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We will study the upper semicontinuity of pullback attractors for the 3D nonautonomouss Benjamin-Bona-Mahony equations
with external force perturbation terms. Under some regular assumptions, we can prove the pullback attractors A

𝜀
(𝑡) of equation

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + ∇⋅

→

𝐹 (𝑢) = 𝜀𝑔(𝑥, 𝑡), 𝑥 ∈ Ω, converge to the global attractorA of the above-mentioned equation with 𝜀 = 0 for
any 𝑡 ∈ R.

1. Introduction

In this paper, we will consider the upper semicontinuity
of pullback attractors for the following 3D Benjamin-Bona-
Mahony equation:

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + ∇⋅

→

𝐹 (𝑢) = 𝜀𝑔 (𝑥, 𝑡) , 𝑥 ∈ Ω, (1)

𝑢(𝑡, 𝑥)|
𝜕Ω

= 0, (2)

𝑢 (𝜏, 𝑥) = 𝑢
𝜏
(𝑥) , 𝜏 ∈ R. (3)

Here Ω ⊂ R3 is a bounded domain with sufficiently smooth
boundary 𝜕Ω; 𝑢(𝑡, 𝑥) = (𝑢

1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) is the

velocity vector field; ] > 0 is the kinematic viscosity;
→

𝐹 is a
nonlinear vector function; 𝜀 ≥ 0 is a small nonnegative para-
meter; the external force 𝑔(𝑥, 𝑡) is locally square integrable
in time for (𝑥, 𝑡) ∈ Ω × R, that is, for any 𝑡 ∈ R, 𝑔(𝑥, 𝑡) ∈

𝐿2loc(R; 𝐻), where𝐻 = (𝐿2(Ω))
3,𝑉 = (𝐻1

0
(Ω))

3, and (⋅, ⋅) and
‖ ⋅ ‖ are the inner product and norm of𝐻, respectively.

The Benjamin-Bona-Mahony (BBM) equation is a well-
known model in physical applications which incorporates
dispersive effects for long waves in shallow water that was
introduced by Benjamin et al. [1] as an improvement of

the Korteweg-de Vries equation (KdV equation) for model-
ing long waves of small amplitude in two dimensions. Con-
trastingwith the KdV equation, the BBMequation is unstable
in its high wave number components. Further, while the KdV
equation has an infinite number of integrals of motion, the
BBM equation only has three. Both KdV and BBM equations
cover cases of surface waves of long wavelength in liquids,
acoustic-gravity waves in compressible fluid, hydromagnetic
waves in cold plasma, and acoustic waves in harmonic
crystals.

For the well-posedness of global solutions for BBM equa-
tion, we can refer to [2–7]. For the long-time behavior, such
as the existence of global attractor and its structure and the
dimension of the attractors, we will discuss the known results
in details.

Biler [8] investigated the long-time behavior of 2D gener-
alized BBM equation

𝑢
𝑡
− Δ𝑢

𝑡
= (𝑏, ∇𝑢) + 𝑢

𝑝

(𝑎, ∇𝑢) (4)

in R2, 𝑡 ∈ R. Here 𝑏 ̸= 0, 𝑎 ∈ R2, and 𝑝 ≥ 3 is an integer.
The author proved the supremumnorms of the solutions with
small initial data decay to zero like 𝑡−2/3 as 𝑡 tends to infinity.
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By energy equation and weak continuous method, Wang
[9] and Wang and Yang [10] investigated the finite-dimen-
sional behavior of solutions and derived the global weak
attractor and the strong attractors for BBM equation:

𝑢
𝑡
− 𝑢

𝑥𝑥𝑡
− ]𝑢

𝑥𝑥
+ (𝑓 (𝑢))

𝑥
= 𝑔 (𝑥) (5)

with period boundary value condition in 𝐻2

per(Ω) and
𝐻1

per(Ω), respectively. Moreover, Wang et al. [11] got the exis-
tence of global attractor for the above BBM equation defined
in a three-dimensional channel; the asymptotic compactness
of the solution operator is obtained by the uniform estimates
on the tails of solutions.

By the decomposition of the semigroup, Wang [12]
studied the regularity of attractors for the BBM equation

𝑢
𝑡
− 𝑢

𝑥𝑥𝑡
− ]𝑢

𝑥𝑥
+ 𝑢

𝑥
+ 𝑢𝑢

𝑥
= 𝑔 (𝑥) . (6)

He proved that the global attractor is smooth if the forcing
term is smooth. In addition, Wang [13] also obtained the
approximate inertial manifolds to the global attractors for the
generalized BBM equations.

Wang [14] considered the stochastic BBM equations on
unbounded domains

𝑑𝑢 − 𝑑 (Δ𝑢) − ]Δ𝑢𝑑𝑡 + ∇⋅
→

𝐹(𝑢) 𝑑𝑡 = 𝑔𝑑𝑡 + ℎ𝑑𝑤 (7)

and concluded the existence of random attractor in𝐻1

0
under

certain assumptions, here 𝑤 is the two-sided real-valued
Wiener process on a probability space. He also proved the
random attractor is invariant and attracts every pulled-back
tempered random set under the forward flow.The asymptotic
compactness of the random dynamical system is established
by a tail-estimates method, which shows that the solutions
are uniformly asymptotically small when space and time
variables approach infinity.

Stanislavova et al. [15] first provided a sufficient condi-
tion to verify the asymptotic compactness of an evolution
equation defined in an unbounded domain, which involves
the Littlewood-Paley projection operators, then they proved
the existence of an attractor for the Benjamin-Bona-Mahony
equation in the phase space𝐻1(R3) by showing the solutions
are point dissipative and asymptotic compact

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + div (𝑓 (𝑢)) = 𝑔 (8)

for 𝑔 ∈ 𝐿
2(R3) and 𝑓(𝑢) = 𝑢 + (1/2)𝑢2. Stanislavova [16]

investigated the existence of global attractors of (8) in two
dimension.

