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We shall explore a nonlinear discrete dynamical system that naturally occurs in population systems to describe a transmission of
a trait from parents to their offspring. We consider a Mendelian inheritance for a single gene with three alleles and assume that to
form a new generation, each gene has a possibility to mutate, that is, to change into a gene of the other kind. We investigate the
derived models and observe chaotic behaviors of such models.

1. Introduction

Recently, chaotic dynamical systems become very popular in
science and engineering. Besides the original definition of the
Li-Yorke chaos [1], there have been various definitions for
“chaos” in the literature, and the most often used one is given
by Devaney [2]. Although there is no universal definition for
chaos, the essential feature of chaos is sensitive dependence
on initial conditions so that the eventual behavior of the
dynamics is unpredictable. The theory and methods of
chaotic dynamical systems have been of fundamental impor-
tance not only in mathematical sciences, but also in physical,
engineering, biological, and even economic sciences. In this
paper, a chaos would be understood in the sense of Li-Yorke
[3, 4] (the precise definition will be given in the next section).

In this paper, we introduce and examine a family of
nonlinear discrete dynamical systems that naturally occurs
to describe a transmission of a trait from parents to their
offspring. Here, we shall present some essential analytic and
numerical results on dynamics of such models.

In [5], it was presented an approach to the dynamics at
the cellular scale in which cells can progress, namely, modify
their biological expression and mutate within Darwinian-
type selective processes, out of the interaction with other
cells. A heterogeneous distribution among cells produces
mutations and selections generated by net destructive and/or
proliferative events [5]. In this event, all living systems are

evolutionary: birth processes can generate individuals that fit
better the outer environment, which in turn generates new
ones better and better fitted [5]. One can refer to [5–8] for the
general information about mathematical models of complex
systems (including mutations and selections). In this paper,
we are presenting a mathematical model of the evolution of
the percentage of different alleles of a given trait after the
mutation process.

As the first example, we consider aMendelian inheritance
of a single gene with two alleles A and a (see [9]). Let an
element x = (𝑥

1
, 𝑥
2
) represent a gene pool for a population;

that is, 𝑥
1
, 𝑥
2
are the percentage of the population which

carries the alleles A and a, respectively. For the convenience,
we express it as a linear combination of the alleles A and a

x = 𝑥
1
A + 𝑥

2
a, (1)

where, 0 ≤ 𝑥
1
, 𝑥
2

≤ 1 and 𝑥
1
+ 𝑥
2

= 1. The rules of the
Mendelian inheritance indicate that the next generation has
the following form:

x = 𝑥



1
A + 𝑥



2
a, (2)

where
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(3)
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Here, 𝑃
𝐴𝐴,𝐴

(resp., 𝑃
𝐴𝐴,𝑎

) is the probability that the child
receives the allele A (resp., a) from parents with the allele A;
𝑃
𝐴𝑎,𝐴

(resp., 𝑃
𝐴𝑎,𝑎

) is the probability that the child receives
the allele A (resp., a) from parents with the alleles A and a,
respectively; and 𝑃

𝑎𝑎,𝐴
(resp., 𝑃

𝑎𝑎,𝑎
) is the probability that the

child receives the alleleA (resp., a) from parents with allele a.
It is evident that

𝑃
...,𝐴

+ 𝑃
...,𝑎

= 1, 𝑃
𝐴𝑎,𝐴

= 𝑃
𝑎𝐴,𝐴

,

𝑃
𝐴𝑎,𝑎

= 𝑃
𝑎𝐴,𝑎

, 𝑥



1
+ 𝑥



2
= 1.

(4)

Thus, the evolution (3) is a nonlinear dynamical system
acting on the one dimensional symplex

𝑆

1
= {(𝑥

1
, 𝑥
2
) ∈ R
2
: 𝑥
1
, 𝑥
2
≥ 0, 𝑥

1
+ 𝑥
2
= 1} (5)

which describes the distribution of the next generation which
carries the alleles A and a, respectively, if the distribution of
the current generation is known.

Recall that in the simple Mendelian inheritance case, that
is, 𝑃
𝐴𝐴,𝐴

= 𝑃
𝑎𝑎,𝑎

= 1 and 𝑃
𝐴𝐴,𝑎

= 𝑃
𝑎𝑎,𝐴

= 0, the dynamical
system (3) has the following form:

𝑥



1
= 𝑥

2

1
+ 2𝑃
𝐴𝑎,𝐴

𝑥
1
𝑥
2
,

𝑥



2
= 2𝑃
𝐴𝑎,𝑎

𝑥
1
𝑥
2
+ 𝑥

2

2
.

(6)

We assume that prior to a formation of a new generation
each gene has a possibility to mutate, that is, to change into
a gene of the other kind. Specifically, we suppose that for
each gene the mutation A → a occurs, with probability
𝛼, and a → A occurs with probability 𝛽. Moreover, we
assume that “the mutation occurs if and only if both parents
have the same allele.”Then, we have that 𝑃

𝐴𝐴,𝑎
= 𝛼, 𝑃

𝑎𝑎,𝐴
= 𝛽,

𝑃
𝐴𝐴,𝐴

= 1−𝛼, 𝑃
𝑎𝑎,𝑎

= 1−𝛽 and the dynamical system (3) has
the following form:

𝑉 : {

𝑥



1
= (1 − 𝛼) 𝑥

2

1
+ 2𝑃
𝐴𝑎,𝐴

𝑥
1
𝑥
2
+ 𝛽𝑥

2

2
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+ (1 − 𝛽) 𝑥
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2
.

(7)

An operator 𝑉 : 𝑆

1
→ 𝑆

1 given by (7) is called a
quadratic stochastic operator [10]. The name “stochastic” can
be justified if we consider the simplex as a set of all probability
distributions of the finite set, so that, the operator (7) maps a
probability distribution to a probability distribution.

