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Abstract. 
The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA) that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded particle’s boundary constraints associated with the corresponding time windows of customers, is introduced and combined with the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms.


1. Introduction
The traveling salesman problem with time windows (TSPTW) is an important variant of the well-known traveling salesman problem (TSP) in which each customer has a service time (i.e., the time that should be spent during the visit to the customer), which should start within a given time window. In the TSPTW, the time window of each visit is bounded by an earliest arrival time and a latest arrival time. The TSPTW can be defined as the problem of finding a minimum cost tour that starts and ends at the same depot, where each node should be visited exactly once within its time window. A nonnegative cost is associated with each arc, and the total cost can be taken as the route completion time, total travel time, or total traveled distance [1]. In this study, the total traveled distance will be considered the cost value. The TSPTW can be considered a special case of the capacitated vehicle routing problem with time windows (VRPTW) to which the relaxation of capacity constraints is applied.
The TSPTW has various practical real-world applications such as package delivery, school bus routing, scheduling, automated guided machines, and routing problems in the context of lean manufacturing. Savelsbergh [2] has shown that the TSPTW is NP-hard, and even finding a feasible route is a NP-complete problem. Nevertheless, early study focused on exact optimization techniques to solve the TSPTW. Baker [1] proposed an exact algorithm using a branch and bound approach in which lower bounds are determined by dual relaxations of the model. Dumas et al. [3] developed a dynamic programming approach, and Langevin et al. [4] described a two-commodity flow model including two complementary flows. More recently, a branch and cut algorithm [5], linear time dynamic programming [6], and constraint programming [7, 8] were proposed to solve the TSPTW.
Because it is difficult to solve the TSPTW within acceptable computation times using exact methods, Heuristic and metaHeuristic techniques have been analyzed extensively in the literature. Carlton and Wesley Barnes [9] proposed a static-penalty-based tabu search to solve the TSPTW. Gendreau et al. [10] presented an insertion Heuristic, and Calvo [11] used a construction Heuristic based on both greedy insertion and local search. Furthermore, Da Silva and Urrutia [12] proposed a general variable neighborhood search (VNS) Heuristic that consists of a constructive stage for finding a feasible solution and an optimization stage during which feasible solutions are improved using a general VNS Heuristic. Ohlmann and Thomas [13] proposed a compressed annealing approach, which is a variant of simulated annealing and utilizes a variable penalty method, and López-Ibáñez and Blum [14] proposed a Beam-ACO algorithm, which hybridizes Beam search and ant colony optimization to solve the TSPTW via extensive computational analysis.
In this study, an electromagnetism-like algorithm (EMA) using a new variable bounding strategy is proposed to solve the TSPTW efficiently. The EMA approach basically emulates electromagnetism theory in physics, in which charged particles exert attractive or repulsive forces on each other [15]. The basic idea behind the algorithm is to force particles to search for the optimum in a multidimensional space by applying a collective force on them. In recent work, an EMA was used to train neural networks [16] to solve fuzzy relations [17]. Debels et al. [18] solved resource constrained scheduling problems by combining an EMA with scatter search. Tsou and Kao [19] used an EMA to control and optimize multiobjective inventory models. Maenhout and Vanhoucke [20] used an EMA to solve nurse scheduling problems. Jhang and Lee [21] used an EMA for array pattern optimization in the field of electrical engineering. Chang et al. [22] combined a GA with an EMA to solve single machine earliness/tardiness scheduling problems and showed that the hybrid EMA performs better than the plain EMA. Moreover, the researchers used a random key procedure to decode particles into feasible schedules. Wu et al. [23] applied an EMA using a random key procedure to solve the traveling salesman problem. Yurtkuran and Emel [24] solved capacitated vehicle routing problems by using an EMA that hybridizes a local search procedure. Naji-Azimi et al. [25] combined preprocessing procedure, mutation, and local search with an EMA to solve the well-known unicost set covering problem. In [26] EMA framework was introduced for solving the response time variability problem. Guan et al. [27] used an EMA to solve flow path design problems for automated guided vehicles. Jamili et al. [28] proposed a simulated annealing and electromagnetism-like mechanism hybrid framework to solve the periodic job shop scheduling problem. In [29] EMA was used to detect circles on figures. Su and Lin [30] introduced an EMA mechanism for feature selection. Lee and Chang [31] used an improved EMA to optimize fractional-order PID controllers. Furthermore, EMAs have also been applied to address multimode project scheduling under uncertainty [32] and nonlinear system control [33].
In this study, new constraint handling techniques are introduced to cope with time-window constraints in the TSPTW. To the best of our knowledge, our proposed constraint handling technique is the first in the literature in which the feasibility is maintained without using any extra feasibility operators. The main goal of using VBS is to narrow the unbounded search space to a bounded search space to reach feasible solutions effortlessly. Moreover, to analyze the effectiveness of the proposed algorithm, first, the constraint handling performance of the proposed EMA framework is analyzed, comparing it to that of the traditional EMA. Then, the modified framework is compared to state-of-the-art algorithms using benchmark problems.
The rest of this paper is organized as follows. Section 2 provides a brief introduction and a mathematical formulation of the TSPTW. Section 3 discusses the traditional EMA, and the proposed EMA for the TSPTW is presented in Section 4. The computational results are summarized in Section 5, and, finally, Section 6 concludes the paper.
2. Traveling Salesman Problem with Time Windows
The traveling salesman problem with time windows can be briefly defined as follows. Let 
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				Formula (2) denotes the objective function of the problem. The objective is to minimize the total time required to travel from each node 
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. Constraints (3) and (4) ensure that every node is visited only once. Constraint (5) aims to maintain the sequence of the route. Constraints (6) and (7) specify the service time windows, where 
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. Depending on the tight bounds in time-window constraints (7), TSPTW results in a tighter search space of feasible solutions. If an efficient neighborhood search strategy which is part of a metaHeuristic solver takes advantage of this feasible solution space, it is expected that the performance of such a metaHeuristic algorithm can be improved. Therefore, in the following sections, EMA will be used to host our proposed strategy for handling constraint (7).
3. Electromagnetism-Like Algorithm
The EMA is a population-based Heuristic method introduced by Birbil and Fang [15] for solving bound constraint optimization problems. The algorithm was inspired by the theory of electromagnetism in physics, in which there are attractive and repulsive forces between charged particles. The EMA can be used easily and effectively to solve optimization problems with bounded variables of the following form:
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In the problem formulation, x is a vector that represents a solution point position in 
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In the EMA, a candidate solution is associated with a charged particle in a multidimensional space using a real-coded position vector 
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The traditional EMA has four phases: 
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		(1) Initialize (PopSize)
	(2) Set Iter ← 1
	(3) While Iter < MaxIter do
	(4)        LocalSearch(LsIter)
	(5)        CalculateCharges()
	(6)        CalculateForces()
	(7)        Movement()
	(8)        Set Iter ← Iter + 1
	(9) End While


