and two directly

grounded isolation resistors 𝑟. These coupled lines with
characteristic impedances𝑍

𝑒𝑖
and𝑍

𝑜𝑖
, where 𝑖 = 1, 2, 3, make

the structure simplified and compact. All the coupled lines
have the same electrical length 𝜃.

Based on the conventional even- and odd-mode analysis
[1], the complicated circuit in Figure 1 can be simplified
to the equivalent half circuits in Figure 2, where the even-
and odd-mode characteristic impedances of coupled lines are
effectively separated for simplicity. Since the divider should
be matched at all ports and should divide the input power
equally into the two output ports without any power loss
at two different frequencies, the even-mode half circuit of
the divider should be matched at both ports with lossless
transmission. As a result, the isolation resistor 𝑟 does not
have any currents and voltages under even-mode excitation.
That is to say, the isolation resistor 𝑟 in Figure 2(a) should be
bypassed to ground. Hence, the following relationship of the
parameters in Figure 2(a) must be satisfied:

𝑍
𝑖𝑛𝑆

=
2𝑍
𝑆

𝑗 tan 𝜃
,

𝑍
𝑒3

𝑍
𝑖𝑛𝑆

+ 𝑗𝑍
𝑒3
tan 𝜃

𝑍
𝑒3
+ 𝑗𝑍
𝑖𝑛𝑆

tan 𝜃
= 0,

(1)

𝑍
𝑖𝑛2

= 𝑗𝑍
𝑒2
tan 𝜃 ‖ 𝑅

𝐿
=

𝑗𝑍
𝑒2
tan 𝜃𝑅

𝐿

𝑗𝑍
𝑒2
tan 𝜃 + 𝑅

𝐿

,

𝑍
𝑖𝑛1

= 𝑍
𝑒1

𝑍
𝑖𝑛2

+ 𝑗𝑍
𝑒1
tan 𝜃

𝑍
𝑒1
+ 𝑗𝑍
𝑖𝑛2

tan 𝜃
,

𝑍
𝑖𝑛
= 2𝑍
1

𝑍
𝑖𝑛1

+ 𝑗2𝑍
1
tan 𝜃

2𝑍
1
+ 𝑗𝑍
𝑖𝑛1

tan 𝜃
= 2𝑅
𝑆
.

(2)

Similarly, with the odd-mode excitation, the circuit of the
divider shown in Figure 2(b) should be satisfiedwith the ideal
matching and isolation performance at the output ports 2
and 3 shown in Figure 1. Therefore, the reflection coefficients
in Figure 2(b) are equal to zero. The relationship of the
parameters include odd-mode characteristic impedances in
Figure 2(b) that can be derived as

𝑍
𝑖𝑛3

= 𝑗𝑍
𝑜1
tan 𝜃 ‖ 𝑅

𝐿
=

𝑗𝑍
𝑜1
tan 𝜃𝑅

𝐿

𝑗𝑍
𝑜1
tan 𝜃 + 𝑅

𝐿

,

𝑍
𝑖𝑛4

= 𝑍
𝑜2

𝑍
𝑖𝑛3

+ 𝑗𝑍
𝑜2
tan 𝜃

𝑍
𝑜2
+ 𝑗𝑍
𝑖𝑛3

tan 𝜃
,

𝑟 = 𝑍
𝑖𝑛4

‖ 𝑍
𝑖𝑛5

= 𝑍
𝑖𝑛4

‖ 𝑗𝑍
𝑜3
tan 𝜃 =

𝑗𝑍
𝑜3
tan 𝜃𝑍

𝑖𝑛4

𝑍
𝑖𝑛4

+ 𝑗𝑍
𝑜3
tan 𝜃

.

(3)

Assuming that the center frequencies 𝑓
1
and 𝑓

2
= 𝑝𝑓
1
,

where 𝑝 ≥ 1, the simplest conditions [9, 13] for dual-band
applications should be described as

𝜃
𝑓1

=
𝜋

1 + 𝑝
, (for 𝑓

1
) ,

𝜃
𝑓2

=
𝑝𝜋

1 + 𝑝
, (for 𝑓

2
) .