We introduce some standard terms in the theory of a
discrete dynamical system 𝑉 : 𝑋 → 𝑋. A sequence {x(𝑛)}∞

𝑛=0
,

where x(𝑛) = 𝑉(x(𝑛−1)), is called a trajectory of𝑉 starting from
an initial point x0. Recall that a point x is called a fixed point
of 𝑉 if𝑉(x) = x. We denote a set of all fixed points by Fix(𝑉).
A dynamical system𝑉 is called regular if a trajectory {x(𝑛)}∞

𝑛=0

converges for any initial point x. Note that if 𝑉 is regular, then
limiting points of 𝑉 are fixed points of 𝑉. Thus, in a regular
system, the fixed point of dynamical system describes a long
run behavior of the trajectory of 𝑉 starting from any initial
point.The biological treatment of the regularity of dynamical
system 𝑉 is rather clear: in a long run time, the distribution
of species in the next generation coincide with distribution of
species in the current generation, that is, stable.

A fixed point set and an omega limiting set of quadratic
stochastic operators (QSO)were deeply studied in [11–16] and
quadratic stochastic operators (QSO) play an important role
in many applied problems [17, 18]. In [10], it was given a long
self-contained exposition of recent achievements and open
problems in the theory of quadratic stochastic operators.

Definition 1. A dynamical system 𝑉 : 𝑋 → 𝑋 is said to be
ergodic if the limit

lim
𝑛→∞

1

𝑛

𝑛−1

∑

𝑘=0

𝑉

𝑘
(x) (8)

exists for any x ∈ 𝑋.

Based on some numerical calculations, Ulam has con-
jectured [19] that any QSO acting on the finite dimensional
simplex is ergodic. However, Zakharevich showed [20] that,
in general, Ulam’s conjecture is false. Namely, Zakharevich
showed that the following QSO 𝑉

0
: 𝑆

2
→ 𝑆

2 is not ergodic:

𝑉
0
:

{
{

{
{

{

𝑥
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1
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1
𝑥
2
,

𝑥
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= 𝑥

2

2
+ 2𝑥
2
𝑥
3
,

𝑥



3
= 𝑥

2

3
+ 2𝑥
3
𝑥
1
.

(9)

In [21], Zakharevich’s result was generalized in the class
of Volterra QSO.

We define the 𝑘th order Cesaro mean by the following
formula:

Ces(𝑛)
𝑘

(x, 𝑉) =

1

𝑛

𝑛−1

∑

𝑖=0

Ces(𝑖)
𝑘−1

(x, 𝑉) , (10)

where 𝑘 ≥ 1 and Ces(𝑛)
0

(x, 𝑉) = 𝑉

𝑛
(x). It is clear that

the first order Cesaro mean Ces(𝑛)
1

(x, 𝑉) is nothing but
(1/𝑛)∑

𝑛−1

𝑖=0
𝑉

𝑖
(x). Based on these notations, Zakharevich’s

result says that the first order Cesaro mean {Ces(𝑛)
1

(x, 𝑉
0
)}

∞

𝑛=0

of the trajectory of the operator 𝑉
0
given by (9) diverges for

any initial point except fixed points. Surprisingly, in [22], it
was proven that any order Cesaromean {Ces(𝑛)

𝑘
(x, 𝑉
0
)}

∞

𝑛=0
, for

any 𝑘 ∈ N, of the trajectory of the operator𝑉
0
diverges for any

initial point except fixedpoints.This leads to a conclusion that
the operator𝑉

0
might have unpredictable behavior. In fact, in

[23], it was proven that the operator 𝑉
0
exhibits the Li-Yorke

chaos. It is worth pointing out that some strange properties
of Volterra QSO were studied in [24, 25].

In the literature, all examples of nonergodic QSO have
been found in the class of Volterra QSO (see [10, 20, 21]).
Based on these examples, the Ulam conjecture was modi-
fied as follows: any non Volterra QSO acting on the finite
dimensional simplex is ergodic, that is, operators having chaotic
behavior can be only found among Volterra QSO.However, in
this paper, we are aiming to present the continual family of
nonergodic and chaotic QSO which are non Volterra QSO.

Note that if QSO is regular, then it is ergodic. However,
the reverse implication is not always true. It is known that
the dynamical system (7) is either regular or converges to
a periodic-2 point [26]. Therefore, in 1D simplex, any QSO
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is ergodic. In other words, the evolution of a mutation in
population system having a single gene with two alleles always
exhibits an ergodic behavior (or almost regular or almost
stable). It is of independent interest to study the evolution of a
mutation in population system having a single gene with three
alleles. In the next section, we consider an inheritance of a
single gene with three alleles a

1
, a
2
, and a

3
and show that a

nonlinear dynamical system corresponding to the mutation
exhibits a nonergodic and Li-Yorke chaotic behavior.

2. Inheritance for a Single Gene with
Three Alleles

In this section, we shall derive a mathematical model of an
inheritance of a single gene with three alleles.

As it was in the previous section, an element x represents
a linear combination x = 𝑥

1
a
1
+ 𝑥
2
a
2
+ 𝑥
3
a
3
of the alleles

a
1
, a
2
, and a

3
in which the following conditions are satisfied

0 ≤ 𝑥
1
, 𝑥
2
, 𝑥
3
≤ 1 and 𝑥

1
+ 𝑥
2
+ 𝑥
3
= 1, that is, 𝑥

1
, 𝑥
2
, 𝑥
3
are

the percentages of the population which carry the alleles a
1
,

a
2
, and a

3
respectively.

We assume that prior to a formation of a new generation
each gene has a possibility to mutate, that is, to change into a
gene of the other kind. We assume that the mutation occurs
if both parents have the same alleles. Specifically, we will
consider two types of the simplest mutations; assume that

(1) mutations a
1

→ a
2
, a
2

→ a
3
, and a

3
→ a
1
occur

with probability 𝛼;

(2) mutations a
1

→ a
3
, a
3

→ a
2
, and a

2
→ a
1
occur

with probability 𝛼.

In this case, the corresponding dynamical systems are
defined on the two-dimensional simplex

𝑆

2
= {𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
) ∈ R
3
:

𝑥
1
≥ 0, 𝑥

2
≥ 0, 𝑥

3
≥ 0, 𝑥

1
+ 𝑥
2
+ 𝑥
3
= 1} .