	Algorithm 1: EMA (PopSize, MaxIter, and LsIter). 


In this study, the charge and force calculations and the subsequent particle movement procedures are implemented using the modified EMA proposed by [18]. Here, the charge and force calculations are not absolute-value-based; instead, relative charge and force calculations are used for each particle pair in the population. The details of the proposed algorithm will be described in the next section.
4. EMA for TSPTW
This section provides the details of the proposed EMA.
4.1. Charge and Force Calculations and Movement of Particles
In our proposed EMA, the charge of particle 
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					For a minimization problem, if particle 
	
		
			

				𝑖
			

		
	
 is a better solution than particle 
	
		
			

				𝑗
			

		
	
, that is, 
	
		
			
				𝑓
				(
				𝐱
			

			

				𝑖
			

			
				)
				<
				𝑓
				(
				𝐱
			

			

				𝑗
			

			

				)
			

		
	
, then particle 
	
		
			

				𝑗
			

		
	
 will repel particle
	
		
			

				𝑖
			

		
	
 because 
	
		
			

				𝑞
			

			
				𝑖
				𝑗
			

		
	
 will be negative.
In the modified EMA, first, 
	
		
			

				𝑞
			

			
				𝑖
				𝑗
			

		
	
 and 
	
		
			

				𝓕
			

			
				𝑖
				𝑗
			

		
	
 are calculated for every combination of particle pairs; then, the resultant cumulative force on particle 
	
		
			

				𝑖
			

		
	
 is determined by 
	
		
			

				𝐅
			

			

				𝑖
			

			
				=
				∑
			

			
				𝑛
				𝑗
				=
				1
				,
				𝑗
				≠
				𝑖
			

			

				𝓕
			

			
				𝑖
				𝑗
			

		
	
