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Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane
biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and
numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been
systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the
geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress
field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical
value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to

improving the science and efficiency of shale reservoir fracturing design.

1. Introduction

Hydraulic fracturing has become an important technique
to improve well production and the recovery of low-
permeability reservoirs in the oil and gas field development.
In recent years, especially, under the impetus of the multistage
fracturing technique of horizontal well [1-3], a great success
has been achieved in developing unconventional natural gas
of low permeability shale reservoirs in USA, and its annual
production in 2011 reached 1720 x 10* m?, far more than 2011
natural gas total production in China 1025.3 x 10° m’.

For a long time, hydraulic fracture geometry in the
far well zone is one of the latest leading-edge theories in
hydraulic fracturing. According to the traditional classical
fracturing theory, hydraulic fracture in the far well zone is
a symmetry plane biwing fracture extending in the direction
perpendicular to the minimum horizontal principal stress. In
recent years, many researchers have recognized the existence
of the complex hydraulic fracture extension. Warpinski et
al. [4-6] discovered the phenomenon that the main fracture
and the branch fractures extended simultaneously through
the field tests and put forward the concept of fracture
propagation zone. Afterwards, through physical simulation
experiments, Blanton [7, 8] and Chen et al. [9-12] found that

hydraulic fracture presented three kinds of extension path
when it intersected with natural fractures: crossing natural
fractures, extending along natural fractures, or the two cases
occurring simultaneously. Mahrer [13] considered fracture
network would form during fracturing process of naturally
fractured formations. Beugelsdijk et al. [14] confirmed the
existence of the fracture network and found that the fracture
network would easily form under low fluid viscosity injection
through laboratory experiments. Fisher and Maxwell [15-
18] found that hydraulic fracture would extend into network
during fracturing of the shale reservoir through microseismic
monitoring mapping. Mayerhofer et al. [19, 20] proposed that
good stimulation effect of shale reservoirs could be achieved
by increasing the stimulated reservoir volume (SRV) to form
a maximum area of the fracture network, and the stimulation
success of shale reservoirs depended on whether hydraulic
fracture could extend into the fracture network. Due to
the insufficient and imperfect understanding of the fracture
network forming mechanism in shale reservoirs, there is
always blindness in the fracturing design of shale reservoir.
Based on the research results of laboratory experiments,
field fracturing practices, theoretical analysis, and numerical
simulation, this paper analyzes the factors that influence
hydraulic fracture propagation in shale reservoirs, which



has an important theoretical significance to improve the
reliability of the fracturing design for shale reservoirs.

2. Hydraulic Fractures Extending
Characteristic in Shale

Microseismic mapping showed that hydraulic fracture in
shale was a complex fracture network system which consisted
of multiple irregular fractures [21] as shown in Figure 1. The
Barnett shale natural fractures’ direction was the north by
west, and the propagation direction of the induced hydraulic
fractures was north by east; therefore, hydraulic fractures
intersected with natural fractures, which led to the complex
fracture system and showed many cross-cutting linear fea-
tures.

Based on fracture extension characteristic in shale reser-
voirs, Warpinski et al. [21] classified hydraulic fractures into
four major categories: the single plane biwing fracture, com-
plex multiple fracture, complex multiple fracture with open
natural fractures, and complex fracture network, as shown in
Figure 2. Warpinski et al. also believed that complex fracture
network was formed after fracturing in shale reservoirs.

3. Geologic Factors Affecting Fracture Network

Several important geological factors affecting the hydraulic
fracture propagation include rock mineral composition, rock
mechanics properties, horizontal stress field, and distribution
of natural fractures.

3.1. Mineral Composition. Rock brittleness is, to a large
degree, controlled by its mineralogy [22, 23]. As brittleness
mineral concentration, including quartz, feldspar, and calcite
which contains silicon or calcium, increases and the clay con-
centration reduces, the rock brittleness gets higher and the
development of natural fractures becomes better. Then the
induced fracture network is easily formed during fracturing
of shale reservoirs, which is beneficial for shale gas produc-
tion. However, the volume of clay mineral as a percentage of
the total matrix averages more than 30% for the whole core.
This amount of clay will limit the effective gas filled porosity
of shale and should make the shale softer and more ductile.
Then hydraulic fracture mostly extends into simple plane
fracture instead of fracture network [24]. Hydraulic fracture
propagation mode and shale gas exploitation showed that
the rock brittleness mineral concentration was between 46%
and 60% [25], which could bring economic production. The
result showed that threshold condition of brittleness mineral
concentration for forming a complex fracture network was
45%.