(11)

In the first mutation, we have

𝑉
𝛼
:

{
{

{
{

{

𝑥
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1
𝑥
2
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2
,
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2

2
+ 2𝑥
2
𝑥
3
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3
,

𝑥



3
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2

3
+ 2𝑥
3
𝑥
1
+ 𝛼𝑥

2

1
.

(12)

In the second mutation, we have

𝑊
𝛼
:

{
{

{
{

{

𝑥
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= (1 − 𝛼) 𝑥

2

1
+ 2𝑥
1
𝑥
2
+ 𝛼𝑥

2

3
,

𝑥



2
= (1 − 𝛼) 𝑥

2

2
+ 2𝑥
2
𝑥
3
+ 𝛼𝑥

2

1
,

𝑥



3
= (1 − 𝛼) 𝑥

2

3
+ 2𝑥
3
𝑥
1
+ 𝛼𝑥

2

2
.

(13)

Let us first recall the definition of the Li-Yorke chaos [1, 3,
4].

Definition 2. Let (𝑋, 𝑑) be a metric space. A continuous map
𝑉 : 𝑋 → 𝑋 is called Li-Yorke chaotic if there exists

an uncountable subsetS ⊂ 𝑋 such that for every pair (𝑥, 𝑦) ∈
S × S of distinct points, we have that

lim inf
𝑛→∞

𝑑 (𝑉

(𝑛)
(𝑥) , 𝑉

(𝑛)
(𝑦)) = 0,

lim sup
𝑛→∞

𝑑 (𝑉

(𝑛)
(𝑥) , 𝑉

(𝑛)
(𝑦)) > 0.

(14)

In this case, S is a scrambled set and (𝑥, 𝑦) ∈ S × S is a Li-
Yorke pair.

Let us turn to the discussion of operators𝑉
𝛼
,𝑊
𝛼
given by

(12) and (13), respectively. In both cases, if 𝛼 = 0, that is, if
a mutation does not occur, then dynamical systems (12) and
(13) coincide with Zakharevich’s operator (9). As we already
mentioned that Zakharevich’s operator exhibits the Li-Yorke
chaos [23].

Let 𝛼 = 1. In the first case, the operator 𝑉
1
is a

permutation of Zakharevich’s operator (9). Therefore, the
operator 𝑉

1
is nonergodic and does exhibit the Li-Yorke

chaotic behavior [22, 23, 27]. In the second case, the operator
𝑊
1
is a permutation of the regular operatorwhichwas studied

in [11]. By applying the same method which was used in [11],
we may easily show that the operator𝑊

1
is also regular.

It is easy to check that 𝑉
𝛼
= (1 − 𝛼)𝑉

0
+ 𝛼𝑉
1
and 𝑊

𝛼
=

(1 − 𝛼)𝑊
0
+ 𝛼𝑊
1
.

This means that, in the first case, the evolution operator
𝑉
𝛼
is a convex combination of two Li-Yorke chaotic operators

𝑉
0
, 𝑉
1
, meanwhile, in the second case, the evolution operator

𝑊
𝛼
is a convex combination of the Li-Yorke chaotic and

regular operators 𝑊
0
, 𝑊
1
. These operators 𝑉

𝛼
, 𝑊
𝛼
were not

studied in [11, 27]. It is of independent interest to study the
dynamics of operators 𝑉

𝛼
and 𝑊

𝛼
. The reason is that, in the

first case, the convex combination presents a transition from
one chaotic biological system to another chaotic biological
system (we shall see in the next section that, in some sense,
their dynamics are opposite each other); meanwhile, in the
second case, the convex combination presents a transition
from the ordered biological system to the chaotic biological
system. In the next section, we are going to present some
essential analytic and numerical results on dynamics of the
operators 𝑉

𝛼
and𝑊

𝛼
given by (12) and (13), respectively.

3. Attractors: Analytic and Numerical Results

3.1. Analytic Results on Dynamics of 𝑉
𝛼
. We are aiming to

present some analytic results on dynamics of 𝑉
𝛼
: 𝑆

2
→ 𝑆

2:

𝑉
𝛼
:

{
{

{
{

{

𝑥



1
= (1 − 𝛼) 𝑥

2

1
+ 2𝑥
1
𝑥
2
+ 𝛼𝑥

2

2
,

𝑥



2
= (1 − 𝛼) 𝑥

2

2
+ 2𝑥
2
𝑥
3
+ 𝛼𝑥

2

3
,

𝑥



3
= (1 − 𝛼) 𝑥

2

3
+ 2𝑥
3
𝑥
1
+ 𝛼𝑥

2

1
,

(15)

where 𝑉
𝛼
(𝑥) = 𝑥


= (𝑥



1
, 𝑥



2
, 𝑥



3
) and 0 < 𝛼 < 1.

As we already mentioned, this operator can be written in



4 The Scientific World Journal

the following form: 𝑉
𝛼
= (1 − 𝛼)𝑉

0
+ 𝛼𝑉
1
for any 0 < 𝛼 < 1,

where

𝑉
0
:

{
{

{
{

{

𝑥



1
= 𝑥

2

1
+ 2𝑥
1
𝑥
2
,

𝑥



2
= 𝑥

2

2
+ 2𝑥
2
𝑥
3
,

𝑥



3
= 𝑥

2

3
+ 2𝑥
3
𝑥
1
,

𝑉
1
:

{
{

{
{

{

𝑥



1
= 𝑥

2

2
+ 2𝑥
1
𝑥
2
,

𝑥



2
= 𝑥

2

3
+ 2𝑥
2
𝑥
3
,

𝑥



3
= 𝑥

2

1
+ 2𝑥
3
𝑥
1
.

(16)

Let

𝑃 = (

0 1 0

0 0 1

1 0 0

) (17)

be a permutation matrix. The proofs of the following results
are straightforward.

Proposition 3. Let 𝑉
𝛼

: 𝑆

2
→ 𝑆

2 be the evolution operator
given by (15), where 𝛼 ∈ (0, 1). Let Fix(𝑉

𝛼
) and 𝜔(𝑥

0
) be sets of

fixed points and omega limiting points of 𝑉
𝛼
, respectively.Then

the following statements hold true.