. Once the cumulative force 
	
		
			

				𝐅
			

			

				𝑖
			

		
	
 exerted on particle 
	
		
			

				𝑖
			

		
	
 is determined, the particle 
	
		
			

				𝑖
			

		
	
 will move in the direction of 
	
		
			

				𝐅
			

			

				𝑖
			

		
	
 to yield improved solutions. A uniformly distributed random step 
	
		
			
				0
				<
				𝜆
				<
				1
			

		
	
 is used to force the algorithm to explore unvisited regions. Similarly to the cooling effect in the simulated annealing algorithm, the current iteration number, 
	
		
			
				𝐼
				𝑡
				𝑒
				𝑟
			

		
	
, is used to decrease the step length as the algorithm proceeds. Additionally, a preset parameter 
	
		
			

				𝑟
			

		
	
, 
	
		
			
				0
				≤
				𝑟
				≤
				1
			

		
	
, is used to control the cooling effect. The motion of particle 
	
		
			

				𝑖
			

		
	
 along the 
	
		
			

				𝐅
			

			

				𝑖
			

		
	
 direction is calculated as follows:
								
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐱
			

			

				𝑖
			

			
				=
				𝐱
			

			

				𝑖
			

			
				+
				𝜆
			

			
				
			
			
				(
				𝐼
				𝑡
				𝑒
				𝑟
				)
			

			

				𝑟
			

			

				𝐅
			

			

				𝑖
			

			
				,
				∀
				𝑖
				∈
				𝑁
				.
			

		
	


					It is important to note that the proposed EMA uses an elitist strategy. In other words, the best solution’s position vector in the population, 
	
		
			

				𝐱
			

			
				b
				e
				s
				t
			

		
	
, is preserved.
4.2. Solution Representation
As mentioned above, the EMA was originally designed to cope with continuous optimization problems. In order to solve combinatorial optimization problems such as vehicle routing problems with EMA, real-coded position vectors (candidate solutions) have to be decoded into permutations of customers. To the best of our knowledge, most researchers have introduced a random key (RK) procedure into the EMA to facilitate solving combinatorial optimization problems [18, 22, 25, 26].
The RK representation was proposed by [34] to maintain feasible solutions after crossover operations in genetic algorithms. In [34] a random number encoding structure was proposed for the chromosomal representation of solutions. The main advantage of using the RK procedure is that each candidate solution can be represented by real-coded values such that several metaHeuristic operators can be implemented without concern over feasibility issues. Because all position vectors are real-coded, integrating the random key procedure into the EMA is a very straightforward and easy process, thus making the EMA an efficient search algorithm for combinatorial optimization problems. A sample random key procedure is shown in Figure 1. In the random key procedure, when the real-coded coordinate values of the position vector are sorted in a nondecreasing order, the new permutation of the indexes of this position vector represents a route for the TSPTW as a sorted index. In Figure 1, because the smallest coordinate value of the position vector is 0.04 for index = 2, customer 2 will be visited first. The other customers are visited following the sorted index in a similar manner, and the resulting route will be 2→1→5→4→3.


	
		
			
			
			
			
			
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	












































	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
		
	


























	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	




















	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	















Figure 1: A sample random key procedure.


4.3. Handling Time Window Constraints
In the proposed EMA, two approaches are combined to prevent infeasible routes: (i) new variable bounding strategy (VBS) and (ii) penalty approach. VBS is used to eliminate infeasible candidate solutions when the problem consists of nonoverlapping time windows for nodes, whereas a penalty strategy is used to cope with infeasibilities resulting from overlapping time windows.
4.3.1. VBS with Nonoverlapping Time Windows
Nonoverlapping time window infeasibilities can be described as follows. Consider two customers 
	
		
			

				𝑖
			

		
	
 and 
	
		
			

				𝑗
			

		
	
 with time windows 
	
		
			
				[
				𝑒
			

			

				𝑖
			

			
				,
				𝑙
			

			

				𝑖
			

			

				]
			

		
	
 and 
	
		
			
				[
				𝑒
			

			

				𝑗
			

			
				,
				𝑙
			

			

				𝑗
			

			

				]
			

		
	
, respectively. These time windows are said to be nonoverlapping if and only if either 
	
		
			

				𝑙
			

			

				𝑖
			

			
				≤
				𝑒
			

			

				𝑗
			

		
	
 or 
	
		
			

