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TheArgo-derived background diapycnal mixing (BDM) proposed byDeng et al. (in publish) is introduced to and applied inHybrid
Coordinate OceanModel (HYCOM). Sensitive experiments are carried out using HYCOM to detect the responses of ocean surface
temperature and Meridional Overturning Circulation (MOC) to BDM in a global context. Preliminary results show that utilizing
a constant BDM, with the same order of magnitude as the realistic one, may cause significant deviation in temperature and MOC.
It is found that the dependence of surface temperature andMOC on BDM is prominent. Surface temperature is decreased with the
increase of BDM, because diapycnal mixing can promote the deep cold water return to the upper ocean. Comparing to the control
run, more striking MOC changes can be caused by the larger variation in BDM.

1. Introduction

Diapycnal mixing (DM) plays a significant part in the global
ocean circulation, particularly in Meridional Overturning
Circulation (MOC). DM changes the water properties and
contributes to MOC by lifting the deep water to the upper
ocean.Therefore, determiningDM accurately is vital to num-
erical global ocean models. Usually in global ocean models
(e.g., Hybrid Coordinate Ocean Model [HYCOM], [1], and
Community Climate System Model [CCSM], [2]) DM is re-
presented by the background diapycnal mixing (BDM) in the
ocean interior combined with DM algorithm (e.g., K Profile
Parameterization [KPP], [3]) that resolves the added DM in
the mixing intensify region (e.g., the upper ocean mixed
layer).

It is believed that BDMin the ocean interior ismainly orig-
inated from the breaking of internal waves [4]. Many obser-
vation-based estimates in terms of BDM were proposed [5–
9], and it is estimated that the BDM’s scale of magnitude is 1 ×
10−5m2/s. However, BDM is spatial dependent; it will be
heightened at high latitudes and in the regions over rough
topography [10]. Currently some globalmodels use a constant
to represent BDM, such as HYCOM. However neglecting
the spatial variability of BDM will result in deviations in

modeling outcomes. In this work, the Argo observation-
derived BDM [9] is implemented in HYCOM to improve its
built-in DM parameterization, and the impacts of BDM on
global ocean modeling are investigated by conducting sensi-
tive experiments. The responses of temperature and MOC to
the changes in BDM are analyzed in detail.

2. The Argo Observation-Derived BDM

The gridded BDM dataset for the upper 2000m global ocean
derived from Argo observations has been proposed by Deng
et al. [9]. Argo project was initiated in 2000, and it had
reached its goal of 3000 active floats by the end of 2007. By
nowmore than 8000Argofloats have beendeployed by differ-
ent organizations from 23 countries. Argo floats cycle to
2000mdepth every 10 days, with 4-5 year lifetimes, providing
more than 100,000 temperature/salinity profiles and velocity
measurements per year distributed over the global oceans. All
the Argo temperature/salinity observations were collected,
and then experienced the quality control procedure. Based on
those refined observational data, BDM was calculated using
a fine-scale parameterization adopted by Wu et al. [8].

Figure 1 shows the global distribution of the BDM at
depth of 112.5m and 1625manddepth-averagedBDM.DM in
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Figure 1: Global distribution of the BDM: (a) at depth of 112.5m; (b) at depth of 1625m; (c) depth averaged. (Unit: m2/s.) (This figure is
adopted from [9].)

the upper 2000m generally increases with the latitude, with
small (large) values at the low (high) latitudes.Themagnitude
of DM ranges from ∼0.05 × 10−5 to ∼2.5 × 10−5m2/s, which
agrees in scale of magnitude with previous estimates. For the
detailed information of the Argo-derived BDM, please refer
to Deng et al. [9].

3. Implementation of Argo-Derived
BDM in HYCOM

K Profile Parameterization (KPP) has been widely used in
ocean models and is one of the DM parameterization algo-
rithms included inHYCOM. In this study we choose the KPP
scheme to parameterize the DM. Following software design
description for HYCOM [11], DM (diffusivity/viscosity) con-
sists of three components, 𝐾 = 𝐾𝑠 + 𝐾𝑤 + 𝐾𝑑, where 𝐾𝑠
is the contribution of resolved shear instability, 𝐾𝑤 refers to
BDM, and 𝐾𝑑 is the contribution of double diffusion. The