(i) Operators 𝑃 and 𝑉
𝛼
are commutative, that is, 𝑃 ∘ 𝑉

𝛼
=

𝑉
𝛼
∘ 𝑃.

(ii) If 𝑥 ∈ Fix(𝑉
𝛼
) then 𝑃𝑥 ∈ Fix(𝑉

𝛼
).

(iii) If Fix(𝑉
𝛼
) is a finite set then | Fix(𝑉

𝛼
)| ≡ 1(mod3).

(iv) One has that 𝑃(𝜔(𝑥0)) = 𝜔(𝑃𝑥

0
), for any 𝑥0 ∈ 𝑆

2.

We are aiming to study the fixed point set Fix(𝑉
𝛼
), where

𝛼 ∈ (0, 1). It is worth mentioning that Fix(𝑉
0
) = {𝑒

1
, 𝑒
2
, 𝑒
3
, 𝐶}

and Fix(𝑉
1
) = {𝐶}, where 𝑒

1
= (1, 0, 0), 𝑒

2
= (0, 1, 0), and 𝑒

3
=

(0, 0, 1) are vertices of the simplex 𝑆

2 and 𝐶 = (1/3, 1/3, 1/3)

is a center of the simplex 𝑆

2.
Recall that a fixed point 𝑥0 ∈ Fix(𝑉

𝛼
) is nondegenerate

[18] if and only if the following determinant is nonzero at the
fixed point 𝑥0:


























𝜕𝑥



1

𝜕𝑥
1

− 1

𝜕𝑥



1

𝜕𝑥
2

𝜕𝑥



1

𝜕𝑥
3

𝜕𝑥



2

𝜕𝑥
1

𝜕𝑥



2

𝜕𝑥
2

− 1

𝜕𝑥



2

𝜕𝑥
3

1 1 1


























̸= 0. (18)

Proposition 4. Let 𝑉
𝛼
: 𝑆

2
→ 𝑆

2 be the evolution operator
given by (15), where 𝛼 ∈ (0, 1). Let 𝐶 = (1/3, 1/3, 1/3) be
a center of the simplex 𝑆

2. Then the following statements hold
true.

(i) All fixed points are nondegenerate.

(ii) One has that Fix(𝑉
𝛼
) = {𝐶} for any 𝛼 ∈ (0, 1).

Proof. (i) Let 𝑥 ∈ Fix(𝑉
𝛼
) be a fixed point. One can easily

check that

























𝜕𝑥



1

𝜕𝑥
1

− 1

𝜕𝑥



1

𝜕𝑥
2

𝜕𝑥



1

𝜕𝑥
3

𝜕𝑥



2

𝜕𝑥
1

𝜕𝑥



2

𝜕𝑥
2

− 1

𝜕𝑥



2

𝜕𝑥
3

1 1 1


























= 4 (1 − 𝛼 + 𝛼

2
) (𝑥
1
𝑥
2
+ 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
3
) + 2𝛼 − 1.

(19)

If 1/2 ≤ 𝛼 < 1, then the above expression is positive.
Therefore, all fixed points are nondegenerate.

Let 0 < 𝛼 < 1/2. In this case, the above expression is equal
to zero if and only if 𝑥

1
𝑥
2
+ 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
3
= (1 − 2𝛼)/(4(1 −

𝛼 + 𝛼

2
)). Since 𝑥

1
+ 𝑥
2
+ 𝑥
3
= 1, we have that 𝑥2

1
+ 𝑥

2

2
+ 𝑥

2

3
=

(1 + 2𝛼

2
)/(2(1 − 𝛼 + 𝛼

2
)).

Without loss of generality, we may assume that 𝑥
1

≥

max{𝑥
2
, 𝑥
3
} (See Proposition 3(i)). Let 𝑥

2
≥ 𝑥
3
. Since 𝑥 ∈

Fix(𝑉
𝛼
), we have that 𝑥

2
= (1 − 𝛼)𝑥

2

2
+ 2𝑥
2
𝑥
3
+ 𝛼𝑥

2

3
. We then

obtain that

1 + 2𝛼

2

2 (1 − 𝛼 + 𝛼

2
)

= 𝑥

2

1
+ 𝑥

2

2
+ 𝑥

2

3

= 𝑥

2

1
+ [(1 − 𝛼) (𝑥

2

2
+ 2𝑥
2
𝑥
3
) + 𝛼 (𝑥

2

3
+ 2𝑥
2
𝑥
3
)]

2

+ 𝑥

2

3

≤ 𝑥

2

1
+ [(1 − 𝛼) 𝑥

2
+ 𝛼𝑥
3
]

2

+ 𝑥

2

3

< 𝑥

2

1
+ 𝑥

2

2
+ 𝑥

2

3
=

1 + 2𝛼

2

2 (1 − 𝛼 + 𝛼

2
)

.

(20)

This is a contradiction. In a similar way, one can have a
contradiction whenever 𝑥

3
≥ 𝑥
2
. This shows that, in the case

0 < 𝛼 < 1/2, all fixed points are nondegenerate.
(ii) We shall show that Fix(𝑉

𝛼
) = {𝐶}. The simple

calculation shows that 𝐶 ∈ Fix(𝑉
𝛼
). It is clear that 𝑉

𝛼
(𝜕𝑆

2
) ⊂

int 𝑆2.Thismeans that the operator𝑉
𝛼
does not have any fixed

point on the boundary 𝜕𝑆2 of the simplex 𝑆2, that is, Fix(𝑉
𝛼
)∩

𝜕𝑆

2
= 0. Moreover, all fixed points are nondegenerate. Due to

Theorem 8.1.4 in [18], | Fix(𝑉
𝛼
)| should be odd. On the other

hand, due to Corollary 8.1.7 in [18], one has that | Fix(𝑉
𝛼
)| ≤

4. In Proposition 3, (iii) yields that | Fix(𝑉
𝛼
)| = 1. Therefore,

we get that Fix(𝑉
𝛼
) = {𝐶}.