				𝑙
			

			

				𝑗
			

			
				≤
				𝑒
			

			

				𝑖
			

		
	
, where 
	
		
			

				𝑒
			

			

				𝑖
			

			
				≤
				𝑙
			

			

				𝑖
			

		
	
 by definition (Figure 2(a)). Because a waiting time up to 
	
		
			

				𝑒
			

			

				𝑖
			

		
	
 is applied for early visits, the earliest time (
	
		
			

				𝑡
			

			
				e
				a
				r
				l
				i
				e
				s
				t
			

			

				𝑖
			

		
	
) in which a customer can be left is the early time of that customer (
	
		
			

				𝑡
			

			
				e
				a
				r
				l
				i
				e
				s
				t
			

			

				𝑖
			

			
				≥
				𝑒
			

			

				𝑖
			

		
	
). Therefore, any customer sequence that ensures the following constraint will always be infeasible for a nonoverlapping customer pair:
										
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝑖
			

			
				+
				𝑠
			

			

				𝑖
			

			
				+
				𝑑
			

			
				𝑖
				𝑗
			

			
				≥
				𝑙
			

			

				𝑗
			

			
				,
				(
				𝑖
				,
				𝑗
				)
				∈
				𝑠
				,
				𝑑
			

			
				𝑖
				,
				𝑗
			

			
				>
				0
				,
			

		
	

									where 
	
		
			

				𝑠
			

		
	
 represents the set of customer pairs that customer 
	
		
			

				𝑖
			

		
	
 precedes 
	
		
			

				𝑗
			

		
	
. In other words, if 
	
		
			

				𝑙
			

			

				𝑖
			

			
				<
				𝑒
			

			

				𝑗
			

		
	
, then customer 
	
		
			

				𝑖
			

		
	
 should be visited before customer 
	
		
			

				𝑗
			

		
	
; otherwise, if 
	
		
			

				𝑙
			

			

				𝑗
			

			
				<
				𝑒
			

			

				𝑖
			

		
	
, then customer 
	
		
			

				𝑗
			

		
	
 should be visited before customer 
	
		
			

				𝑖
			

		
	
 and any tour that contains a sequence in which 
	
		
			

				𝑗
			

		
	
 is visited before customer 
	
		
			

				𝑖
			

		
	
 is infeasible.
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(b)
Figure 2: Time windows for a customer pair: (a) nonoverlapping time windows and (b) overlapping time windows.


VBS relies on the ability of the EMA to operate with bounded variables. In VBS, the time windows of customers are normalized between predetermined lower and upper global bounds 
	
		
			
				[
				𝐿
				,
				𝑈
				]
			

		
	
, and the variables are then bounded within their corresponding normalized time windows 
	
		
			
				[
				𝑒
			

			
				n
				o
				r
			

			

				𝑘
			

			
				,
				𝑙
			

			
				n
				o
				r
			

			

				𝑘
			

			

				]
			

		
	
, where 
	
		
			

				𝑒
			

			
				n
				o
				r
			

			

				𝑘
			

			
				=
				𝑒
			

			

				𝑘
			

			
				(
				𝐿
				/
				m
				i
				n
				𝐸
				)
			

		
	
, 
	
		
			

				𝑙
			

			
				n
				o
				r
			

			

				𝑘
			

			
				=
				𝑙
			

			

				𝑘
			

			
				(
				𝑈
				/
				m
				a
				x
				𝐿
				)
			

		
	
, 
	
		
			
				m
				i
				n
				𝐸
				=
				m
				i
				n
			

			

				𝑘
			

			
				{
				𝑒
			

			

				𝑘
			

			

				}
			

		
	
, and 
	
		
			
				m
				a
				x
				𝐿
				=
				m
				a
				x
			

			

				𝑘
			

			
				{
				𝑙
			

			

				𝑘
			

			

				}
			

		
	
 and 
	
		
			

				𝑘
			

		
	
 represents the customer number. Combining the VBS and the nondecreasing sorting step in RK, any solution point that has infeasible customer pairs with nonoverlapping time windows is thus eliminated from the candidate solution population. In other words, EMA is forced to search in feasible regions using VBS.
4.3.2. Penalty Strategy with Overlapping Time Windows
However, this variable bounding strategy has drawbacks in the case of highly overlapping time windows. The effect of VBS will decrease in going from nonoverlapping to overlapping windows and will be ineffective if the time windows of a customer pair 
	