3.2. Rock Mechanics Properties. The concept of rock brittle-
ness combines both Poisson’s ratio and Young’s Modulus.
These two components are combined to reflect the rock
ability to fail under stress (Poisson’s Ratio) and maintain a
fracture (Young’s Modulus) once the rock fractures.In terms
of Poisson’s Ratio, the lower the value, the more brittle the
rock, and as values of Youngs Modulus increase, the more
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FIGURE I: Microseismic mapping confirmed complex fracture exten-
sion in shale reservoirs [21].
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FIGURE 2: Classification of fracture from simple to complex [21].

brittle the rock be. Rickman et al. proposed to calculate rock
brittleness by Young’s Modulus and Poisson’s Ratio, and the
following equations are used [26]:
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where E is the rock elastic modulus, MPa; v is the rock
Poisson’s ratio, dimensionless; Byr_g is brittleness compo-
nent corresponding to elastic modulus, dimensionless; By;r_,
is brittleness component corresponding to Poisson’s ratio,
dimensionless; By;r_r is the total brittle index, dimensionless.

According to (1), the correlation diagram of rock brittle-
ness and rock mechanical parameters can be calculated, as
shown in Figure 3. Brittleness index is the function of elastic
modulus and Poisson’s ratio; on the whole, rock brittleness
index is higher under the condition of high elastic modulus
and low Poisson’s ratio.

Rickman et al. proposed the correlation between the
rock brittleness index and fracture morphology, as shown
in Figure 4. As brittleness increases, the fracture geometry
becomes more complex. When the brittleness index of shale
is lower, it is easy to form the conventional biwing fracture.
While the brittleness index is more than 60, the fracture will
extend into fracture network.

3.3. Distribution of Natural Fractures. In the fracturing pro-
cess of shale reservoir, natural fractures are activated to
broaden the hydraulic fractures extending area and conduct
gas from shale matrix to well, which is the key factor to
improve the stimulation effect [27]. In fact, any hydraulic
fracture extension in fractured reservoir will be influenced by
natural fractures; hydraulic fracturing field test in fractured
formations provided a visual observation for the complex
geometry of hydraulic fractures [4], as shown in Figure 5;
single fracture extension could not be observed and more
complex branching fractures extending showed after fractur-
ing.
Based on the results analysis of the field test, Warpinski
and Teufel believed that the geometric shape of hydraulic
fractures was a fracture zone with width about 6-9m and
put forward the idea of far well fracture propagation zone [4].
As shown in Figure 6, hydraulic fracture presented multiple
parallel branching extension form. At the same time, we could
find the more developed natural fractures had a greater effect
on hydraulic fracture extension, which made the extending
mode of hydraulic fracture more complex.

3.4. Horizontal Stress Field. According to fracture network
extension mode in Figure 6, the fracture network is essen-
tially controlled by the intersecting of hydraulic fracture and
natural fractures. Blanton [7, 8] implemented the simulation
experiment about hydraulic fracture propagation path when
it intersected with natural fractures through triaxial stress
experiment, as shown in Figure 7. The experiment results
showed that hydraulic fracture would propagate along natural
fractures under low horizontal stress difference condition and
would cross natural fractures under high horizontal stress
difference condition. However, under the high approaching
angles and low horizontal stress difference, hydraulic frac-
tures extending along and cross natural fracture would appear
simultaneously.

Chen et al. [12] confirmed that the fracture network
extending pattern is associated with horizontal principal
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FIGURE 3: Relationship between rock brittle index and rock mechan-
ics parameters.
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FIGURE 4: Effect of rock brittleness index on hydraulic fracture
pattern [26].

stress difference by a large size triaxial experiment system.
Under the condition of high horizontal principal stress
difference, a main fracture and some small multibranch
fractures would form, but under the condition of low hor-
izontal principal stress difference, a radial fracture network
would be induced, as shown in Figure 8. Hence, fractured
formations with low horizontal principal stress difference
possess the weak stress anisotropy, and the treating net
pressure difference is less when fractures propagate along
different direction. So it is easier for hydraulic fracture to
propagate along natural fractures in random direction to
form fracture network.

4. Engineering Factors Affecting
Fracture Network

The engineering factors which influence fracture network
extension in shale formation include three aspects: treating
net pressure, fluid viscosity, and fracturing scale.