A local behavior of the fixed point 𝐶 = (1/3, 1/3, 1/3) is
as follows.

Proposition 5. Let 𝑉
𝛼

: 𝑆

2
→ 𝑆

2 be the evolution operator
given by (15), where 𝛼 ∈ (0, 1). Then the following statements
hold true.

(i) If 𝛼 ̸= 1/2, then the fixed point 𝐶 = (1/3, 1/3, 1/3) is
repelling.

(ii) If 𝛼 = 1/2, then the fixed point 𝐶 = (1/3, 1/3, 1/3) is
nonhyperbolic.
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Proof. It is worth mentioning that, since 𝑥
1

+ 𝑥
2

+ 𝑥
3
= 1,

the spectrum of the Jacobian matrix of the operator 𝑉
𝛼

:

𝑆

2
→ 𝑆

2 at the fixed point 𝐶 = (1/3, 1/3, 1/3) must be
calculated as follows:


























𝜕𝑥



1

𝜕𝑥
1

− 𝜆

𝜕𝑥



1

𝜕𝑥
2

𝜕𝑥



1

𝜕𝑥
3

𝜕𝑥



2

𝜕𝑥
1

𝜕𝑥



2

𝜕𝑥
2

− 𝜆

𝜕𝑥



2

𝜕𝑥
3

1 1 1


























= 0. (21)

After simple algebra, we have that Spec(𝑉
𝛼
) = {𝜆

±
= 1 −

𝛼 ± 𝑖(√3/3)(1 + 𝛼)}. It is clear that |𝜆
±
| =

√
1 + (2𝛼 − 1)

2
/3.

Consequently, if 𝛼 ̸= 1/2, then the fixed point 𝐶 =

(1/3, 1/3, 1/3) is repelling and if 𝛼 = 1/2, then the fixed
point 𝐶 = (1/3, 1/3, 1/3) is nonhyperbolic. This completes
the proof.

We shall separately study two cases 𝛼 ̸= 1/2 and 𝛼 = 1/2.

Theorem 6. Let𝑉
𝛼
: 𝑆

2
→ 𝑆

2 be the evolution operator given
by (15), where 𝛼 ̸= 1/2. Then 𝜔

𝑉
𝛼

(𝑥

0
) ⊂ int𝑆2 is an infinite

compact subset, for any 𝑥0 ̸= 𝐶.

Proof. Let 𝛼 ̸= 1/2. Since 𝑉
𝛼
is continuous and 𝑉

𝛼
(𝑆

2
) ⊂

int 𝑆2, an omega limiting set 𝜔(𝑥0) is a nonempty compact
set and 𝜔(𝑥

0
) ⊂ int 𝑆2, for any 𝑥

0
̸= 𝐶. We want to show that

𝜔(𝑥

0
) is infinite, for any 𝑥

0
̸= 𝐶. Since 𝐶 is repelling, we have

that 𝐶 ∉ 𝜔(𝑥

0
). Let us pick up any point 𝑥∗ ∈ 𝜔(𝑥

0
) from the

set 𝜔(𝑥0). Since the operator 𝑉
𝛼
does not have any periodic

point, the trajectory {𝑉

(𝑛)

𝛼
(𝑥

∗
)}

∞

𝑛=1
of the point 𝑥∗ is infinite.

Since 𝑉
𝛼
is continuous, we have that {𝑉(𝑛)

𝛼
(𝑥

∗
)}

∞

𝑛=1
⊂ 𝜔(𝑥

0
).

This shows that 𝜔(𝑥0) is infinite for any 𝑥

0
̸= 𝐶.

Remark 7. It is worth mentioning that the sets of omega
limiting points 𝜔

𝑉
0

(𝑥

0
) and 𝜔

𝑉
1

(𝑥

0
) of the operators 𝑉

0
and

𝑉
1
are infinite. However, unlike the operator 𝑉

𝛼
, we have

inclusions 𝜔
𝑉
0

(𝑥

0
) ⊂ 𝜕𝑆

2 and 𝜔
𝑉
1

(𝑥

0
) ⊂ 𝜕𝑆

2. Moreover, both
operators 𝑉

0
and 𝑉

1
are nonergodic [20, 27].

Numerically, we shall see in the next section that the
evolution operator 𝑉

𝛼
: 𝑆

2
→ 𝑆

2 given by (15), where
𝛼 ̸= 1/2, has the following properties.

(i) The operator 𝑉
𝛼
is nonergodic.

(ii) The operator 𝑉
𝛼
exhibits the Li-Yorke chaos.

Now, we shall study the case 𝛼 = 1/2. The operator 𝑉
1/2

:

𝑆

2
→ 𝑆

2 takes the following form

𝑉
1/2

:

{
{
{
{
{

{
{
{
{
{

{

𝑥



1
=

1

2

𝑥

2

1
+ 2𝑥
1
𝑥
2
+

1

2

𝑥

2

2
,

𝑥



2
=

1

2

𝑥

2

2
+ 2𝑥
2
𝑥
3
+

1

2

𝑥

2

3
,

𝑥



3
=

1

2

𝑥

2

3
+ 2𝑥
3
𝑥
1
+

1

2

𝑥

2

1
.

(22)

In this case, the fixed point 𝐶 = (1/3, 1/3, 1/3) is
nonhyperbolic and the spectrum of the Jacobian matrix of

the operator 𝑉
1/2

at the fixed point 𝐶, calculated by (18), is
𝑆𝑝(𝐽(𝐶)) = {(1 ± √3𝑖)/2}.