By the method of orthogonal decomposition, Zhu [17, 18]
obtained the asymptotic attractor, global attractor, and its
Hausdorff dimension of the damped BBM equations with
periodic boundary conditions in homogeneous periodic
space 𝐻̇1

per(Ω)

𝑢
𝑡
− 𝛿𝑢

𝑥𝑥𝑡
− ]𝑢

𝑥𝑥
+ 𝑢𝑢

𝑥
= 𝑓 (𝑥) (9)

which overcome difficulty coming from the precision of
approximate inertial manifolds. Zhu and Mu [19] deduced

the exponential decay estimates of solutions for time-delayed
BBM equations.

J. Park and S. Park [20] studied the pullback attractors for
the nonautonomous BBM equations in unbounded domains

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + ∇ ⋅

󳨀󳨀󳨀→
𝐹 (𝑢) = 𝑔 (𝑥, 𝑡) , (10)

by weak continuous method and some priori estimates in
𝐻1

0
(Ω). Qin et al. [21] derived the existence of pullback attrac-

tor of (10) in𝐻2

0
(Ω) by weak continuous method. Zhao et al.

[22] investigated the convergence of corresponding uniform
attractors between averaging BBM and state BBM equations.

Moreover, Çelebi et al. [23] deduced the existence of
attractors with a finite fractal dimension and the existence
of the exponential attractor for the corresponding asymptot-
ically compact semigroup for the periodic initial-boundary
value problemof a generalizedBBMequation. Chueshov et al.
[24] studied the regularity of global attractor for a generalized
BBM equation.

For the upper semicontinuity of corresponding attractors
between autonomous and perturb nonautonomous systems,
we can refer to Bao [25], Hale and Raugel [26], Carvalho
et al. [27], Caraballo and Langa [28], Caraballo et al. [29],
Fitzgibbon et al. [30], Kloeden [31],Miyamoto [32],Wang and
Qin [33], Younsi [34], Wang [35], and Zhou [36].

To our knowledge, there are less results on the upper
semicontinuity of pullback attractors for the 3D nonauto-
nomous BBM equations with the nonautonomous perturba-
tion; we will pay attention to this issue in the sequel.

This paper is organized as following. In Section 2, we will
recall some fundamental theory of pullback attractors for
nonautonomous dynamical systems and give a method
to verify the upper semicontinuity of pullback attractors.
In Section 3, the upper semicontinuity of pullback attractors
for the problems (1)–(3) will be proved.

2. Pullback Attractors of
Nonautonomous Dynamical Systems

In this section, we will consider the relationship between
pullback attractors A

𝜀
= {𝐴

𝜀
(𝑡)}

𝑡∈R for the perturbed non-
autonomous system with 𝜀 > 0 and global attractorA for the
unperturbed autonomous system with 𝜀 = 0 of the following
equation:

𝜕𝑢

𝜕𝑡
= A

𝑓
𝑢 (𝑥, 𝑡) + 𝜀𝑓 (𝑥, 𝑡) . (11)

If the global attractor is unique, then the global attractor is
the pullback attractor when 𝜀 = 0.

Let𝑋 be a Banach space with norm ‖ ⋅ ‖
𝑋
. The Hausdorff

semidistance dist
𝑋
(𝐵
1
, 𝐵
2
) in𝑋 between 𝐵

1
⊆ 𝑋 and 𝐵

2
⊆ 𝑋

is defined by

dist
𝑋
(𝐵
1
, 𝐵
2
) = sup

𝑥∈𝐵
1

inf
𝑦∈𝐵
2

𝑑
𝑋
(𝑥, 𝑦) for 𝐵

1
, 𝐵
2
⊂ 𝑋, (12)

where 𝑑
𝑋
(𝑥, 𝑦) denotes the distance between two points 𝑥

and 𝑦.
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For an autonomous system, 𝑆(𝑡) : 𝑋 → 𝑋 (𝑡 ∈ R) is
a 𝐶

0
-semigroup defined on 𝑋. If the global attractor A for

𝑆(𝑡) exists, then it has the following properties: (1) A is an
invariant, compact set; (2) A attracts every bounded sets in
𝑋, that is, lim

𝑡→+∞
dist(𝑆(𝑡)𝐵,A) = 0 for all bounded subsets

𝐵 ⊂ 𝑋.
For a nonautonomous system, the two-parameter map-

ping class {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

is said to be a process in𝑋 if

𝑈 (𝑡, 𝑠) 𝑈 (𝑠, 𝜏) = 𝑈 (𝑡, 𝜏) , ∀𝑡 ≥ 𝑠 ≥ 𝜏, 𝜏 ∈ R,

𝑈 (𝜏, 𝜏) = 𝐼𝑑, (identity operator in 𝑋) , ∀𝜏 ∈ R.
(13)

Moreover, throughout the paper, we always assume that the
process 𝑈(⋅, ⋅) is continuous in𝑋.

Now we will recall some definitions and framework on
the existence theory of pullback attractors.

Definition 1. A family of compact setsA = {𝐴(𝑡)}
𝑡∈R is said to

be a pullback attractor for the continuous process {𝑈(⋅, ⋅)} if
it satisfies the following:

(i) A is invariant for all 𝑡 ≥ 𝜏.

(ii) A is pullback attracting, that is, lim
𝜏→+∞

dist(𝑈(𝑡, 𝑡−
𝜏)𝐵, 𝐴(𝑡)) = 0 for all bounded subsets 𝐵 ⊂ 𝑋.

Definition 2. The family of subsetsB = {𝐵(𝑡)}
𝑡∈R is said to be

pullback absorbing for the process 𝑈(⋅, ⋅), if for every 𝑡 ∈ R

and all bounded subsets𝐵 ⊂ 𝑋, there exists a time𝑇(𝑡, 𝐵) > 0,
such that

𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 ⊂ 𝐵 (𝑡) ∀𝜏 ≥ 𝑇 (𝑡, 𝐵) . (14)

Definition 3. Let B = {𝐵(𝑡)}
𝑡∈R be a family of subsets in

𝑋. A process 𝑈(⋅, ⋅) is said to be pullback B-asymptotically
compact in 𝑋 if for all 𝑡 ∈ R, any sequences 𝜏

𝑛
→ ∞ and

𝑥
𝑛
∈ 𝐵(𝑡 − 𝜏

𝑛
); the sequence {𝑈(𝑡, 𝑡 − 𝜏

𝑛
)𝑥
𝑛
} is precompact in

𝑋.