4.1. Treating Net Pressure. Olson and Dahi-Taleghani [28]
researched the impact of net pressure on the interaction



FIGURE 5: Complex fracture extension in fractured reservoir [4].
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FIGURE 6: Visualization of far-field fracture network in fractured
rock mass [4].
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FIGURE 7: Experimental results of the impact of stress difference and
approaching angles on fracture propagation [8].
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of hydraulic facture and natural fractures in the fractured
reservoir by the boundary element method and proposed the
concept of the net pressure coeflicient as follows:

Pr.. — 0
Rn _ frac min , (2)
Omax ~ Omin

where Py, is fracture fluid pressure, MPa, and o,,,, and o,,;,
are, respectively, the horizontal maximum and minimum
principal stress, MPa.

Considering the natural fractures strike along the hori-
zontal minimum principal stress direction, fracture propa-
gation direction would be perpendicular to the natural frac-
tures. The simultaneous propagation of hydraulic fractures
from the 5 different horizontal shooting points was simulated
when R, equaled to 1 and 2, respectively. The simulated results
were shown in Figure 9, and, as can be seen from the contrast,
the greater treating net pressure would cause more complex
fracture extension.

From Figure 6, the plane frame of intersection of
hydraulic fracture and natural fracture can be obtained,
as shown in Figure 10 [29]. During hydraulic fracturing, if
hydraulic fracture propagates along the natural fractures tip
when it intersects with natural fracture, it is possible to induce
the branch of hydraulic fracture to form a complex fracture
network. However, the fluid pressure of intersection point
needs to overcome the fluid pressure drop from intersecting
point to natural fracture tip and meet the initiation and
propagation condition at natural fracture tip.

According to the theory of elasticity, the mechanics
condition of fracture propagation from natural fracture tip
is as the following equation [29]:

pi (t) - Apnf >0, + To’ (3)

where o, is the normal stress acting on the natural fracture,
MPa; T, is the rock tensile strength, MPa; Ap,, is fluid
pressure drop between intersection point and natural fracture
tip, MPa; p;(t) is the fluid pressure at the intersection point,
MPa.

Considering that hydraulic fracture is blunted at the
interface, the fluid pressure of intersection point of hydraulic
fracture and natural fracture can be expressed as follows:

Pi (t) = Omin + Pnet’ (4)

where p, . is the treating net pressure, MPa.
The normal stress acting on the natural fracture is

+ Oy
o, = 5 min

O = O i
L 5 8 c0s2(90° - 0), (5)

by submitting (4) and (5) into (3), the following equation can
be obtained:

1

Pret > 3 (Gmax -

5 Omin) (1 —c0s20) + T, + Ap,s  (6)



The Scientific World Journal

Stress difference is 10 MPa
(a)

S R AN

Stress difference is 5 MPa

(b)

FIGURE 8: Experimental results contract of fracture propagation pattern for different stress difference [12].
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FIGURE 9: Hydraulic fracture propagation pattern for horizontal wells under different net pressure [28].

and Ap, can be calculated by the following equation [30]:

4(pi— o)
Apy = TO
S} 2_2
Xz 1 exp[_(2n+1)nfnft:| (2n+1)7r)
S2o2n+ 1 4, uC L7 2
(7)

where k¢ is natural fracture permeability, mD; ¢, ¢ is natural
fracture porosity, dimensionless; y is reservoir fluid viscosity,
mPa s; C, is natural fracture comprehensive compression
factor, 1/MPa; p,, is the reservoir initial fluid pressure, MPa; p;
is the fluid pressure at intersection point of hydraulic fracture
and natural fracture, MPa; L ¢ is natural fracture length, m.

According to (6), we can calculate the treating net
pressure when hydraulic fracture propagates along natural
fractures under different horizontal stress difference and
different approaching angles, as shown in Figure 11. Clearly,
if the horizontal stress difference and the approach angle are
high, the complex fracture network can grow only if a high
net pressure can be developed.

Based on the above results of numerical simulation and
theoretical analysis, we can see that improving the treating net
pressure is favorable of forming a complex fracture network
for shale reservoir fracturing.

4.2. Fluid Viscosity. The fracturing fluid viscosity in shale
reservoir has an important influence on the complexity
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FIGURE 1I: Net pressure of hydraulic fracture reorienting propa-
gation along natural fracture for different approaching angles and
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of fracture extension. The fluid viscosity gets higher; the
complexity of fracture extension will reduce remarkably [31].
In the section, the effect of the fracturing fluid viscosity on
hydraulic fracture network propagation is analyzed through
laboratory experiments and field fracturing practice.