Let us define the following sets:

𝑙
1
= {𝑥 ∈ 𝑆

2
: 𝑥
2
= 𝑥
3
} , 𝑙

2
= {𝑥 ∈ 𝑆

2
: 𝑥
1
= 𝑥
3
} ,

𝑙
3
= {𝑥 ∈ 𝑆

2
: 𝑥
1
= 𝑥
2
} ,

𝑆
1
= {𝑥 ∈ 𝑆

2
: 𝑥
1
≥ 𝑥
2
≥ 𝑥
3
} ,

𝑆
2
= {𝑥 ∈ 𝑆

2
: 𝑥
1
≥ 𝑥
3
≥ 𝑥
2
} ,

𝑆
3
= {𝑥 ∈ 𝑆

2
: 𝑥
3
≥ 𝑥
1
≥ 𝑥
2
} ,

𝑆
4
= {𝑥 ∈ 𝑆

2
: 𝑥
3
≥ 𝑥
2
≥ 𝑥
1
} ,

𝑆
5
= {𝑥 ∈ 𝑆

2
: 𝑥
2
≥ 𝑥
3
≥ 𝑥
1
} ,

𝑆
6
= {𝑥 ∈ 𝑆

2
: 𝑥
2
≥ 𝑥
1
≥ 𝑥
3
} .

(23)

Proposition 8. We have the following cycles:

(i) 𝑙
1

𝑉
1/2

→ 𝑙
2

𝑉
1/2

→ 𝑙
3

𝑉
1/2

→ 𝑙
1
;

(ii) 𝑆
1

𝑉
1/2

→ 𝑆
2

𝑉
1/2

→ 𝑆
3

𝑉
1/2

→ 𝑆
4

𝑉
1/2

→ 𝑆
5

𝑉
1/2

→ 𝑆
6

𝑉
1/2

→ 𝑆
1
;

Proof. Let 𝑉
1/2

be an operator given by (22). One can easily
check that

𝑥



1
− 𝑥



2
= (𝑥
1
− 𝑥
3
)

1 + 3𝑥
2

2

,

𝑥



1
− 𝑥



3
= (𝑥
2
− 𝑥
3
)

1 + 3𝑥
1

2

,

𝑥



2
− 𝑥



3
= (𝑥
2
− 𝑥
1
)

1 + 3𝑥
3

2

.

(24)

The proof the proposition follows from the above equal-
ity.

Theorem 9. Let 𝑉
1/2

: 𝑆

2
→ 𝑆

2 be the evolution operator
given by (22). The following statements hold true.

(i) 𝜙(𝑥) = |𝑥
1

− 𝑥
2
||𝑥
1

− 𝑥
3
||𝑥
2

− 𝑥
3
| is a Lyapunov

function.
(ii) Every trajectory converges to the fixed point 𝐶 =

(1/3, 1/3, 1/3).

Proof. (i) Let𝑉
1/2

be an operator given by (22). It follows from
(24) that

𝜙 (𝑉
1/2

(𝑥)) = 𝜙 (𝑥)

1 + 3𝑥
1

2

1 + 3𝑥
2

2

1 + 3𝑥
3

2

. (25)

On the other hand, we have that
1 + 3𝑥

1

2

1 + 3𝑥
2

2

1 + 3𝑥
3

2

≤ (

(1 + 3𝑥
1
) /2 + (1 + 3𝑥

2
) /2 + (1 + 3𝑥

3
) /2

3

)

3

= 1.

(26)
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Figure 1: Attractors of 𝑉
𝛼
: 𝛼 = 0.1 and 𝛼 = 0.9.

Therefore, one has that 𝜙(𝑉
1/2

(𝑥)) ≤ 𝜙(𝑥), for any 𝑥 ∈ 𝑆

2.
This means that 𝜙 is decreasing a long the trajectory of 𝑉

1/2
.

Consequently, 𝜙 is a Lyapunov function.
(ii)We know that {𝜙(𝑉(𝑛)

1/2
(𝑥))}

∞

𝑛=1
is a decreasing bounded

sequence. Therefore, the limit lim
𝑛→∞

𝜙(𝑉

(𝑛)

1/2
(𝑥)) = 𝜆 exists.

We want to show that 𝜆 = 0. Suppose that 𝜆 ̸= 0. It means
that {𝑉(𝑛)

1/2
(𝑥)}

∞

𝑛=1
⊂ 𝑆

2
\ {𝑙
1

∪ 𝑙
2

∪ 𝑙
3
}. Since 𝜆 ̸= 0, we get

that

1 = lim
𝑛→∞

𝜙 (𝑉

(𝑛+1)

1/2
(𝑥))

𝜙 (𝑉

(𝑛)

1/2
(𝑥))

= lim
𝑛→∞

(

1 + 3𝑥

(𝑛)

1

2

1 + 3𝑥

(𝑛)

2

2

1 + 3𝑥

(𝑛)

3

2

) .

(27)

On the other hand, since {𝑉(𝑛)
1/2

(𝑥)}

∞

𝑛=1
⊂ 𝑆

2
\ {𝑙
1
∪ 𝑙
2
∪ 𝑙
3
},

there exists 𝜀
0
such that for any 𝑛 one has that

1 + 3𝑥

(𝑛)

1

2

1 + 3𝑥

(𝑛)

2

2

1 + 3𝑥

(𝑛)

3

2

< 1 − 𝜀
0
.

(28)

This is a contradiction. It shows that 𝜆 = 0.
Therefore, 𝜔(𝑥0) ⊂ 𝑙

1
∪ 𝑙
2
∪ 𝑙
3
. We want to show that

𝜔(𝑥

0
) = 𝑙
1
∩ 𝑙
2
∩ 𝑙
3
.

We know that |𝑥(𝑛)
1

−𝑥

(𝑛)

2
||𝑥

(𝑛)

1
−𝑥

(𝑛)

3
||𝑥

(𝑛)

2
−𝑥

(𝑛)

3
|

𝑛→∞

→ 0.
It follows from (24) that

max {



𝑥

(𝑛)

1
− 𝑥

(𝑛)

2







,







𝑥

(𝑛)

1
− 𝑥

(𝑛)

3







,







𝑥

(𝑛)

2
− 𝑥

(𝑛)

3







}

𝑛→∞

→ 0. (29)

This means that (𝑥(𝑛)
1

, 𝑥

(𝑛)

2
, 𝑥

(𝑛)

3
)

𝑛→∞

→ (1/3, 1/3, 1/3). This
completes the proof.