		
			
				(
				𝑖
				,
				𝑗
				)
			

		
	
 are fully overlapping (
	
		
			

				𝑒
			

			

				𝑖
			

			
				=
				𝑒
			

			

				𝑗
			

		
	
 and
	
		
			

				𝑙
			

			

				𝑖
			

			
				=
				𝑙
			

			

				𝑗
			

		
	
) (see Figure 2(b) for an overlapping time window example). To overcome the infeasibility problems for highly overlapping time windows, a penalty strategy is introduced. A penalty cost that is calculated from a linear penalty function is added to the OFV if the solution violates the time window of any customer. This penalty is assumed to be a linear function of the amount of time that is violated. The penalty cost is calculated as follows:
										
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑖
			

			
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				0
				𝑡
			

			

				𝑖
			

			
				<
				𝑒
			

			

				𝑖
			

			
				0
				𝑒
			

			

				𝑖
			

			
				≤
				𝑡
			

			

				𝑖
			

			
				≤
				𝑙
			

			

				𝑖
			

			
				𝛽
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑙
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑖
			

			
				>
				𝑙
			

			

				𝑖
			

			

				,
			

		
	

									where 
	
		
			

				𝑃
			

			

				𝑖
			

		
	
 denotes the penalty cost at customer 
	
		
			

				𝑖
			

		
	
, 
	
		
			

				𝑡
			

			

				𝑖
			

		
	
 represents the vehicle arrival time to customer 
	
		
			

				𝑖
			

		
	
, and 
	
		
			

				𝛽
			

		
	
 is the penalty coefficient, which will be determined experimentally. By using the penalty approach, infeasible solutions will have high OFVs and will exert repulsive forces on better solutions.
The effect of VBS and RK in eliminating time window infeasibilities is illustrated by considering a sample problem. Consider a TSP with 4 customers having time windows, as indicated in Table 1. For ease of analysis, we ignore the normalization step and time windows are directly used as the bounds. As shown in Figure 3, customers (1,2), (1,4), (2,4), and (3,4) have nonoverlapping time windows. By definition, customer 4 should be visited last because 
	
		
			

				𝑒
			

			

				4
			

			
				≥
				𝑙
			

			

				𝑗
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
			

		
	
. Because we bound index 4 of the position vector with customer 4’s normalized time window 
	
		
			
				[
				𝑒
			

			
				n
				o
				r
			

			

				𝑘
			

			
				,
				𝑙
			

			
				n
				o
				r
			

			

				𝑘
			

			

				]
			

		
	
, index 4 will always be larger than the other variables during the search process. As a result, when the real-coded coordinate values of the position vector are sorted in a nondecreasing order in RK, it will be ensured that customer 4 will be the last. Similarly, by combining VBS and RK, customer 1 will always precede customer 2 because 
	
		
			

				𝑒
			

			

				2
			

			
				≥
				𝑙
			

			

				1
			

		
	
. To summarize, by combining VBS and RK as a solution representation strategy, infeasibilities associated with nonoverlapping time windows are eliminated, and those infeasible regions are abandoned. Figure 4 shows the variable boundaries and possible positions of customers after using the VBS and RK. Furthermore, a penalty approach will help to discern feasible solutions from the possible feasible solution set because infeasible solutions will have higher OFVs.
Table 1: Customers’ time windows for the sample problem.
	

	Customer	Early time	Late time
	

	1	5	15
	2	12	27
	3	17	31
	4	34	42
	





	
		
			
		
			
		
	


	
		
			
		
			
		
	









	
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	



Figure 3: Time windows for the sample problem.




	
		
			
			
			
			
			
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
		
	






















	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
		
	
	
		
			
		
	
	
		
			
		
	


	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	


	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	


	
		
			
		
	










































Figure 4: Possible routes after combining VBS and RK.



