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Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation,
and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for
crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several
subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude
oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess
the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series
prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various
statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of
the crude oil prices series.

1. Introduction

Crude oil prices do play significant role in the global economy
and constitute an important factor affecting government’s
plans and commercial sectors. Forecasting crude oil price is
among the most important issues facing energy economists.
Therefore, proactive knowledge of its future fluctuations can
lead to better decisions in several managerial levels.

The literature dealing with forecasting crude oil is sub-
stantial. The application of the classical time series models
such as autoregressive moving average (ARMA) (Yu et al. [1],
Mohammadi and Su [2], and Ahmad [3]) and econometric
model such as generalized autoregressive conditional het-
eroscedasticity (GARCH) typemodels (Agnolucci [4],Wei et
al. [5], Liu andWan [6]) for crude oil forecasting has received
much attention in the last decade. But because the crude
oil price has the volatility, nonlinearity, and irregularity, the
classical and econometric model can lead to the decrease of
the accuracy.

Due to the limitations of the classical and econometric
models, soft-computing models, such as neural fuzzy (Ghaf-
fari and Zare [7]), artificial neural networks (Kaboudan [8],
Mirmirani and Li [9], Shambora and Rossiter [10], and Yu et
al. [11]), support vector machines (Xie et al. [12]), and genetic
programming (GP), provide powerful solutions to nonlinear
crude oil price prediction. Many experiments found that
the soft-computing models often had some advantages over
statistical-based models. However, these AI models also have
their own shortcomings and disadvantages. For example,
ANN often suffers from local minima and over-fitting, while
other soft-computingmodels, such as SVMandGP, including
ANN, are sensitive to parameter selection [1].

To remedy the above shortcomings, some hybrid meth-
ods have been used recently to predict crude oil price and
obtain the best performances. In last year, wavelet transform
has become a useful method for analyzing such as variations,
periodicities, and trends in time series. The hybrid models
with wavelet transform processes have been improved for
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forecasting. For example wavelet-neural network (Jammazi
and Aloui [13], Qunli et al. [14], and Yousefi et al. [15]),
wavelet-least square support vector machines (LSVM) (Bao
et al. [16]), and wavelet-fuzzy neural network (Liu et al. [17])
have been employed recently on some studies in crude oil
forecasting. They observed that the wavelet transform fairly
improves forecasting accuracy.

A major drawback of wavelet transform for direction
prediction is that the input variables lie in a high-dimensional
feature space depends on the number of sub-time series
components. Because the number of sub-time series compo-
nents for wavelet is inadvisable to be too many, in this study
principal component analysis (PCA) is proposed to reduce
the dimensions of sub-time series components.

The multiple linear regressions (MLR) model that is
much easier to interpret is considered as an alternative to
ANN model. In this paper, a hybrid wavelet multiple linear
regression (WMLR) model integrating wavelet and MLR is
proposed for short-term daily crude oil price forecasting.The
study applies particle swarm optimization (PSO) to adopt
the optimal parameters to construct the MLR model. For
verification purpose, the West Texas Intermediate (WTI)
crude oil sport price is used to test the effectiveness of the
proposedWMLR ensemble learning methodology. Finally to
evaluate themodel ability, the proposedmodel was compared
with individual ARIMA and GARCHmodels.

2. Methodology

2.1.TheARIMAModel. Themost comprehensive of all popu-
lar and widely known statistical methods used for time series
forecasting are Box-Jenkins models (Box and Jenkins [18]).
It has achieved great success in both academic research and
industrial applications during the last three decades. The
general form of ARIMA models can be expressed as
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where 𝑝 is the order of the autoregressive, 𝑞 is the order of the
moving average, and 𝑒

𝑡
is the random error. The Box-Jenkins

methodology is basically divided into four steps: identifica-
tion, estimation, diagnostic checking, and forecasting.

2.2. The GARCH Model. GARCH models have found exten-
sive application in the literature and themost popular volatil-
itymodel is GARCH (1, 1)model proposed by Bollerslev [19].
The standard GARCH (1, 1) can be described as follows:
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2.3. Multiple Linear Regressions. Multiple linear regressions
(MLR) model is one of the modelling techniques to investi-
gate the relationship between a dependent variable and sev-
eral independent variables. Let the MLR have 𝑝 independent
variables with 𝑛 observations. Thus the MLR can be written
as
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where 𝑤 are regression coefficients, 𝑌 is dependent variable,
𝑥
𝑖
are independent varaiables and 𝜀

𝑡
is fitting errors. The

method of least squares is generally used to estimate the
coefficients model. In many applications, the results of a least
squares fit are often unacceptable when themodel is wrong or
when the model is misspecified (Bozdogan and Howe [20]).