(4)

Assuming 𝜃 = 𝜃
𝑓1

is known, there are 11 design variables
with 8 rigorous equations in (1), (2), and (3), namely, 𝑍

1
, 𝑍
𝑒1
,

𝑍
𝑜1
, 𝑍
𝑒2
, 𝑍
𝑜2
, 𝑍
𝑒3
, 𝑍
𝑜3
, 𝑍
𝑆
, 𝑅
𝐿
, 𝑅
𝑆
, and 𝑟. From (1), we can

obtain

𝑍
𝑒3
=

2𝑍
𝑆

tan2𝜃
. (5)

In (5), there is one degree of freedom in the choice of 𝑍
𝑆

and 𝑍
𝑒3
. From (2) and (3), we can obtain that there are five

degrees of freedom in the choice of 𝑍
1
, 𝑍
𝑒1
, 𝑍
𝑜1
, 𝑍
𝑒2
, 𝑍
𝑜2
,

𝑍
𝑜3
, 𝑅
𝐿
, 𝑅
𝑆
, and 𝑟 which offers more flexibility in the design

and fabrication of the proposed Gysel power divider than the
traditional ones. Assuming𝑍

𝑒1
,𝑍
𝑜1
, 𝑅
𝐿
, 𝑅
𝑆
, and 𝑟 are known,

from (2), we can obtain even-mode characteristic impedances
described as

𝐶
1
𝑍
4

1
+ 𝐶
2
𝑍
3

1
+ 𝐶
3
𝑍
2

1
+ 𝐶
4
𝑍
1
+ 𝐶
5
= 0,

𝑍
𝑒2
= (2𝑍

1
𝑍
𝑒1
𝑅
𝐿
𝑅
𝑆
− 𝑍
2

𝑒1
𝑅
𝐿
𝑅
𝑆
tan2𝜃)

× (−2𝑍
2

1
𝑍
𝑒1
tan2𝜃 + 𝑍

1
(2𝑅
𝐿
𝑅
𝑆
− 𝑍
2

𝑒1
) tan2𝜃

+𝑍
𝑒1
𝑅
𝐿
𝑅
𝑆
tan2𝜃)

−1

,

(6)
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Figure 2: Simplified equivalent circuit of the proposed power divider under (a) even- and (b) odd-mode excitations.

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0

20

40

60

80

100

120

140

Im
pe

da
nc

es
 (O

hm
)

Frequency ratio p

Z1

Ze2

Zo2

Ze3

Zo3

(a)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

20

40

60

80

100

120

140

Im
pe

da
nc

es
 (O

hm
)

Frequency ratio p

r

RS

ZS

RL

Ze1

Zo1

(b)

Figure 3: Typical design parameters of the proposed dual-band power divider with 𝑅
𝐿
= 𝑅
𝑆
= 40Ω. (a) Values of 5 variables: 𝑍

1
, 𝑍
𝑒2
, 𝑍
𝑜2
,

𝑍
𝑒3
, and 𝑍

𝑜3
. (b) Values of 6 free variables: 𝑍

𝑒1
, 𝑍
𝑜1
, 𝑅
𝐿
, 𝑅
𝑆
, 𝑍
𝑆
, and 𝑟.
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Figure 4: Typical design parameters of the proposed dual-band power divider with 𝑅
𝑆
= 50Ω, 𝑅

𝐿
= 30Ω. (a) Values of 5 variables: 𝑍

1
, 𝑍
𝑒2
,

𝑍
𝑜2
, 𝑍
𝑒3
, and 𝑍

𝑜3
. (b) Values of 6 free variables: 𝑍

𝑒1
, 𝑍
𝑜1
, 𝑅
𝐿
, 𝑅
𝑆
, 𝑍
𝑆
, and 𝑟.
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Figure 5: Typical design parameters of the proposed dual-band power divider with arbitrary 𝑅
𝑆
and 𝑅

𝐿
values. (a) Values of 5 variables: 𝑍

1
,

𝑍
𝑒2
, 𝑍
𝑜2
, 𝑍
𝑒3
, and 𝑍

𝑜3
. (b) Values of 6 free variables: 𝑍

𝑒1
, 𝑍
𝑜1
, 𝑅
𝐿
, 𝑅
𝑆
, 𝑍
𝑆
, and 𝑟.