parameterizations of both𝐾𝑠 and𝐾𝑑 are detailed inWallcraft
et al. [11]. 𝐾𝑤 is set to a constant (1 × 10−5m2/s). As men-
tioned above, studies have confirmed that the variability of
𝐾
𝑤 is spatial dependent; that is, it is a function of latitude and

depth. So, using a constant to represent this term is obviously
unsatisfactory from the physical point of view. Properly spec-
ification of𝐾𝑤 in an oceanmodel can both represent physical
process and ensure numerical stability [12]. For the purpose
of improving the parameterization’s physics, we introduce the
Argo-derived BDM to replace the original constant 𝐾𝑤.
Given the fact that Argo-derived BDM is only available in
upper 2000m ocean, to keep the model consistency, a depth-
averaged BDM is introduced.

4. Experiment Settings

The configurations of global HYCOM are mainly adopted
from Deng et al. [13, 14]. The calculation domain is from
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Table 1: Background diapycnal mixing and simulated temperature for the experiments.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 (control) Exp. 6 Exp. 7 Exp. 8 (realistic)

BDM (m2/s) 1𝑒 − 7 5𝑒 − 7 1𝑒 − 6 5𝑒 − 6 1𝑒 − 5 5𝑒 − 5 1𝑒 − 4 Argo-derived

Tm (∘C) 15.1850 15.1848 15.1828 15.1702 15.1529 14.9952 14.7221 15.1562

BDM: background diapycnal mixing; Tm: annual-mean temperature at the ocean surface; BDM used in the control run Exp. 5 is default value, and the realistic
run Exp. 8 adopts the Argo-derived BDM.
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Figure 2: Annual-mean temperature at the ocean surface. (a) Exp. 5 (control run with default BDM of 1 × 10−5m2/s); (b) Exp. 8 (realistic run
with Argo-derived BDM); (c) differences between the Exp. 5 and Exp. 8.
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Figure 3: Annual-mean temperature deviation between the diagnose runs and the control run (Exp. 5). (In order from left to right and from
top to bottom, the plots, respectively, present Exp. 1–Exp. 5, Exp. 2–Exp. 5, Exp. 3–Exp. 5, Exp. 4-Exp. 5, Exp. 6-Exp. 5, and Exp. 7–Exp. 5.)

64.43911∘S to 64.43911∘N with a resolution of 2.5∘ × cos𝜑 in
latitude, where 𝜑 is the corresponding latitude, and from
180∘W to 180∘E with a resolution of 2.5∘ in longitude, totally
144 × 69 horizontal grid points. 26 hybrid layers are specified
in the vertical direction. The initialization condition is from
the Polar Science Center Hydrographic Climatology (PHC)
3.0. This Climatology is also used for lateral boundary nudg-
ing and relaxation of salinity and temperature on the ocean
surface. Model was spun up for 100 years forced by ERA15
ECMWF reanalysis monthly climatology. The forcing vari-
ables are 10mwinds, ocean surface air temperature, precipita-
tion, radiation heat flux, short-wave radiation, and water
vapor mixing ratio. 24 hourly ECMWF ERA40 wind anoma-
lies are added to ECMWF ERA15 climatology to produce the
actual year run. After the spin-up run, 8 experimentswith dif-
ferent BDM (Table 1) are designed and conducted. Exp. 5 is

the control run, and Exp. 8 is the realistic run which adopts
the Argo-derived BDM. The application of BDM in Exp. 8 is
presented in Section 3.

5. Results

The averaged temperature at the global ocean surface simu-
lated by each experiment is listed inTable 1, showing that tem-
perature is decreased with the increase of BDM. It can be
understood that stronger mixing will lift more deep cold
water to the surface and result in the decrease of surface temp-
erature. This result agrees well with our expectation that DM
is capable of promoting the transport of deep water to upper
ocean in the MOC system. Figure 2, in order from top to
bottom, respectively, gives the surface temperature simulated
by Exp. 5 (control run) and 8 (realistic run) and the difference
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Figure 4: Annual-mean Atlantic MOC (units: Sv). (a) Exp. 5 (control run with default BDM of 1 × 10−5m2/s); (b) Exp. 8 (realistic run with
Argo-derived BDM); (c) differences between Exp. 5 and Exp. 8.

between them. The distribution pattern is similar (Figures
2(a) and 2(b)), because the BDM used in those two experi-
ments is generally in the same order of magnitude, but with
no spatial variability in the control run. Some large differ-
ences appear in equatorial regions (Figure 2(c)), because in
those regions the BDMof Exp. 8 (∼1× 10−6m2/s, Figure 1) is of
order smaller than that of control run (1 × 10−5m2/s). This
indicates that utilizing a constant BDM, with the same order
of magnitude as the realistic one, may cause significant devi-
ation in the simulated temperature in the equatorial area.
Figure 3 shows a similar phenomenon to that revealed by
Table 1; larger BDMdifference leads tomore prominent temp-
erature difference.