Theorem 4. Let the family of sets B = {𝐵(𝑡)}
𝑡∈R be pullback

absorbing set for the process 𝑈(⋅, ⋅) and 𝑈(⋅, ⋅) is pullback B-
asymptotically compact in 𝑋. Then, the family A = {𝐴(𝑡)}

𝑡∈R

that is defined by 𝐴(𝑡) = Λ(B, 𝑡) is a pullback attractor for
𝑈(⋅, ⋅) in𝑋 for the process {𝑈(⋅, ⋅)}, where

Λ (B, 𝑡) = ⋂
𝑠≥0

⋃
𝜏≥𝑠

𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ∈ R.

(15)

In the following, we will characterize the pullback B-
asymptotic compactness in terms of the noncompact mea-
sure.

Definition 5. Let 𝐵 ⊂ 𝑋,B = {𝐵(𝑡)}
𝑡∈R be a family of sets in

𝑋. A process 𝑈(⋅, ⋅) is said to be pullbackB-𝜅 contracting, if
for any 𝑡 ∈ R, 𝜀 > 0, there exists a time 𝑇B(𝑡, 𝜀) > 0, such that

𝜅 (𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏)) ≤ 𝜀 ∀𝜏 ≥ 𝑇B (𝑡, 𝜀) . (16)

Here 𝜅(𝐵) is the Kuratowski noncompact measure defined as

𝜅 (𝐵)

= inf {𝛿 > 0 | 𝐵 admits a finite cover

by sets of diameter < 𝛿} .

(17)

Lemma 6. LetB = {𝐵(𝑡)}
𝑡∈R, B̂ = {𝐵(𝑡)}

𝑡∈R be two families
of sets in 𝑋 and satisfy that for any 𝑡 ∈ R, there exists a time
𝑇B,̂B(𝑡) > 0, such that

𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏) ⊂ 𝐵 (𝑡) ∀𝜏 ≥ 𝑇B,̂B (𝑡) . (18)

Then 𝑈(⋅, ⋅) is pullbackB-asymptotically compact, if it is pull-
back B̂-𝜅 contracting.

Proof. See, for example, Wang and Qin [33].

Theorem 7. Assume that the assumptions in Lemma 6 hold. If
the process𝑈(⋅, ⋅) is pullback B̂-𝜅 contracting and the family of
sets B = {𝐵(𝑡)}

𝑡∈R is pullback absorbing for 𝑈(⋅, ⋅), then the
process 𝑈(⋅, ⋅) possesses a pullback attractor.

Proof. See, for example, Wang and Qin [33].

Theorem 8. Let B = {𝐵(𝑡)}
𝑡∈R be a family of sets in 𝑋.

Suppose 𝑈(⋅, ⋅) = 𝑈
1
(⋅, ⋅) + 𝑈

2
(⋅, ⋅) : R ×R × 𝑋 → 𝑋 satisfies

(i) for any 𝑡 ∈ R,
󵄩󵄩󵄩󵄩𝑈1 (𝑡, 𝑡 − 𝜏) 𝑥

𝑡−𝜏

󵄩󵄩󵄩󵄩𝑋 ≤ Φ (𝑡, 𝜏) ∀𝑥
𝑡−𝜏

∈ 𝐵 (𝑡 − 𝜏) , 𝜏 > 0,

(19)

where Φ(⋅, ⋅) : R × R → R+ satisfies lim
𝜏→+∞

Φ(𝑡,

𝜏) = 0 for each 𝑡 ∈ R;
(ii) for any 𝑡 ∈ R and 𝑇 ≥ 0, ⋃

0≤𝜏≤𝑇
𝑈
2
(𝑡, 𝑡 − 𝜏)𝐵(𝑡 − 𝜏)

is bounded and 𝑈
2
(𝑡, 𝑡 − 𝜏)𝐵(𝑡 − 𝜏) is precompact in𝑋

for any 𝜏 > 0.

Then the process 𝑈(⋅, ⋅) is pullbackB-𝜅 contracting in𝑋.

Proof. See, for example, Wang and Qin [33].

We now perturb the nonautonomous term with a small
parameter 𝜀 ∈ (0, 𝜀

0
]; thus we obtain a nonautonomous

dynamical system driven by the process 𝑈
𝜀
(⋅, ⋅).

For each 𝑡 ∈ R, 𝜏 ∈ R, and 𝑥 ∈ 𝑋, we have

(𝐻
1
) lim

𝜀→0

𝑑
𝑋
(𝑈
𝜀
(𝑡, 𝑡 − 𝜏) 𝑥, 𝑆 (𝑡) 𝑥) = 0, (20)

uniformly on bounded sets of𝑋.

Theorem9 (Caraballo et al. [28, 29]). Assume that (𝐻
1
) holds,

and for any 𝜀 ∈ (0, 𝜀
0
], there exist pullback attractors A

𝜀
=

{𝐴
𝜀
(𝑡)}

𝑡∈R for all 𝜀 > 0. If there exists a compact set 𝐾 ⊂ 𝑋,
such that

(𝐻
2
) lim

𝜀→0

𝑑𝑖𝑠
𝑋
(𝐴

𝜀
(𝑡) , 𝐾) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (21)

ThenA
𝜀
andA have the upper semicontinuity, that is,

lim
𝜀→0

𝑑𝑖𝑠
𝑋
(𝐴

𝜀
(𝑡) ,A) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (22)
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In order to apply Theorem 9 to obtain the upper semi-
continuity of pullback attractors A

𝜀
and global attractor A,

we now present a technique to verify (𝐻
2
) for the process

generated by the nonautonomous dissipative system.