where

𝐶
1
= 16𝑍

𝑒1
𝑅
𝐿
tan 𝜃𝐴

3
,

𝐶
2
= 8𝑍
𝑒1
𝑅
𝐿
tan 𝜃𝐴

4
− 8𝑅
𝐿
tan 𝜃3𝐴

1
+ 8𝑍
2

𝑒1
𝑅
𝐿
tan 𝜃𝐴

3
,

𝐶
3
= 4𝑍
𝑒1
𝑅
𝐿
tan 𝜃𝐴

5
− 4𝑅
𝐿
tan 𝜃3𝐴

2

+ 4𝑍
𝑒1
𝑅
𝐿
tan 𝜃 (𝑅

𝐿
− 2𝑅
𝑆
) 𝐴
1
+ 4𝑍
2

𝑒1
𝑅
𝐿
tan 𝜃𝐴

4
,

𝐶
4
= 2𝑍
2

𝑒1
𝑅
𝐿
tan 𝜃𝐴

5
+ 4𝑍
2

𝑒1
𝑅
𝑆
tan 𝜃3𝐴

1

+ 2𝑍
𝑒1
tan 𝜃 (𝑅

𝐿
− 2𝑅
𝑆
) 𝐴
2
,

𝐶
5
= 2𝑍
2

𝑒1
𝑅
𝑆
tan 𝜃3𝐴

2
,

𝐴
1
= 2𝑍
𝑒1
𝑅
𝐿
𝑅
𝑆
,

𝐴
2
= −2𝑍

2

𝑒1
𝑅
𝐿
𝑅
𝑆
tan2𝜃,

𝐴
3
= −𝑍
𝑒1
tan2𝜃,

𝐴
4
= 2𝑅
𝐿
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tan2𝜃 − 𝑍

2

𝑒1
tan2𝜃,

𝐴
5
= 2𝑍
𝑒1
𝑅
𝐿
𝑅
𝑆
tan2𝜃.

(7)

According to the solution of a quartic equation in [21], we can
obtain the following solutions:

𝑍
1
(1) =

𝐶
2

4𝐶
1

−
1

2
√Δ
1

−
1

2
√(Δ
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− 𝐶
3

2
− 8𝐶
2

1
𝐶
4

4𝐶
3

1
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(8)

where

Δ
1
=

𝐶
2
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1
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2𝐶
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1

+ Δ
3
+ Δ
4
,

Δ
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=

𝐶
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3
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Figure 6: Ideal scattering parameters of three typical dual-band coupled-line power dividers with: (a) 𝑅
𝑆
= 𝑅
𝐿
= 40Ω and 𝑝 = 1.24; (b)

𝑅
𝑆
= 50Ω, 𝑅

𝐿
= 30Ω and 𝑝 = 2.6; and (c) 𝑅

𝑆
= 50Ω, 𝑅

𝐿
= 60Ω, and 𝑝 = 2.2.
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5

9Δ
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,
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=

3
√2Δ
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2
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,
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= 𝐶
2
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2
𝐶
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+ 12𝐶

1
𝐶
5
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𝐶
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𝐶
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.

(9)

From (3), odd-mode characteristic impedances can be
obtained:

𝑍
𝑜2

= ( − 𝑍
𝑜1
𝑅
2

𝐿
+ 𝑍
𝑜1

× √𝑅
4

𝐿
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𝐿
(𝑍
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2

𝐿
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𝐿
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.

(10)
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Figure 7: Fabricated coupled-line Gysel power divider operating at both 2 and 3.2GHz. (a) Photograph and (b) 3D model.

From (5), (7), (8), (9), and (10), once the parameters 𝑍
𝑆
,

𝑍
𝑒1
, 𝑍
𝑜1
, 𝑅
𝐿
, 𝑅
𝑆
, 𝜃, and 𝑟 are determined, other parameters

such as𝑍
𝑒2
,𝑍
𝑜2
,𝑍
𝑒3
,𝑍
𝑜3
, and𝑍

1
can be easily be synthesized.

In consequence, the designmethod of this proposed coupled-
line Gysel power divider for dual-band applications is analyt-
ical. Since the values of 𝑅

𝐿
and 𝑅

𝑆
are determined by spe-

cial practical requirements, this presented design approach
can satisfy inherent source-to-load impedance-transforming
functions.