In this study, particle swarm optimization (PSO) method
is presented to determine the optimal parameters of theMLR
model. The PSO methods have proven to be very effective
in solving a variety of difficult global optimization problems
in forecasting (Chen and Kao [21] and Alwee et al. [22]),
heat problem (Ma et al. [23] and Tyagi and Pandit [24]), and
dynamic environments (Liu et al. [25]).

The classic solution of MLR model involves the mini-
mization of the sum of the square errors between the model-
predicted value and the corresponding data value:
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where 𝑛 is the number of training data samples, 𝑌
𝑖
is the

actual value, and 𝑌̂
𝑖
is the forecasted value of train data.

The same methodology was used to solve this problem using
PSO algorithms. The solution with a smaller fitness 𝑓(𝑤) of
the training data set has a better chance of surviving in the
successive generations.

2.4. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is a population-based heuristic method inspired
by the collective motion of biological organisms, such as
bird flocking and fish schooling, to simulate the seeking
behavior to a food source (Bratton and Kennedy [26]). The
population of PSO is called a swarm and each individual in
the population of PSO is called a particle. The PSO begins
with a random population and searchers for fitness optimum
just like genetic algorithm (GA). To find the optimum
solution, each particle adjusts the direction through the best
experience which it has found (𝑝best) and the best experience
that has been found by all other members (𝑔best). Therefore,
the particles fly around in a multidimensional space towards
the better area over the search process.

Each particle consists of three vectors: the position
for 𝑖th individual particle can be denoted as 𝑋
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performance of each particle is measured using a fitness
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function varying from problem in hand. During the iterative
procedure, the 𝑖th particle at iteration 𝑡 is updated by
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where𝜔 is called inertia weight, 𝑐
1
and 𝑐
2
are acceleration con-

stants, and 𝜑
1
and 𝜑

2
are stochastic value of [0, 1]. In a PSO

system, particles change their positions at each time step until
a relatively unchanging position has been encountered or a
maximum number of iterations have been met. In general,
the performance of each particle is measured according to a
fitness function, which is problemdependent. InMLRmodel,
(4) is the fitness function under consideration. Figure 1 shows
the flowchart of the developed PSO algorithm. For further
details regarding PSO, please refer to Kennedy and Eberhart
[27] and Bratton and Kennedy [26].

2.5. Wavelet Analysis. Wavelet transformations provide use-
ful decomposition of original time series by capturing use-
ful information on various decomposition levels. Discrete
wavelet transformation (DWT) is preferred in most of the
forecasting problems because of its simplicity and ability to
compute with less time. The DWT can be defined as

𝜓
𝑚,𝑛
(
𝑡 − 𝜏

𝑠
) =

1

√𝑠
𝑚/2

0

𝜓(
𝑡 − 𝑛𝜏

0
𝑠
𝑚

0

𝑠
𝑚

0

) , (6)

where𝑚 and 𝑛 are integers that control the scale and time.The
most common choices for the parameters 𝑠
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where𝑊
𝑚,𝑛

is the wavelet coefficient for the discrete wavelet
at scale 𝑠 = 2𝑚 and 𝜏 = 2𝑚𝑛. According to Mallat’s theory,
the original discrete time series 𝑥(𝑡) can be decomposed into
a series of linearity independent approximation and detail
signals by using the inverse DWT.The inverse DWT is given
by (Mallat [28])
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or in a simple format as
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where 𝐴
𝑀
(𝑡) is called approximation subseries or residual

term at levels 𝑀 and 𝐷
𝑚
(𝑡) (𝑚 = 1, 2, . . . ,𝑀) are detail

subseries which can capture small features of interpretational
value in the data.
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Figure 1: Flowchart of PSO algorithm.

2.6. Principal Component Analysis. In an MLR, one of main
tasks is to determine the model input variables that affect the
output variables significantly. The choice of input variables
is generally based on a priori knowledge of causal variables,
inspections of time series plots, and statistical analysis of
potential inputs and outputs. PCA is a technique widely used
for reducing the number of input variables when we have
huge volume of information and we want to have a better
interpretation of variables (Çamdevýren et al. [29]).

The PCA approach introduces a few combinations for
model input in comparison with the trial and error process.
Given a set of centred input vectors 𝑥

1
, 𝑥
2
, . . . , 𝑥
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The principal components (PCs) are computed by solving the
eigenvalue problem of covariance matrix 𝐶,
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The new components, 𝑧
𝑖
(𝑡), are called principal components.

By using only the first several eigenvectors sorted in descend-
ing order of the eigenvalues, the number of principal com-
ponents in 𝑧

𝑡
can be reduced. So PCA has the dimensional

reduction characteristic. The principal components of PCA
have the following properties: 𝑧

𝑡
(𝑖) are linear combinations

of the original variables, uncorrelated and have sequentially
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maximum variances (Jolliffe [30]). The calculation variance
contribution rate is
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× 100%. (13)

The cumulative variance contribution rate is
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The number of the selected principal components is based on
the cumulative variance contribution rate, which as a rule is
over 85∼90.