Lemma 10. Assume that the familyB = {𝐵(𝑡)}
𝑡∈R is pullback

absorbing for 𝑈(⋅, ⋅), and for each 𝜀 ∈ (0, 𝜀
0
],K

𝜀
= {𝐾

𝜀
(𝑡)}

𝑡∈R

is a family of compact sets in 𝑋. Suppose 𝑈
𝜀
(⋅, ⋅) = 𝑈

1,𝜀
(⋅, ⋅) +

𝑈
2,𝜀
(⋅, ⋅) : R ×R × 𝑋 → 𝑋 satisfies

(i) for any 𝑡 ∈ R and any 𝜀 ∈ (0, 𝜀
0
],

󵄩󵄩󵄩󵄩𝑈1,𝜀 (𝑡, 𝑡 − 𝜏) 𝑥
𝑡−𝜏

󵄩󵄩󵄩󵄩𝑋 ≤ Φ (𝑡, 𝜏) ∀𝑥
𝑡−𝜏

∈ 𝐵 (𝑡 − 𝜏) , 𝜏 > 0,

(23)

where Φ(⋅, ⋅) : R × R → R+ satisfies lim
𝜏→+∞

Φ(𝑡,

𝜏) = 0 for each 𝑡 ∈ R;
(ii) for any 𝑡 ∈ R and any 𝑇 ≥ 0, ∪

0≤𝜏≤𝑇
𝑈
2,𝜀
(𝑡, 𝑡 − 𝜏)𝐵(𝑡 −

𝜏) is bounded, and for any 𝑡 ∈ R, there exists a time
𝑇B(𝑡) > 0, which is independent of 𝜀, such that

𝑈
2,𝜀
(𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏) ⊂ 𝐾

𝜀
(𝑡) ∀𝜏 ≥ 𝑇B (𝑡) , 𝜀 ∈ (0, 𝜀

0
]

(24)

and there exists a compact set 𝐾 ⊂ 𝑋, such that

(𝐻
󸀠

2
) lim

𝜀→0

𝑑𝑖𝑠𝑡
𝑋
(𝐾
𝜀
(𝑡) , 𝐾) = 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (25)

Then for each 𝜀 ∈ (0, 𝜀
0
], there exists a pullback attrac-

torA
𝜀
= {𝐴

𝜀
(𝑡)}

𝑡∈R and (𝐻
2
) holds.

Proof. See, for example, Wang and Qin [33].

3. Upper Semicontinuity of
Pullback Attractors

In this section, firstly, we recall some notations about the
functional spaces which will be used later to discuss the reg-
ularity of pullback attracting set.

The operator 𝐴 is denoted by 𝐴 = −Δ with domain
𝐷(𝐴) = 𝐻2(Ω)⋂𝐻1

0
(Ω) and 𝜆 is the first eigenvalue of 𝐴;

we consider the family of Hilbert spaces

H
𝛼

= 𝐷(𝐴
𝛼/2

) , 𝛼 ∈ R (26)

generated by the Laplacian operator with the Dirichlet
boundary value conditions equipped with the standard inner
product and norm

(⋅, ⋅)H𝛼 = (𝐴
𝛼/2

⋅, 𝐴
𝛼/2

⋅) , ‖⋅‖H𝛼 =
󵄩󵄩󵄩󵄩󵄩
𝐴
𝛼/2

⋅
󵄩󵄩󵄩󵄩󵄩

(27)

respectively, then we have 𝐷(𝐴𝑠/2) 󳨅→ 𝐷(𝐴𝑟/2) for any 𝑠 > 𝑟

and the continuous embedding

H
𝑠

≡ 𝐷(𝐴
𝑠/2

) 󳨅→ (𝐿
6/(3−2𝑠)

(Ω))
3 (28)

for all 𝑠 ∈ [0, 3/2),H2 = 𝐻2(Ω)⋂𝐻1

0
(Ω).

Then, applying the Helmholtz-Leray projector P to the
systems (1)–(3), we obtain the following problem which is
equivalent to the original problems (1)–(3)

𝑢
𝑡
+ ]𝐴𝑢 + 𝐴𝑢

𝑡
+ 𝐵 (𝑢) = 𝜀𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω × [𝜏,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × [𝜏,∞) ,

𝑢 (𝜏, 𝑥) = 𝑢
𝜏
(𝑥) , 𝑥 ∈ Ω.

(29)

Here 𝐴 = −PΔ, 𝐵(𝑢) = P(∇⋅
→

𝐹 (𝑢)), and 𝑓(𝑥, 𝑡) =

P𝑔(𝑥, 𝑡).
Assume that 𝑢

𝜏
∈ 𝐻1

0
(Ω), the external force 𝑔 ∈ 𝐿2loc(R,

𝐻). Also we assume that there exist constants 𝛽 > 0, 0 ≤ 𝛼 <

𝜎/2, and 𝜎 = 2]/((2/𝜆) + 2), such that
󵄩󵄩󵄩󵄩𝑔(𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝛽𝑒
𝛼|𝑡|

, (30)

which implies that

∫
𝑡

−∞

𝑒
𝜎𝑠󵄩󵄩󵄩󵄩𝑔(𝑠)

󵄩󵄩󵄩󵄩
2

𝑑𝑠 < +∞, ∀𝑡 ∈ R,

∫
𝜏

−∞

(∫
𝑡

−∞

𝑒
𝜎𝑠/2󵄩󵄩󵄩󵄩𝑔(𝑠)

󵄩󵄩󵄩󵄩
2

𝑑𝑠) 𝑑𝑡 < +∞, ∀𝜏 ∈ R.