3. Parameters Analysis and Circuit Simulation

Since there is more degree of freedom of the variables, the
design parameters of the proposed divider are calculated
under various operating conditions using the design equa-
tions of the previous section. Figures 3, 4, and 5 show the
design parameters varying with the frequency ratio when the
source impedance 𝑅

𝑆
at port 1 and the load impedance 𝑅

𝐿
at

the output ports 2 and 3 get different values.
There are three conditions of the values of 𝑅

𝑆
and 𝑅

𝐿
.

One condition is 𝑅
𝑆
is equal to 𝑅

𝐿
(shown in Figure 3)

which represents most of the practical applications. Another
condition is that 𝑅

𝑆
is unequal to 𝑅

𝐿
but they still get fixed

values (shown in Figure 4). The last one is that the values of
𝑅
𝑆
and 𝑅

𝐿
vary with the frequency ratio (shown in Figure 5).

Figures 3 and 4 show the calculation results when 𝑅
𝑆
= 𝑅
𝐿
=

40Ω and 𝑅
𝑆
= 50Ω, 𝑅

𝐿
= 30Ω, respectively. From Figures 3

and 4, we can see that the frequency ratio of the proposed
divider is 1.2 < 𝑝 < 2.9 when 𝑅

𝑆
= 𝑅
𝐿

= 40Ω, and
the frequency ratio is 1.24 < 𝑝 < 2.9 when 𝑅

𝑆
= 50Ω,

and 𝑅
𝐿
= 30Ω. From these figures, we can obtain that the

proposed method provides a wider frequency ratio than that
(1.35 < 𝑝 < 2.7) reported in [11, 12]. 𝑅

𝑆
and 𝑅

𝐿
may get

various kinds of values in practical applications according
to special requirements. If the parameters including 𝑅

𝑆
and

𝑅
𝐿
get suitable values, the proposed method is applicable to

the dual-band operation over a very wide frequency-ratio
range compared with the situations shown in Figures 3 and 4.

Figure 5 shows that when the values of 𝑅
𝑆
and 𝑅

𝐿
vary from

10Ω to 130Ω; the frequency ratio can reach from 1.19 to 3.51
which is significantly wider than that mentioned above. It is
easy to see that with different value combinations of 𝑅

𝑆
and

𝑅
𝐿
, different curves as shown in Figure 5 can be obtained.This

makes the presented Gysel divider much more flexible in the
design and fabrication by providing a variety of alternative
solutions for the parameters in fixed dual-band operation.

In fact, the proposed coupled-line Gysel power divider
theoretically includes the dividers given in [11, 12]. When
𝑍
𝑒1

= 𝑍
𝑜1
, 𝑍
𝑒2

= 𝑍
𝑜2
, 𝑍
𝑒3

= 𝑍
𝑜3
, and 𝑅

𝑆
= 𝑅
𝐿
, this

proposed divider turns into the one in [11]. When 𝑍
1
= 50Ω

and 𝑅
𝑆
= 𝑅
𝐿
= 50Ω, this proposed divider represents the

one in [12]. Therefore, this proposed Gysel power divider is
a generalized power divider with increased design freedom
and a wider frequency-ratio range.

Figure 6 presents three groups of numerical examples
when 𝑅

𝑆
= 𝑅
𝐿
= 40Ω, and 𝑝 = 1.24 (Figure 6(a)); 𝑅

𝑆
= 50Ω,

𝑅
𝐿

= 30Ω, and 𝑝 = 2.6 (Figure 6(b)); and 𝑅
𝑆

= 50Ω,
𝑅
𝐿

= 60Ω, and 𝑝 = 2.2 (Figure 6(c)), respectively. The
simulation results show that the performance of the proposed
Gysel power divider operating at two different frequencies is
perfect although the terminated impedances 𝑅

𝑆
and 𝑅

𝐿
are

different and the frequency-ratio 𝑝 is flexible.

4. Microstrip Experiment and Measurement

To verify the circuit structure and analytical design approach
of our proposed dual-band Gysel power divider, a prototype
microstrip dual-band power divider has been designed and
fabricated. It is designed for the dual-band operation with
a frequency ratio of 1.6 at 𝑓

1
= 2GHz and 𝑓

2
= 3.2GHz.