3. Computer Simulation

3.1. An Application. In this study, the West Texas Intermedi-
ate (WTI) crude oil price series was chosen as experimental
sample.Themain reason of selecting theWTI crude oil is that
these crude oil prices are the most famous benchmark prices,
which are widely used as the basis of many crude oil price
formulae. The daily data from January 1, 1986, to September
30, 2006, excluding public holidays, with a total of 5237 was
employed as experimental data. For convenience of WMLR
modeling, the data from January 1, 1986, to December 31,
2000, is used for the training set (3800 observations), and
the remainder is used as the testing set (1437 observations).
Figure 2 shows the daily crude oil prices from January 1, 1986,
to September 30.

In practice, short-term forecasting results aremore useful
as they provide timely information for the correction of
forecasting value. In this study, three main performance
criteria are used to evaluate the accuracy of themodels.These
criteria are mean absolute error (MAE), root mean squared
error (RMSE), and𝐷stat. TheMAE and RMSE can be defined
by
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In crude oil price forecasting, improved decisions usually
depend on correct forecasting of directions, of actual price,
𝑦
𝑡
and forecasted price, 𝑦

𝑡
. The ability to predict movement

direction can bemeasured by a directional statistic (𝐷stat) (Yu
et al., [1]), which can be expressed as
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3.2. Application and Result. At first, the MLR model without
data preprocessing was used to model daily oil prices. In
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Figure 2: Daily crude oil prices from January 1, 198, to September
30, 2006.

the next step, the preprocessed data which uses subtime
series components obtained using discrete wavelet transform
(DWT) on original data were entered to the MLR model in
order to improve themodel accuracy. For theMLRmodel, the
original log return time series are decomposed into a certain
number of subtime series components. Deciding the optimal
decomposition level of the time series data in wavelet analysis
plays an important role in preserving the information and
reducing the distortion of the datasets. However, there is no
existing theory to tell how many decomposition levels are
needed for any time series.

In the present study, the previous log return of daily oil
price time series is decomposed into various subtime series
(DWs) at different decomposition levels by using DWT to
estimate current price value. Three decomposition levels (2,
4, and 8 months) were considered for this study. For theWTI
series data, time series of 2-day mode (DW1), 4-day mode
(DW2) and 8-day mode (DW3), and approximate mode are
presented in Figure 3.

For the WTI series, six input combinations based on
previous log return of daily oil prices are evaluated to esti-
mate current prices value. The input combinations evaluated
in the study are (i) 𝑟

𝑡−1
, (ii) 𝑟

𝑡−1
, 𝑟
𝑡−2

, (iii) 𝑟
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. In all cases, the output is the log
return of current oil prices, 𝑟

𝑡
.

Each of DWs series plays distinct role in original time
series and has different effects on the original prices oil
series. The selection of dominant DWs as inputs of MLR
model becomes important and effective on the output data
and has positive effect excessively on model’s ability. The
model becomes exponentially more complex as the number
of subtime series as input variables increases. Using a large
number of input variables should be avoided to save time and
calculation effort. Therefore, the effectiveness of new series
obtained by PCA is used as input to theMLRmodel.ThePCA
approach helps us to reduce the number of original variables
to a set of new variables. Generally, the objective of PCA is to
identify a new set of variables such that each variable, called a
principal component, is a linear combination of the original
variables. The new set of variables accounts for 85%−90% of
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Figure 3: Decomposed wavelet subtime series components (Ds) of
WTI crude oil price data.
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Figure 4: The structure of the WMLR model.

Table 1: Eigen value and cumulative variance contribution rate of
the 8 principal components.

PC 1 2 3 4 5 6 7 8
Eigen value 1.97 1.79 1.59 1.33 0.67 0.41 0.21 0.03
Cumulative
Variance Rate 0.25 0.47 0.67 0.84 0.92 0.97 1.00 1.00

the total variation were considered as the number of new
variables.

For example, taking two previous daily oil prices as a
random variable. Every previous daily oil price time series
are decomposed using DWT into three decomposition levels,
respectively. Thus there were 8 subseries considered for
the PCA analysis. The result of PCA analysis is shown in
Table 1. Table 1 shows that the first four principle components
can explain 84% variation of the data variation with the
eigenvalues greater than 1 to be retained, in which all the 4
PCs were included in the MLR model. Thus the 8 original
variables can be replaced by 4 new irrelevant variables. For
training MLR, the PSO algorithm solving the recognition
problem is implemented and the program code including
wavelet toolbox was written in MATLAB language. The
WMLRmodel structure developed in present study is shown
in Figure 4.