3.2. Numerical Results on Dynamics of 𝑉
𝛼
. We are going to

present some pictures of attractors (an omega limiting set) of
the operator 𝑉

𝛼
: 𝑆

2
→ 𝑆

2 given by (15).
In the cases 𝛼 = 0 and 𝛼 = 1, the corresponding

operators𝑉
0
,𝑉
1
have similar spiral behaviorswhich reel along

the boundary of the simplex [16, 20]. However, one of them
moves clockwise and another one moves anticlockwise. In
these cases, we have that 𝜔

𝑉
0

(𝑥

0
) ⊂ 𝜕𝑆

2 and 𝜔
𝑉
1

(𝑥

0
) ⊂ 𝜕𝑆

2.
We are interested in the dynamics of the evolution

operator𝑉
𝛼
while𝛼 approaches to 1/2 fromboth left and right

sides. In order to see some antisymmetry, we shall provide
attractors of 𝑉

𝛼
and 𝑉

1−𝛼
at the same time.

If 𝛼 is an enough small number, then we can see that the
omega limiting sets of operators 𝑉

𝛼
and 𝑉

1−𝛼
are separated

from the boundary 𝜕𝑆

2 (see Figure 1).
If 𝛼 becomes close to 1/2, then we can see some chaotic

pictures. We observe from the pictures (see Figures 2 and 3)
that, in the cases 𝛼 and 1 − 𝛼, the attractors are the same
but different from each other by orientations.There are some
pictures for the values of 𝛼 = 0.4995, 0.4999, 0.5005, 0.5001

(see Figures 2, 3, 4, and 5). For the evolution operator 𝑉
𝛼
, the

bifurcation point is 𝛼
0
= 1/2 and the influence of the chaotic

operators 𝑉
0
, 𝑉
1
would be dismissed. Therefore, the operator

𝑉
1/2

becomes regular.

3.3. Analytic Results on Dynamics of 𝑊
𝛼
. We are aiming to

present some analytic results on dynamics of𝑊
𝛼
: 𝑆

2
→ 𝑆

2:

𝑊
𝛼
:

{
{
{

{
{
{

{

𝑥



1
= (1 − 𝛼) 𝑥

2

1
+ 2𝑥
1
𝑥
2
+ 𝛼𝑥

2

3
,

𝑥



2
= (1 − 𝛼) 𝑥

2

2
+ 2𝑥
2
𝑥
3
+ 𝛼𝑥

2

1
,

𝑥



3
= (1 − 𝛼) 𝑥

2

3
+ 2𝑥
3
𝑥
1
+ 𝛼𝑥

2

2
.

(30)
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Figure 2: Attractors of 𝑉
𝛼
: 𝛼 = 0.497 and 𝛼 = 0.503.
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Figure 3: Attractors of 𝑉
𝛼
: 𝛼 = 0.499 and 𝛼 = 0.501.

As we already mentioned, this operator can be written in the
following form: 𝑊

𝛼
= (1 − 𝛼)𝑊

0
+ 𝛼𝑊

1
, for any 0 < 𝛼 < 1,

where

𝑊
0
:

{
{
{

{
{
{

{

𝑥



1
= 𝑥

2

1
+ 2𝑥
1
𝑥
2
,

𝑥



2
= 𝑥

2

2
+ 2𝑥
2
𝑥
3
,

𝑥



3
= 𝑥

2

3
+ 2𝑥
3
𝑥
1
,

𝑊
1
:

{
{

{
{

{

𝑥



1
= 𝑥

2

2
+ 2𝑥
1
𝑥
2
,

𝑥



2
= 𝑥

2

3
+ 2𝑥
2
𝑥
3
,

𝑥



3
= 𝑥

2

1
+ 2𝑥
3
𝑥
1
.

(31)

It is clear that 𝑊
0

= 𝑉
0
is Zakharevich’s operator (9) and

the operator 𝑊
1
is a permutation of the operator which was



8 The Scientific World Journal

y

x

0.35

0.34

0.33

0.32

0.31

0.350.340.330.320.31

(a)

y

x

0.36

0.35

0.34

0.33

0.32

0.31

0.360.350.340.330.320.31

(b)

Figure 4: Attractors of 𝑉
𝛼
: 𝛼 = 0.4995 and 𝛼 = 0.5005.
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Figure 5: Attractors of 𝑉
𝛼
: 𝛼 = 0.4999 and 𝛼 = 0.5001.

studied in [11]. By means of methods which were used in [11],
we can easily prove the following result.

Proposition 10. Let 𝑊
1
: 𝑆

2
→ 𝑆

2 be the evolution operator
given as above. Then the following statements hold true.

(i) The operator 𝑊
1
has a unique fixed point 𝐶 = (1/3,

1/3, 1/3) which is attracting.

(ii) The vertexes of the simplex 𝑒
1
, 𝑒
2
, 𝑒
3
are 3-periodic

points.

(iii) 𝜙(𝑥) = 𝑥

2

1
+ 𝑥

2

2
+ 𝑥

2

3
− 1/3 is a Lyupanov function.

(iv) The operator𝑊
1
is regular in the set int𝑆2.

By means of the same methods and techniques which are
used for the operator 𝑉

𝛼
, we can prove the following results
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Figure 6: Attractors of𝑊
𝛼
: 𝛼 = 0.001 and 𝛼 = 0.01.

Proposition 11. Let 𝑊
𝛼

: 𝑆

2
→ 𝑆

2 be the evolution
operator given by (30). Then it has a unique fixed point 𝐶 =

(1/3, 1/3, 1/3); that is, Fix(𝑊
𝛼
) = {𝐶}. Moreover, one has that

(i) if 0 < 𝛼 < 1 − √3/2, then the fixed point is repelling;
(ii) if 1 − √3/2 < 𝛼 < 1, then the fixed point is attracting;
(iii) if 𝛼 = 1 −√3/2, then the fixed point is non-hyperbolic.

Theorem 12. Let 𝑊
𝛼

: 𝑆

2
→ 𝑆

2 be the evolution operator
given by (30). Then the following statements hold true.