(31)

Moreover, we assume that

lim
𝑘→∞

∫
𝜏

−∞

∫
|𝑥
3
|≥𝑘

𝑒
𝜎𝑡󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡 = 0, ∀𝜏 ∈ R. (32)

From (31), we can easily derive that the term 𝑓(𝑥, 𝑡) is locally
square integrable in time; that is, 𝑓(𝑥, 𝑡) ∈ 𝐿2loc(R, 𝐻) and
satisfies

∫
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑥, 𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 < +∞ (33)

for 0 < 𝜂 ≤ min{𝜆], ], ]/((2/𝜆) + 2)} and any 𝑡 ∈ R.
For the nonlinear vector function →

𝐹 (𝑠) = (𝐹
1
(𝑠), 𝐹

2
(𝑠),

𝐹
3
(𝑠)) (𝑠 ∈ R), we denote

𝑓
𝑖
(𝑠) = 𝐹

󸀠

𝑖
(𝑠) , F

𝑖
(𝑠) = ∫

𝑠

0

𝐹
𝑖
(𝑟) 𝑑𝑟, (34)

where
→

𝑓 (𝑠) = (𝑓
1
(𝑠) , 𝑓

2
(𝑠) , 𝑓

3
(𝑠)) ,

→

F (𝑠) = (F
1
(𝑠) ,F

2
(𝑠) ,F

3
(𝑠)) .

(35)

Assume that 𝐹
𝑖
(𝑖 = 1, 2, 3) are smooth functions satisfying

𝐹
𝑖
(0) = 0,

󵄨󵄨󵄨󵄨𝐹𝑖 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝐶

1
|𝑠| + 𝐶

2
|𝑠|
2

,

𝐶
1
(1 + 𝜎

2

|𝑠|) ≤
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐶
2
(1 + 𝜎

2

|𝑠|) ,

󵄨󵄨󵄨󵄨F𝑖
(𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐶
1
|𝑠|
2

+ 𝐶
2
|𝑠|
3

,

(36)

for all 𝑠 ∈ R, where 𝐶
1
, 𝐶
2
, and 𝜎 are positive constants.

At last, we will state the main result and the proof of this
paper as the following.
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Theorem 11. Assume that (30)–(36) hold, and 𝑢
𝜏
∈ 𝑉, then

the pullback attractorsA
𝜀
= {A

𝜀
(𝑡)}

𝑡∈R for (29) (which is equi-
valent to (1)) with 𝜀 > 0 and the global attractorA for (29)with
𝜀 = 0 satisfy

lim
𝜀→0
+

𝑑𝑖𝑠
𝑉
(A

𝜀
(𝑡) ,A) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (37)

The Hausdorff semidistance 𝑑𝑖𝑠𝑡(⋅, ⋅) is defined on the Banach
space 𝑉.

In order to apply Theorem 9 and Lemma 10 to prove
Theorem 11, wewill introduce the existence of global attractor
for autonomous system (1) with 𝜀 = 0 and pullback attractors
for nonautonomous system (1) with 𝜀 > 0 in the following
lemmas.

Lemma 12. Assume that (34)–(36) hold, and 𝑢
𝜏
∈ 𝑉, then the

semigroup 𝑆(𝑡) (𝑡 ∈ R) generated by problem (29) (or problems
(1)–(3)) with 𝜀 = 0 possesses a global attractorA in 𝑉.

Proof. Using similar technique as in [9–11, 17, 18], we only
need to consider the Dirichlet boundary value condition
instead of the periodic boundary value condition in these
papers which investigated the existence of global attractors.
Thismeans that we can obtain our lemma easily, here we omit
the details.

Lemma 13. Assume that (30)–(36) hold, and 𝑢
𝜏
∈ 𝑉, then

problem (29) possesses a unique global solution 𝑢𝜀(𝑥, 𝑡) (𝜀 ≥ 0)
satisfying

𝑢
𝜀

(𝑥, 𝑡) ∈ 𝐶 ([𝜏, +∞) , 𝑉) ∩ 𝐿
∞

(0, +∞;𝑉) ,

𝑢
𝑡
∈ 𝐿

2

(0, 𝑇; 𝑉) .
(38)

Moreover, the process {𝑈
𝜀
(𝑡, 𝜏)} generated by the global solu-

tions possess pullback attractorsA
𝜀
for all 𝜀 ≥ 0 in 𝑉.

Proof. See, for example, [20].

Nowwedecompose the solution𝑢𝜀(𝑡) = 𝑈
𝜀
(𝑡, 𝜏)𝑢

𝜏
of (29)

with initial data 𝑢
𝜏
∈ 𝑉 as

𝑢
𝜀

= 𝑈
𝜀
(𝑡, 𝜏) 𝑢

𝜏
= 𝑈

1,𝜀
(𝑡, 𝜏) 𝑢

𝜏
+ 𝑈

2,𝜀
(𝑡, 𝜏) 𝑢

𝜏
, (39)

where

𝑈
1,𝜀
(𝑡, 𝜏) 𝑢

𝜏
= V (𝑡) ,

𝑈
2,𝜀
(𝑡, 𝜏) 𝑢

𝜏
= 𝑤 (𝑡)

(40)

solve the following problems:

V
𝑡
+ 𝐴V

𝑡
+ ]𝐴V + 𝐵 (V) = 0, in (𝑥, 𝑡) ∈ Ω × [𝜏,∞) ,

V (𝑥, 𝑡) = 0, on 𝜕Ω × [𝜏,∞) ,

V (𝜏, 𝑥) = V
𝜏
(𝑥) , 𝑥 ∈ Ω,

(41)

𝑤
𝑡
+ 𝐴𝑤

𝑡
+ ]𝐴𝑤

= −𝐵 (𝑢) + 𝐵 (V) + 𝜀𝑓 (𝑥, 𝑡) , in (𝑥, 𝑡) ∈ Ω × [𝜏,∞) ,

𝑤 (𝑥, 𝑡) = 0, on 𝜕Ω × [𝜏,∞) ,

𝑤 (𝜏, 𝑥) = 0, 𝑥 ∈ Ω,

(42)

respectively.