4.4. Initialization and Boundary Control
The EMA framework begins with the initialization mechanism. The Initialize() procedure generates PopSize() solutions as a starting population using the normalized time windows. The procedure is shown in Algorithm 2, where 
	
		
			

				𝑛
			

		
	
 and 
	
		
			

				𝑚
			

		
	
 denote the population size and length of the position vector (i.e., number of variables), respectively, and 
	
		
			
				𝑈
				𝑛
				𝑖
				𝑓
				𝑜
				𝑟
				𝑚
				(
				)
			

		
	
 draws samples from a uniform distribution. Each position vector 
	
		
			

				𝐱
			

			

				𝑖
			

		
	
 is initialized randomly within the time window of each corresponding variable, 
	
		
			

				𝐱
			

			
				𝑖
				𝑘
			

		
	
.
		(1) for  
	
		
			
				𝑖
				=
				1
			

		
	
  to  
	
		
			

				𝑛
			

		
	
  do
	(2)        for  
	
		
			
				𝑘
				=
				1
			

		
	
  to  
	
		
			

				𝑚
			

		
	
  do
	(3)                
	
		
			
				𝜆
				←
				𝑈
				𝑛
				𝑖
				𝑓
				𝑜
				𝑟
				𝑚
				(
				0
				,
				1
				)
			

		
	

	(4)                
	
		
			

				𝑥
			

			
				𝑖
				𝑘
			

			
				←
				𝑒
			

			
				n
				o
				r
			

			

				𝑘
			

			
				+
				𝜆
				(
				𝑙
			

			
				n
				o
				r
			

			

				𝑘
			

			
				−
				𝑒
			

			
				n
				o
				r
			

			

				𝑘
			

			

				)
			

		
	

	(5)        end for
	(6) end for


	Algorithm 2: Initialization mechanism.


At the end of each iteration, boundary control is applied to the position vector of the particles to determine whether any boundary violations occur. The proposed algorithm adopts an absorbing bound-handling scheme, where, in the case of boundary violation, the corresponding variable is relocated to the bound. Algorithm 3 is the boundary control mechanism; as indicated, if the particle flies outside the boundary, the corresponding variable is set to its normalized early or late arrival time.
		(1) for  
	
		
			
				𝑖
				=
				1
			

		
	
  to  
	
		
			

				𝑛
			

		
	
  do
	(2)        for  
	
		
			
				𝑘
				=
				1
			

		
	
  to  
	
		
			

				𝑚
			

		
	
  do
	(3)                  if  
	
		
			

				𝑥
			

			
				𝑖
				𝑘
			

			
				>
				𝑙
			

			
				n
				o
				r
			

			

				𝑘
			

		
	
  then
	(4)                          
	
		
			

				𝑥
			

			
				𝑖
				𝑘
			

			
				←
				𝑙
			

			
				n
				o
				r
			

			

				𝑘
			

		
	

	(5)                  elseif  
	
		
			

				𝑥
			

			
				𝑖
				𝑘
			

			
				<
				𝑒
			

			
				n
				o
				r
			

			

				𝑘
			

		
	
  then
	(6)                          
	
		
			

				𝑥
			

			
				𝑖
				𝑘
			

			
				←
				𝑒
			

			
				n
				o
				r
			

			

				𝑘
			

		
	

	(7)                  end if
	(8)        end for
	(9) end for


	Algorithm 3: Boundary control mechanism. 


4.5. General Scheme of EMA
The general scheme of the proposed EMA for solving the TSPTW is summarized in Algorithm 4. Each step is executed according to the explanations provided above.
		(1) Set  
	
		
			
				𝑃
				𝑜
				𝑝
				𝑆
				𝑖
				𝑧
				𝑒
			

		
	
← Population Size
	(2) Set  
	
		
			
				𝑀
				𝑎
				𝑥
				𝐼
				𝑡
				𝑒
				𝑟
			

		
	
← Maximum iteration limit
	(3) Set  
	
		
			

				𝑈
			

		
	
← Upper Bound for time window normalization
	(4) Set  
	
		
			

				𝐿
			

		
	
← Lower bound for time window normalization
	(5) Normalize time windows of customers 
	(6) Generate 
	
		
			
				𝑃
				𝑜
				𝑝
				𝑆
				𝑖
				𝑧
				𝑒
			

		
	
 of points within normalized time windows by 
	
		
			
				𝐼
				𝑛
				𝑖
				𝑡
				𝑖
				𝑎
				𝑙
				𝑖
				𝑧
				𝑒
			

		
	
 procedure
	(7) Calculate the OFV of each point.
	(8) Check feasibility of each point.
	(9) Set best and worst solution points.
	(10) While  
	
		
			
				𝐼
				𝑡
				𝑒
				𝑟
				<
				𝑀
				𝑎
				𝑥
				𝐼
				𝑡
				𝑒
				𝑟
			

		
	
  do
	(11)      For  
	
		
			