The forecasting performances of the MLR and WMLR
models in terms of the MAE, RMSE, and 𝐷stat testing phase
are compared and shown in Table 2. Table 2 shows MLR
model; the M1 with 1 lag obtained the best MAE statistics
of 0.6948 and the M6 with 6 lags obtained the best RMSE
statistics of 0.9450, while the M1 with 5 lags obtained the best
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Table 2: Forecasting performance indices of MLR and WLR.

Model Input Lag MLR WMLR
MAE RMSE 𝐷stat MAE RMSE 𝐷stat

M1 1 0.6948 0.9514 0.4788 0.6660 0.9001 0.5198
M2 1, 2 0.6972 0.9517 0.4781 0.6448 0.8842 0.5003
M3 1, 2, 3 0.6985 0.9545 0.4816 0.5345 0.7505 0.5797
M4 1, 2, 3, 4 0.6979 0.9550 0.4753 0.4834 0.6572 0.6722
M5 1, 2, 3, 4, 5 0.6976 0.9545 0.4878 0.5770 0.8046 0.5734
M6 1, 2, 3, 4, 5, 6 0.6969 0.9450 0.4850 0.5385 0.7389 0.6444

𝐷stat statistics of 0.4878. For WMLR, model M4 with 4 lags
obtained the best MAE, RMSE, and 𝐷stat statistics of 0.4834,
0.6572, and 0.6722, respectively. The equations of MLR with
six input variables and WMLR with four input variables,
respectively, are

𝑦
𝑡
= − 0.025𝑦

𝑡−1
− 0.047𝑦

𝑡−2
+ 0.22𝑦

𝑡−3

− 0.082𝑦
𝑡−4
− 0.060𝑦

𝑡−5
+ 0.0004𝑦

𝑡−6
,

𝑟
𝑡
= 0.076𝑧

1
(𝑡) − 0.221𝑧

2
(𝑡) − 0.213𝑧

3
(𝑡)

− 0.510𝑧
4
(𝑡) + 0.416𝑧

5
(𝑡) − 0.930𝑧

6
(𝑡) ,

(17)

where 𝑧
𝑖
(𝑡) are called principal components and 𝑦

𝑡
=

𝑦
𝑡−1

exp(𝑟
𝑡
).

For further analysis, the best performance of the LR,
WMLR, ARIMA, and ARIMA-GARCH models was com-
pared with the best results of ARIMA and forward neural
network (FNN) studied by Yu et al. [1]. In Table 3, it
shows that WMLR outperform MLR, ARIMA, GARCH, Yu’
ARIMA and Yu’ FNN models in terms of RMSE statistics.
This results show that the new series (DWT) have significant
extremely positive effect on MLR model results.

Figure 5 shows the Box-plot for the ARIMA, ARIMA-
GARCH, MLR, andWMLR models for testing period. It can
be seen that the errors of WMLR model are quite close to
the zero. Overall, it can be concluded that the WMLR model
provided more accurate forecasting results than the other
models for crude oil forecasting.

Table 3: The RMSE and MAE comparisons for different models.

Model RMSE MAE
ARIMA (2, 1, 5) 1.3835 1.0207
GARCH (1, 1) 0.9513 0.6947
MLR 0.9450 0.6969
WMLR 0.6572 0.4834
Yu’ ARIMA (Yu et al., [1]) 2.0350 —
Yu’ FNN (Yu et al., [1]) 0.8410 —

4. Conclusions

The accuracy of the wavelet multiple linear regression
(WMLR) technique in the forecasting daily crude oil has been
investigated in this study. The PCA is used to choose the
principle component scores of the selected inputs which were
used as independent variables in theMLRmodel and the par-
ticle swarm optimization (PSO) is used to adopt the optimal
parameters of the MLR model. The performance of the pro-
posed WMLR model was compared to regular LR, ARIMA,
and GARCH model for crude oil forecasting. Comparison
results indicated that the WMLR model was substantially
more accurate than the other models. The study concludes
that the forecasting abilities of the MLR model are found to
be improved when the wavelet transformation technique is
adopted for the data preprocessing.Thedecomposed periodic
components obtained from the DWT technique are found to
be most effective in yielding accurate forecast when used as
inputs in the MLR model. The accurate forecasting results
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indicate that WMLR model provides a superior alternative
to other models and a potentially very useful new method
for crude oil forecasting. The WMLR model presented in
this study is a simple explicit mathematical formulation. The
WMLR model is much simpler in contrast to ANN model
and can be successfully used in modeling short-term crude
oil price. In the present study, three resolution levels were
employed for decomposing crude oil time series. If more
resolution levels were used, the results from WMLR model
may turn out better. This may be a subject of another study.
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