Lemma 14. Suppose that (34)–(36) hold. For any bounded set
𝐵 ⊂ 𝑉 and 𝑡 ∈ R, there exists a time 𝑇(𝐵, 𝑡) > 0, such that

󵄩󵄩󵄩󵄩𝑈𝜀 (𝑡, 𝑡 − 𝜏) 𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

≤ 𝑅
𝜀
(𝑡)

∀𝜏 ≥ 𝑇 (𝐵, 𝑡) , 𝑎𝑙𝑙 𝑢
𝑡−𝜏

∈ 𝐵,
(43)

where 𝑅
𝜀
(𝑡) = 𝐶𝜀𝑒−𝜂𝑡 ∫

𝑡

−∞

𝑒𝜂𝑠‖𝑓(𝑠)‖
2

𝐻
𝑑𝑠, and 𝐶 is a positive

constant independent of 𝐵, 𝑡, 𝜏.

Proof. We choose 𝜎 = 2]/((2/𝜆) + 2), 𝑅
𝜎

= {𝑟 : 𝑅 →

(0, +∞) | lim
𝑡→−∞

𝑒𝜎𝑡𝑟2(𝑡) = 0} and denote by D
𝜎
the class

of families 𝐷 = {𝐷(𝑡) : 𝑡 ∈ 𝑅} ⊂ D(𝐻) such that 𝐷(𝑡) ⊂

𝐵(0, 𝑟
𝐷̂
(𝑡)) for some 𝑟

𝐷̂
, where 𝐵(0, 𝑟

𝐷̂
(𝑡)) denotes the closed

ball in 𝑉 centered at zero with radius 𝑟
𝐷̂
(𝑡).

Let 𝑡 ∈ R, 𝜏 ∈ R, and 𝑢
𝜏
∈ 𝑉 be fixed, and denote

𝑢 (𝑟) = 𝑢 (𝑟; 𝑡 − 𝜏, 𝑢
0
)

= 𝑈 (𝑟 − 𝑡 + 𝜏, 𝑡 − 𝜏, 𝑢
0
) for 𝑟 ≥ 𝑡 − 𝜏.

(44)

Since 𝑢 ∈ 𝐶((𝜏, 𝑇); 𝑉), then for all 𝑢 ∈ 𝑉, we derive that

𝑑

𝑑𝑡
(𝑒
𝜎𝑡

‖𝑢 (𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢 (𝑡)‖
2

)

+ 2]𝑒𝜎𝑡‖∇𝑢 (𝑡)‖2

= −2𝑒
𝜎𝑡

(∇
→

𝐹 (𝑢) , ∇𝑢)

+ 𝜎 (𝑒
𝜎𝑡

‖𝑢(𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢‖
2

)

+ 2𝑒
𝜎𝑡

(𝜀𝑓 (𝑡) , 𝑢 (𝑡))

= 𝜎 (𝑒
𝜎𝑡

‖𝑢(𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢‖
2

)

+ 2𝑒
𝜎𝑡

(𝜀𝑓 (𝑡) , 𝑢 (𝑡))

≤ 𝜎 (
1

𝜆
+ 1) 𝑒

𝜎𝑡

‖∇𝑢‖
2

+
𝜎

𝜆
𝑒
𝜎𝑡

‖∇𝑢‖
2

+
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻

≤ 𝜎(
2

𝜆
+ 1) 𝑒

𝜎𝑡

‖∇𝑢(𝑡)‖
2

+
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻

≤ 2]𝑒𝜎𝑡‖∇𝑢(𝑡)‖2 +
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
,

(45)

that is,

𝑑

𝑑𝑡
(𝑒
𝜎𝑡

‖𝑢(𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢(𝑡)‖
2

) ≤
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
, (46)
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which gives

‖𝑢(𝑡)‖
2

+ ‖∇𝑢(𝑡)‖
2

≤ 𝑒
−𝜎(𝑡−𝜏)

(
󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑢𝜏

󵄩󵄩󵄩󵄩
2

)

+
𝜀

𝜎
∫
𝑡

𝜏

𝑒
−𝜎(𝑡−𝜉)󵄩󵄩󵄩󵄩𝑓(𝜉)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝜉

(47)

for all 𝜏 ∈ R.
Let 𝐷 ∈ D

𝜎
be given, choosing appropriate parameter 𝜎,

we easily get

󵄩󵄩󵄩󵄩𝑈(𝑡, 𝜏, 𝑢𝜏)
󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝑒

−𝜎(𝑡−𝜏)

𝑟
2

𝐷̂
+
𝜀

𝜎
∫
𝑡

−∞

𝑒
−𝜎(𝑡−𝜉)󵄩󵄩󵄩󵄩𝑓(𝜉)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝜉,

(48)

for all 𝑢
𝜏
∈ 𝐷(𝜏), 𝑡 ≥ 𝜏.

Setting 𝑒−𝜎(𝑡−𝜏)𝑟2
𝐷̂
≤ (𝜀/𝜎) ∫

𝑡

−∞

𝑒−𝜎(𝑡−𝜉)‖𝑓(𝜉)‖
2

𝐻
𝑑𝜉, then we

denote 𝑅
𝜀
(𝑡) the nonnegative number given for each 𝑡 ∈ R by

(𝑅
𝜀
(𝑡))

2

=
2𝜀

𝜎
∫
𝑡

−∞

𝑒
−𝜂(𝑡−𝜉)󵄩󵄩󵄩󵄩𝑓(𝜉)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝜉, (49)

and consider the family 𝐵
𝜀
of closed balls in 𝑉 defined by

𝐵
𝜀
(𝑡) = {V ∈ 𝑉 | ‖V‖

𝑉
≤ 2𝑅

𝜀
(𝑡)} . (50)

It is straightforward to check that 𝐵
𝜀
∈ D

𝜎
and hence 𝐵

𝜎
is

theD
𝜎
-pullback absorbing for the process {𝑈(𝑡, 𝜏, 𝑢

𝜏
)}.