The terminated source impedance 𝑅
𝑆
at port 1 and the load

impedance 𝑅
𝐿
at the output ports 2 and 3 are randomly

chosen as 𝑅
𝑆

= 30Ω and 𝑅
𝐿

= 50Ω. In order to match
the source impedance 𝑅

𝑆
= 30Ω to the standard impedance

𝑅
𝑂

= 50Ω, a small dual-frequency transformer in two
section transmission line given in [22] is chosen. Assuming
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Figure 8: Scattering parameters of the fabricated divider shown in Figure 7: (a) calculated results, (b) and (c) full-wave simulated results, (d)
and (e) measured results, and (f) simulated and measured phase differences results.
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the characteristic impedances of the two section transmission
line are 𝑍

1
and 𝑍



2
, we can obtain

𝑍


1
=
√ 𝑅

𝑆

2 tan2 𝜃
(𝑅
𝑂
− 𝑅
𝑆
)+√[

𝑅
𝑆

2 tan2 𝜃
(𝑅
𝑂
− 𝑅
𝑆
)]

2

+𝑅
3

𝑆
𝑅
𝑂
,

𝑍


2
=

𝑅
𝑆
𝑅
𝑂

𝑍


1

,

(11)

where

𝜃 =
180
∘

1 + 𝑝
=

180
∘

1 + 1.6
= 69.2308

∘
,

𝑅
𝑂
= 50Ω.

(12)

From (11) and (12), 𝑍
1
= 34.7253Ω and 𝑍



2
= 43.1962Ω can

be calculated.
F4B with a dielectric constant of 2.65 and a thickness of

1mm is used as the substrate. The coupled lines are imple-
mented by using microstrip technology. All the lines are
designed with the same electrical length of 𝜃 = 69.2308

∘ at
𝑓
1
= 2GHz.The impedances of the transmission and coupled

lines are calculated as 𝑍
1
= 41.5654Ω, 𝑍

𝑒1
= 57.5Ω, 𝑍

𝑜1
=

40Ω, 𝑍
𝑒2

= 31.3839Ω, 𝑍
𝑜2

= 28.7344Ω, 𝑍
𝑒3

= 20.1363Ω,
𝑍
𝑜3

= 17.9188Ω, and 𝑍
𝑆
= 70Ω, 𝑟 = 33Ω. Figure 7(a)

shows a photograph of the fabricated power divider. Full-
wave simulation is made for the power divider. The 3D HFSS
model and the size of the divider is shown in Figure 7(b).
The calculated, full-wave simulated and measured results
are shown in Figure 8. From 𝑆

11
curve in Figures 8(b) and

8(d), we can obtain that the two center frequencies of the
simulated power divider are 1.8 GHz and 2.9GHz, and the
measured results are 2.09GHz and 3.32GHz, respectively,
which are both very close to the theoretical values of 2GHz
and 3.2GHz. The simulated port isolation values of 𝑆

23
are

all below −15 dB in the available band from 1.6GHz to the
whole frequency band (including 1.8 GHz to 2.9GHz). The
measuredmagnitude values of 𝑆

23
are nearly all below −10 dB

in the whole frequency band.These influences are acceptable
in practical application. The simulated and measured results
verify the availability of the proposed structure and the
corresponding analytical design approach.

5. Conclusions

A novel impedance-transforming coupled-line Gysel power
divider is proposed for dual-band and high-power applica-
tions in this paper.The closed-form formulas to determine its
design parameters have been given. The use of coupled lines
in this new divider provides the advantages of a simplified
structure, compact size, a wider frequency-ratio range, and
additional design freedom. Increased design freedom causes
a variety of alternative solutions for the parameters which
makes the design and fabrication more flexible. The circuit
calculation, full-wave simulation, microstrip fabrication, and
measurement of a prototype Gysel power divider verify the
proposed structure and its related design theory. It can be

believed that this kind of novel impedance-transforming
coupled-line dual-band Gysel power divider can be widely
used in various high-power power amplifiers and high-
performance antenna arrays, especially for dual-band circuits
and systems.
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