Beugelsdijk et al. [14] have studied the effect of fracturing
fluid viscosity on the hydraulic fracture propagation in
fractured formations by laboratory experiment, as shown in
Figure 12. The experimental results showed that the operation
pressure curve did not present the characteristics of fracture
initiation for the injection of low viscosity fluid. By observing
rock body, it was found that there was no main fracture along
the horizontal maximum principal stress direction and many
fractures always extended along natural fractures. However,
main fracture could be obviously visible when high fluid
viscosity was injected, and hydraulic fracture hardly reacted
with natural fractures. From the experimental results, it can
be seen that low fluid viscosity is conducive to forming
complex fracture network and high fluid viscosity is good for
forming a single fracture.

The field treating data showed that the injection of high
viscosity fluid will reduce the complexity of fracture network

The Scientific World Journal

[32, 33]. Based on microseismic monitoring mapping of
two operations with different fracturing fluid on a same
horizontal well in shale [34], Cipolla et al. [35] calculated and
contrasted the SRV when two kinds of fracturing fluid (gel
fracturing fluid and slickwater) were, respectively, taken. As
obviously shown in Figure 13, the SRV by using slickwater
was much larger than the SRV by taking gel fracturing fluid,
which indicated that slickwater could easily form the complex
fracture network. The research result provides an impor-
tant basis for shale stimulation to select low viscosity fluid
preferably.

Laboratory experiment and fracturing practice analy-
sis obviously show that fracturing fluid viscosity plays an
important role in the fracture network complexity. The
selection of fracturing fluid with low viscosity is more
favorable for the generation of a complex fracture net-
work. Due to lower fracturing fluid viscosity, the fluid
pressure conduction is easier, and fluid pressure drop is
smaller in natural fractures; hence, the fluid pressure at
natural fracture tip is easier to reach the pressure thresh-
old that initiation and propagation of hydraulic fracture
needs.

4.3. Fracturing Scale. Traditional fracturing theory believes
that as the fracturing scale gets larger, the hydraulic fracture
half-length will become longer. However, for the fracturing of
shale reservoir, there is the same relevance between fracturing
scale and the SRV.

Mayerhofer et al. [19] firstly proposed this concept of
stimulated reservoir volume (SRV) in 2006 when they studied
the microseismic monitoring mapping and fracture mor-
phology variation characteristics in Barnett shale. Research
results showed that the bigger the SRV is, the higher the
shale well production is. Then increasing SRV was proposed
to improve stimulation effect in the shale fracturing. Mayer-
hofer et al. [20] further discussed the relationship between
fracturing scale and the total length of fracture network in
Barnett shale 5 wells, as shown in Figure 14, which showed
that the bigger the pumped fracturing fluid volume is, the
more complex the fracture network is and the longer the total
length of fracture network is.

Many researchers have studied the impact of shale frac-
turing scale on the production after fracturing [3, 19, 21].
Mayerhofer et al. [19] combined microseismic monitoring
mapping and numerical simulation method to analyze the
relationship between the SRV and the production after
fracturing in shale reservoir, as shown in Figure 15, which
showed the positive correlation relationship between the SRV
and the production.

Hossain et al. [36] have proposed that well production
increase was mainly from dilation of natural fracture network
for naturally fractured reservoirs. Accordingly, for shale
reservoirs, the greater the fracturing scale is, the more
complex the fracture network propagation is, and the higher
the corresponding well production is. Hence, using large
fracturing scale to increase the SRV is an important measure
to improve the stimulation effect and the production of the
shale well.
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FIGURE 13: SRV comparison of using gel fracturing fluid and slickwater fracturing fluid [34].

5. Conclusions

This paper discusses the controlling factors of fracture
extending into network in the shale reservoir from the
geological and the engineering factors: according to reservoir
geological attributes, higher brittle mineral contents of rock,
stronger elastic characteristic of rock mechanical properties,
smaller horizontal differential stress, and better developed
natural fractures will be constructive to better extension and
propagation of hydraulic fractures extending into network;
according to engineering conditions of fracturing operations,
higher treating net pressure, lower fluid viscosity, and larger

fracturing scale will be more helpful to form a fully propa-
gated fracture network.

The forming of fracture network is the key to obtain effec-
tive development in shale formation. The special hydraulic
fracture propagation in shale reservoir broadens the under-
standing to conventional fracturing technology. Because of
the above research results, this paper has an important
theoretical and practical significance to understand the
extending mechanism and regularity of fracture network in
shale formation and can improve the science and effectiveness
of fracturing design for shale reservoir.
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