Setting

𝐵
𝜀
= {𝑢 ∈ 𝑉 | ‖𝑢‖

𝑉
≤ 𝑅

𝜀
(𝑡)} , (51)

then we can check that family B
𝜀
= {𝐵

𝜀
(𝑡)}

𝑡∈R is pullback
absorbing in 𝑉 easily. Moreover,

lim
𝑡→−∞

𝑒
𝜂𝑡

𝑅
𝜀
(𝑡) = 0 for any 𝜀 > 0. (52)

Lemma 15. Let 𝑅
𝜀
(𝑡), 𝐵

𝜀
(𝑡) be given as above. For any 𝑡 ∈ R,

the solution V(𝑡) = 𝑈
1,𝜀
(𝑡, 𝑡 − 𝜏)𝑢(𝑡 − 𝜏) of (41) satisfies

󵄩󵄩󵄩󵄩𝑈1,𝜀(𝑡, 𝑡 − 𝜏)𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝑒

−𝜂𝜏

𝑅
𝜀
(𝑡 − 𝜏) , (53)

for all 𝜏 ≥ 0 and 𝑢
𝑡−𝜏

∈ 𝐷
𝜀
(𝑡 − 𝜏).

Proof. Multiplying equation in (41) with V and integrating
overΩ, we derive

1

2

𝑑

𝑑𝑡
(‖V(𝑡)‖2 + ‖∇V(𝑡)‖2) + ]‖∇V‖2 ≤ 0. (54)

Here we use the property of operator 𝐵(⋅) andF
𝑖
(0) = 0 as

∫
Ω

(∇⋅
→

𝐹 (𝑢)) 𝑢𝑑𝑥 = −∫
Ω

→

𝐹 (𝑢) ⋅ ∇𝑢𝑑𝑥

= −∫
Ω

∇⋅
→

F (𝑢) 𝑑𝑥

= −∫
𝜕Ω

→

F (𝑢) ⋅
→

𝑛 𝑑𝑥 = 0,

(55)

where
→

𝑛 is the outer unit normal vector.

Using Poincaré’s inequality, it follows

𝑑

𝑑𝑡
(‖V(𝑡)‖2 + ‖∇V(𝑡)‖2) + 𝜂 (‖V‖2 + ‖∇V‖2) ≤ 0, (56)

where we set 0 < 𝜂 ≤ min{𝜆
1
], ]}.

Integrating (56) from 𝑡 − 𝜏 to 𝑡, we get

󵄩󵄩󵄩󵄩𝑈1,𝜀(𝑡, 𝑡 − 𝜏)𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

𝑉
≤ ‖V(𝑡)‖2 + ‖∇V(𝑡)‖2

≤ (
󵄩󵄩󵄩󵄩V𝑡−𝜏

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇V𝑡−𝜏

󵄩󵄩󵄩󵄩
2

) 𝑒
−𝜂(𝑡−𝜏)

≤ 𝑒
−𝜂𝜏

𝑅
𝜀
(𝑡 − 𝜏)

(57)

for all 𝑡 ≥ 𝜏, which completes our proof.

Lemma 16. LetB
𝜀
(𝑡) = {𝐵

𝜀
(𝑡)}

𝑡∈R be given by (51) and (52).
For any 𝑡 ∈ R, there exist a time 𝑇

𝜀
(𝑡,B) > 0 and a function

𝐼
𝜀
(𝑡) > 0, such that the solution 𝑈

2,𝜀
(𝑡, 𝜏)𝑢

𝜏
= 𝑤(𝑡) of (42)

satisfies

󵄩󵄩󵄩󵄩𝑈2,𝜀(𝑡, 𝑡 − 𝜏)𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝐼

𝜀
(𝑡) , (58)

for all 𝜏 ≥ 𝑇
𝜀
(𝑡,B) and any 𝑢

𝑡−𝜏
∈ 𝐵

𝜀
(𝑡 − 𝜏).

Proof. Taking the inner product of equation in (42) with
𝐴𝜎𝑤(𝑡) in𝐻, we derive

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝜎/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

)

+ ]∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝐴
(𝜎+1)/2

𝑤 (𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −⟨𝐵 (𝑢) , 𝐴
𝜎

𝑤⟩ + ⟨𝐵 (V) , 𝐴𝜎𝑤⟩

+ 𝜀⟨𝑓 (𝑡, 𝑥) , 𝐴
𝜎

𝑤⟩.

(59)

By Poincaré’s inequality, Lemma 15, (51), and (34)–(36), we
obtain

− ⟨𝐵 (𝑢) , 𝐴
𝜎

𝑤⟩ + ⟨𝐵 (V) , 𝐴𝜎𝑤⟩

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨∇ ⋅ (

→

𝐹 (V) −
→

𝐹 (𝑢)) , 𝐴
𝜎

𝑤⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
( sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (∇V − ∇𝑢) , 𝐴
𝜎

𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
( sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) ∇𝑤,𝐴

𝜎

𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+(1/2))/2

𝑤
󵄩󵄩󵄩󵄩󵄩
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≤
𝐶 (𝜀)

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ]𝜆
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+(1/2))/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤
𝐶 (𝜀)

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ]
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤
𝐶

𝜆
(2 + 𝜎

2

‖𝑢‖
2

+ 𝜎
2

‖V‖2)

+ ]
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶 (2 + 𝜎
2

𝑅
𝜀
(𝑡) + 𝜎

2

𝑒
−𝜂𝜏

𝑅
𝜀
(𝑡 − 𝜏))

+ ]
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

,

⟨𝑓 (𝑡, 𝑥) , 𝐴
𝜎

𝑤⟩ ≤
1

𝜆

󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
.

(60)

Hence according to (59)–(60) and (31), we have
𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝜎/2

𝑤 (𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤 (𝑡)
󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝐶 (1 + 𝜀
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜀
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
) ,

(61)

where the constant 𝐶 depends on ‖𝑢
𝑡−𝜏

‖
2

𝑉
, 𝜎, and the first

eigenvalue 𝜆 of the operator 𝐴.
Integrating (61) from 𝑡 − 𝜏 to 𝑡, we conclude that

󵄩󵄩󵄩󵄩󵄩
𝐴
𝜎/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶𝑒
𝐶𝑡

∫
𝑡

𝑡−𝜏

(1 + 𝜀
2󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑠)

󵄩󵄩󵄩󵄩
2

) 𝑒
−𝐶𝑠

𝑑𝑠

= 𝐼
𝜀
(𝑡)

(62)

for all 𝑡 > 𝜏. This completes the proof of desiring lemma.