(i) If 0 < 𝛼 < 1 − √3/2, then 𝜔(𝑥

0
) ⊂ int𝑆2 is an infinite

compact set, for any 𝑥0 ̸= 𝐶.
(ii) If 1−√3/2 ≤ 𝛼 < 1, then𝜔(𝑥

0
) = {𝐶}, for any 𝑥0 ∈ 𝑆

2.

Numerically, we shall see in the next section that the
evolution operator 𝑊

𝛼
: 𝑆

2
→ 𝑆

2 given by (30), where
0 < 𝛼 < 1 − √3/2, has the following properties.

(i) The operator𝑊
𝛼
is nonergodic.

(ii) The operator𝑊
𝛼
exhibits the Li-Yorke chaos.

3.4. Numerical Results on Dynamics of 𝑊
𝛼
. We are going to

present some pictures of attractors (an omega limiting set) of
the operator𝑊

𝛼
: 𝑆

2
→ 𝑆

2 given by (30).
In the cases 𝛼 = 0 and 𝛼 = 1, the operator 𝑊

0
is chaotic

and the operator 𝑊
1
is regular. Since 𝑊

𝛼
= (1 − 𝛼)𝑊

0
+

𝛼𝑊
1
, the evolution operator𝑊

𝛼
gives the transition from the

regular behavior to the chaotic behavior. Consequently, we
are aiming to find the bifurcation point in whichwe can see the
transition from the regular behavior to the chaotic behavior.

If 𝛼 is a very small number then attractors of the operator
𝑊
𝛼
are separated from the boundary of the simplex (see

Figure 6). However, the influence of the operator 𝑊
0
is still

higher and the operator𝑊
𝛼
is nonergodic and chaotic.

If 𝛼 becomes close to 1 − √3/2 (from the left side),
then we can see some interesting pictures (see Figure 7). If
we continue to increase 𝛼, then the evolution operator 𝑊

𝛼

becomes regular (for any 𝛼 > 1 − √3/2). This means that the
bifurcation point is 𝛼

0
= 1−√3/2. Therefore, in order to have

a transition from the regular behavior to the chaotic behavior,
we need one bifurcation point 𝛼

0
= 1 − √3/2.

4. Conclusions

In this paper, we present the mathematical model of the
evolution of traits having 3 alleles by mutating the biological
environment. We have presented two types of mutations.
We have shown that a mutation (a mixing) in the system
can be considered as a transition between two different
types of systems having Mendelian inheritances. Namely, the
first mutation presents the transition between two chaotic
biological systems; meanwhile the second mutation presents
the transition between regular and chaotic systems.

In the first mutation, we have presented some pictures
of attractors of the operator 𝑉

𝛼
: 𝑆

2
→ 𝑆

2 given by
(15). In the cases 𝛼 = 0 and 𝛼 = 1, the corresponding
operators 𝑉

0
, 𝑉
1
have similar spiral behaviors which reel

along the boundary of the simplex. However, one of them
moves clockwise and another one moves anticlockwise. In
these cases, we had that 𝜔

𝑉
0

(𝑥

0
) ⊂ 𝜕𝑆

2 and 𝜔
𝑉
1

(𝑥

0
) ⊂ 𝜕𝑆

2.
If 𝛼 is an enough small number then we observed that the
omega limiting sets of operators 𝑉

𝛼
and 𝑉

1−𝛼
are separated

from the boundary 𝜕𝑆

2 (see Figure 1). If 𝛼 becomes close to
1/2 then we had some chaotic pictures. We observed from
the pictures (see Figures 2 and 3) that, in the cases 𝛼 and
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Figure 7: Attractors of𝑊
𝛼
: 𝛼 = 0.13333 and 𝛼 = 0.1338.
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Figure 8: Attractors of𝑊
𝛼
: 𝛼 = 0.139 and 𝛼 = 0.150.

1 − 𝛼, the attractors are the same but different from each
other by orientations. There are some pictures for the values
of 𝛼 = 0.4995, 0.4999, 0.5005, 0.5001 (see Figures 2–5). For
the evolution operator 𝑉

𝛼
, the bifurcation point is 𝛼

0
= 1/2

and the influence of the chaotic operators 𝑉
0
, 𝑉
1
would be

dismissed.Therefore, the operator𝑉
1/2

becomes regular.This

means that during the transition between two (in some sense,
opposite each other) chaotic systems, at some point of the
time, the system should become stable.

In the second mutation, we have presented some pictures
of attractors of the operator 𝑊

𝛼
: 𝑆

2
→ 𝑆

2 given by (30).
In the cases 𝛼 = 0 and 𝛼 = 1, 𝑊

0
is chaotic and 𝑊

1
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is regular. The evolution operator 𝑊
𝛼
gives the transition

from the regular behavior to the chaotic behavior. If 𝛼 is a
very small number then attractors of the operator 𝑊

𝛼
are

separated from the boundary of the simplex (see Figure 6).
However, the influence of the operator 𝑊

0
is still higher and

the operator 𝑊
𝛼
is nonergodic and chaotic. If 𝛼 becomes

close to 1 − √3/2 (from the left side), then we can see some
interesting pictures (see Figures 7 and 8). If we continue to
increase 𝛼, then the evolution operator 𝑊

𝛼
becomes regular

(for any 𝛼 > 1 −√3/2). This means that the bifurcation point
is 𝛼
0

= 1 − √3/2. Therefore, in order to have a transition
from the regular behavior to the chaotic behavior, we need
one bifurcation point 𝛼

0
= 1 − √3/2. Since the operator

𝑊
𝛼
is the convex combination of chaotic (nonergodic) and

regular transformations, it is natural to expect the bifurcation
scenarios in this evolution. Namely, in order to have a
transition from regular to chaotic behavior we have to cross
from the bifurcation point. Numerical result 𝛼 ⋍ 0.13397

also confirms the theoretical result about the exact value of
bifurcation point. However, the biological plausiblity of this
value is unknown for the authors.

In this paper, we have considered two types of mutations
of three alleles which occurred with the same probability. It
is natural to consider mutations with different probabilities
among alleles. In this case, it is expected to have more
complicated dynamics in the biological system. The future
research is to study the dynamics of the mutated biological
system having a single gene with a finite number of alleles.
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