				𝑖
				=
				1
			

		
	
  to  
	
		
			
				𝑃
				𝑜
				𝑝
				𝑆
				𝑖
				𝑧
				𝑒
			

		
	

	(12)                  For  
	
		
			
				𝑗
				=
				1
			

		
	
  to  
	
		
			
				𝑃
				𝑜
				𝑝
				𝑆
				𝑖
				𝑧
				𝑒
			

		
	

	(13)                             Calculate 
	
		
			

				𝑞
			

			
				𝑖
				𝑗
			

		
	

	(14)                             Calculate 
	
		
			

				𝐅
			

			
				𝑖
				𝑗
			

		
	

	(15)                  End for
	(16)                 Calculate resultant force 
	
		
			

				𝐅
			

			

				𝑖
			

		
	

	(17)      End for
	(18)      Move each solution point.             //Relocate particles by updating position vectors.
	(19)      Calculate OFV of each solution point.
	(20)     Check boundaries of each solution point by 
	
		
			
				𝐵
				𝑜
				𝑢
				𝑛
				𝑑
				𝑎
				𝑟
				𝑦
				𝐶
				𝑜
				𝑛
				𝑡
				𝑟
				𝑜
				𝑙
			

		
	
 procedure.
	(21)      Set the best and worst points.
	(22)      Set  
	
		
			
				𝐼
				𝑡
				𝑒
				𝑟
				←
				𝐼
				𝑡
				𝑒
				𝑟
				+
				1
			

		
	

	(23) End while


	Algorithm 4: General scheme of proposed EMA.


5. Computational Results
The proposed algorithm, described in the previous sections, was implemented in Visual Basic. Net on a PC with an Intel Core 2 Duo CPU running at 2.0 GHz with 2 GB RAM for computational experiments. Two types of experiments were carried out to assess the effectiveness of the proposed EMA. First, to evaluate the performance of the VBS, the EMA with VBS and that without VBS are compared with respect to selected benchmark instances. Second, the proposed EMA is compared to state-of-the-art metaHeuristics using an extensive set of benchmark instances reported in the literature.
5.1. The Effectiveness of Variable Bounding Strategy for the TSPTW
To understand the role of VBS in finding feasible solutions, the proposed EMA with VBS and a penalty strategy (EMA-VP) was compared with the EMA with only a penalty strategy (EMA-P). Because the level of time window overlapping is the key criterion in analyzing the effect of VBS, six different problem instances selected from the benchmark set provided by Potvin and Bengio [35] are categorized as exhibiting a low, average, or high level of time window overlapping. An explicit indicator value of the overlap level (VOL) is calculated by adding two percentages calculated from problem instances, that is, (i) the percentage of time windows of two or more customers that intersect over the total time line (
	
		
			
				m
				i
				n
				𝐸
				a
				n
				d
				m
				a
				x
				𝐿
			

		
	
) and (ii) the ratio of customers with an overlapping time window of at least one unit length. In other words, the length of the overlapped time and number of customers having overlapping time windows are calculated as basic indicators. Therefore, a VOL of 200 corresponds to the full overlap of time windows, whereas 0 denotes a nonoverlapping problem.
The categorized VOLs are presented in Table 2. Furthermore, Table 3 summarizes the selected problem parameters and the corresponding VOLs. Problems with a similar number of customers from different classes (RC 201.3, RC 202.1, RC 203.2, and RC 204.2), a small problem with an average VOL (RC 205.1), and a relatively more complex problem (RC 208.1) are selected for the experiments. In Table 3, 
	
		
			

				𝑛
			

		
	
 denotes the total number of customers and the depot. Figures 5, 6,7, 8, 9, and 10 show the ratio of the number of feasible solutions to the total population as the algorithm proceeds from each benchmark problem. For those experiments, the population size is set to 25 and the penalty coefficients 
	
		
			

				𝛽
			

		
	
 and 
	
		
			

				𝑟
			

		
	
 are set to 1.5 and 0.35, respectively. A single run represents 1000 iterations, and the ratio of feasible solutions is recorded at the end of 25 iterations. Box plots show 10 independent data, each of which represents an average of 25 consecutive runs.
Table 2: Overlap level classification.
	

	Classes of Overlap Level 	VOL
	

	Low	≤90
	Average	90 < VOL ≤ 150
	High	>150
	



Table 3: Selected