MOC in Atlantic Ocean simulated by Exp. 5 and 8 is
presented by the top andmiddle plots in Figure 4.The similar
stream function pattern is exhibited. The center of the main
MOC cell locates at the depth of ∼1000m, with a maximum
northward volume transport of ∼30 Sv. The downwelling in
the north can reach a depth of more than 3000m. Our

simulation is generally consistent with the result given by
GFDL’s climate model CM3 [15]. MOC is greatly altered at
latitudes of 10∘N and 55∘S (Figure 4(c)); the changes can be as
large as ∼3 Sv. The alternations in the rest of regions are con-
fined in ∼1 Sv. Although BDM in Exp. 5 and 8 has the same
order of magnitude, the spatial variability of BDM can cause
huge difference in MOC, in particular in the tropical region
and the South Ocean, because the control run’s BDM is larger
in tropical region and smaller in South Ocean than BDM in
realistic run. Like the situation in Figure 3, Figure 5 also
demonstrates that larger BDM difference results in more
obvious alternation in MOC.

6. Conclusions

In this study, we implement the Argo-derived BDM in
HYCOM and mainly focus on the sensitive experiments for
detecting the responses of temperature and MOC to the
changes of BDM. From the sensitive experiments, robust



6 The Scientific World Journal

0

1000

2000
3000
4000
5000

D
ep
th

60S 30S 0 30N 60N

4
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
0.4
0
−0.4

−0.8

−1.2

−1.6

−2

(a)

0

1000

2000
3000
4000
5000

D
ep
th

60S 30S 0 30N 60N

4
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
0.4
0
−0.4

−0.8

−1.2

−1.6

−2

(b)

0

1000

2000
3000
4000
5000

D
ep
th

60S 30S 0 30N 60N

4
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
0.4
0
−0.4

−0.8

−1.2

−1.6

−2

(c)

0

1000

2000
3000
4000
5000

D
ep
th

60S 30S 0 30N 60N

4
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
0.4
0
−0.4

−0.8

−1.2

−1.6

−2

(d)

0

1000

2000
3000
4000
5000

D
ep
th

60S 30S 0 30N 60N

4
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
0.4
0
−0.4

−0.8

−1.2

−1.6

−2

(e)

0

1000

2000
3000
4000
5000

D
ep
th

60S 30S 0 30N 60N

4
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
0.4
0
−0.4

−0.8

−1.2

−1.6

−2

(f)

Figure 5: Annual-mean Atlantic MOC deviation between the diagnose runs and the control run (Exp. 5). (In order from left to right and
from top to bottom, the plots, respectively, present Exp. 1–Exp. 5, Exp. 2–Exp. 5, Exp. 3–Exp. 5, Exp. 4-Exp. 5, Exp. 6-Exp. 5, and Exp. 7–Exp.
5.)
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dependence of surface temperature and Atlantic MOC on
BDM is found. Temperature is decreased with the increase of
BDM, because stronger mixing will lift more deep cold water
to the surface and lead to the decrease of surface temperature.
It is concluded that utilizing a constant BDM, with the same
order of magnitude as the realistic one, may cause significant
deviation in temperature and MOC. We emphasize that up-
dateing the constant BDM to the Argo-derived one in
HYCOMwill definitely improve its physics inDMparameter-
ization and thus its modeling skill.

It is noted that BDM used in the realistic run is a depth-
averaged product, thus lacking vertical variability. However,
BDMhas been found to bemore complicated in the deep and
bottom ocean; for example, it is enhanced over topographic
ridges, sea mounts, and steep slopes. Therefore there is a
need to introduce BDM for the whole depth with a depth-
dependent one in the future. However, the absence of full-
depth temperature and salinity observations over the global
ocean, especially the remote open ocean, does pose a chal-
lenge for the accurate quantification of BDM in the deep
ocean. At this stage, the action of replacing the fixed BDM
with Argo observation-based one is a forward step.
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