Lemma 17. For any 𝑡 ∈ R, any 𝜏 > 0, if 𝑢
0
varies in bounded

sets, then the solution 𝑢
𝜀
(𝑡) = 𝑈

𝜀
(𝑡, 𝑡 − 𝜏)𝑢

0
of problem (1)

converges to the solution 𝑢(𝑡) = 𝑆(𝑡)𝑢
0
of the unperturbed

problem (1)with 𝜀 = 0 uniformly in𝑉 as 𝜀 → 0+, whichmeans

lim
𝜀→0
+

sup
𝑢
0
∈𝐵

󵄩󵄩󵄩󵄩𝑢𝜀(𝑡) − 𝑢(𝑡)
󵄩󵄩󵄩󵄩𝑉 = 0, (63)

where 𝐵 is a bounded subset in 𝑉.

Proof. Denote
𝑦
𝜀

(𝑡) = 𝑢
𝜀
(𝑡) − 𝑢 (𝑡) , (64)

then we can verify that 𝑦𝜀(𝑡) satisfies
𝑦
𝜖

𝑡
+ 𝐴𝑦

𝜀

𝑡
+ ]𝐴𝑦𝜀 = −𝐵 (𝑢

𝜀

) + 𝐵 (𝑢) + 𝜀𝑓 (𝑥, 𝑡) , (65)

𝑦
𝜀

󵄨󵄨󵄨󵄨𝜕Ω = 0, (66)

𝑦
𝜀

󵄨󵄨󵄨󵄨𝑡=𝜏 = (𝑢
𝜀
)
𝜏
− 𝑢

𝜏
. (67)

Multiplying (65) by𝑦𝜀(𝑡), using (34)–(36) and noting the
boundary value condition (66), we have

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

) + ]󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

= ⟨𝐵 (𝑢) , 𝑦
𝜀

⟩ − ⟨𝐵 (𝑢
𝜀

) , 𝑦
𝜀

⟩ + ⟨𝜀𝑓, 𝑦
𝜀

⟩

≤
󵄨󵄨󵄨󵄨⟨𝐵 (𝑢

𝜀

) − 𝐵 (𝑢) , 𝑦
𝜀

)⟩
󵄨󵄨󵄨󵄨 + ⟨𝜀𝑓, 𝑦

𝜀

⟩

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨∇ ⋅ (

→

𝐹 (𝑢
𝜀

) −
→

𝐹 (𝑢)) , 𝑦
𝜀

⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
𝜀
2

4]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
+
𝜆]
2

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
→

𝐹 (𝑢
𝜀

) −
→

𝐹 (𝑢) , ∇𝑦
𝜀

⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
𝜀2

4𝜆]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
+
𝜆]
2

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

.

(68)

Using (34)–(36) and the Sobolev compact embedding theo-
rem 𝑉 󳨅→ 𝐿6 󳨅→ 𝐿4 󳨅→ 𝐿2, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
→

𝐹 (𝑢
𝜀

) −
→

𝐹 (𝑢) , ∇𝑦
𝜀

⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
(𝐶
1

󵄨󵄨󵄨󵄨𝑢
𝜀󵄨󵄨󵄨󵄨 + 𝐶

2

󵄨󵄨󵄨󵄨𝑢
𝜀󵄨󵄨󵄨󵄨
2

+ 𝐶
1
|𝑢| + 𝐶

2
|𝑢|
2

, ∇𝑦
𝜀

)
󵄨󵄨󵄨󵄨󵄨

≤
𝐶

]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝐿
4 + ‖𝑢‖

2

+ ‖𝑢‖
2

𝐿
4)

+
]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

≤
𝐶

𝜆]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢‖

2

𝑉
) +

]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

.

(69)

Hence

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

) + ]󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

≤
𝐶

𝜆]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢‖

2

𝑉
) +

]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
𝜀2

4𝜆]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
+
]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

,

(70)

that is,

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

) ≤
𝐶

𝜆]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢‖

2

𝑉
)

+
𝜀
2

4𝜆]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
.

(71)
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Using Lemmas 13, 14, 15, 16, and (31), noting that 𝜂 = min{𝜆],
], ]/((1/𝜆) + 2)}, we know

𝑢
𝜀

, 𝑢 ∈ 𝐶 ([𝜏, +∞) , 𝑉) ,

∫
𝑡

𝑡−𝜏

(
󵄩󵄩󵄩󵄩𝑢
𝜀

(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢(𝑠)‖

2

𝑉
) 𝑑𝑠

≤ 𝐶𝜀∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓 (𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

+ 𝐶𝜀∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡−𝜏

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

≤ 𝐶𝜀∬
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

+ 𝐶𝜀∬
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡 ≤ 𝐶𝜀.

(72)

Applying the Gronwall inequality to (71) and noting that 𝑓 ∈

𝐿2loc(R, 𝐻), using Lemmas 14, 15, and 16, we conclude

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝐶 (

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

)

≤ 𝐶𝜀 [∫
𝑡

𝑡−𝜏

(
󵄩󵄩󵄩󵄩𝑢
𝜀

(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢(𝑠)‖

2

𝑉
) 𝑑𝑠

+∫
𝑡

𝑡−𝜏

󵄩󵄩󵄩󵄩𝑓 (𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠]

≤ 𝐶𝜀 [∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

+∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡−𝜏

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡]

+ 𝐶𝜀
2

[∫
𝑡

𝑡−𝜏

󵄩󵄩󵄩󵄩𝑓 (𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠]

≤ 𝐶
󸀠

𝜀 󳨀→ 0

(73)

as 𝜀 → 0+, which implies (63).

Proof of Theorem 11. Since the embedding 𝐷(𝐴𝑠/2) 󳨅→

(𝐿6/(3−2𝑠)(Ω))
3 is compact, combining Lemmas 13–17 with

Theorem 9 and Lemma 10, we can obtain Theorem 11
easily.
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